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Abstract 

In this article authors have studied the synchronization between non-autonomous hyperchaotic systems viz., Liu and 4D 
hyperchaotic non-autonomous systems with parametric uncertainties using active control method. The numerical simulation and 
graphical results shows that the considered method is effective to synchronize non-autonomous hyperchaotic systems with 
parametric uncertain terms 
© 2016 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the Organizing Committee of ICCCV 2016. 
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1. Introduction 
The applications of non linear dynamical systems have nowadays spread to a wide spectrum of disciplines including 

science, engineering, biology, sociology etc. Study and analysis of non-linear dynamics have gained immense 

popularity during the last few decades due to its important feature of any real-time dynamical system. Sometimes 

these may give rise to the complex behaviour called chaos. Chaos theory as a new branch of physics and 

mathematics has provided a new way of viewing the universe and is an important tool to understand the behaviour 

of the processes in the world. Chaotic behaviour have been observed in different areas of science and engineering 

such as mechanics, electronics, physics, medicine, ecology, biology, economy, and so on. Chaos is an interesting 
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phenomenon of nonlinear systems. Thus a chaotic system is a non linear deterministic system with unpredictable 

complexity. In dynamical systems, the term chaos is applied to deterministic systems that are periodic and that 

exhibit sensitive dependence on initial conditions and parameter variations. The field of chaos has grabbed the 

attention of the researchers and this contributes to a significant amount of the ongoing research these days.The 

synchronization of two identical autonomous chaotic systems was first observed by Pecora and Carrol in 1990 [1]. 

Chaos synchronization is an interesting topic of research in the area of non linear sciences, which has been widely 

investigated in many different fields, such as chemical and ecological science [2-3], secure communication [4], etc. 

The concept of synchronization of chaotic systems is taking two or more chaotic systems. There are several types of 

synchronization schemes which can be used to synchronize of chaotic systems such as active control [5], adaptive 

control [6], nonlinear control [7], impulsive control [8], backstepping design [9] etc.The synchronization of non-

autonomous chaotic circuits by using a feedback device to correct the phase of the periodic forcing in the response 

system was studied by Pecora and Carrol in 1993 [10]. Y. Lei et al. [11] studied robust synchronization of chaotic 

non-autonomous systems using adaptive-feedback control in 2007. In 2012 T. Botmart et al. [12] studied 

Synchronization of non-autonomous chaotic systems with time-varying delay via delayed feedback control, in the 

same year Z. Ye and C. Deng [13] studied Adaptive synchronization to a general non-autonomous chaotic system 

and its applications.The synchronization between chaotic systems with uncertainties is not easy jobs for researchers 

since there are always possibilities of destroying synchronization under the effects of those parameters. Jawaadaa et 

al. [14] studied robust active sliding mode anti-synchronization of hyperchaotic systems with uncertainties and 

external disturbances, in autonomous systems. In 2012, Chen et al. [15] have studied disturbance-observer-based 

robust synchronization control of uncertain autonomous chaotic systems. But the synchronization between non-

autonomous Liu and 4D hyperchaotic systems with uncertainties using active control method is first of its kind. 

In this article the authors have studied synchronization between non-autonomous Liu and 4D hyperchaotic systems 

in the presence of uncertain parameters through active control method. The numerical simulation and graphical 

results are carried out using Runge-kutta method with the help of Matlab. 

2. Problem formulation and systems description 

2.1 Problem formulation 

Consider an uncertain non-autonomous chaotic system as a master system as 

1 1 1( ) ( ),i
i i

dx A A x tf x
dt

                             .....,,2,1 ni                                                                                  (1) 

and another uncertain non-autonomous chaotic system as the response system as  

2 2 2( ) ( ) ( ),i
i i i

dy A A y tf y u t
dt                   .....,,2,1 ni                                                                                (2) 

where 1 2[ , ,....... ]T n
i nx x x x R  and 1 2[ , ,....... ]T n

i ny y y y R  are the state vectors, 1 2, n nA A R  are constant 

matrices with proper dimensions, 1 2, : n nf f R R  are the nonlinear functions of the systems, 1 2, n nA A R  are 

parametric uncertainties of chaotic systems with 1 1,A 2 2,A  where 1 , 2  are positive constants and 
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( ) n
iu t R  is the control input vector of the uncertain chaotic system (2).  

If we define the synchronization error as i i ie y x , 1,2,...., .i n  then the corresponding error dynamics can be 

obtained as 2 2 2 1 1 1( ) ( ) ( ) ( ) ( )i
i i i i i

de = A A y tf y A A x tf x u t
dt

 

                             2 2 1 1( ) ( , ) ( ),i i i iA A A e F x y u t                                    
  

                                                  (3) 

where 1 2 1 2 2 1 1( , ) ( ) ( ) (( ) )i i i i i iF x y tf y tf x A A A x A y  

Now controller )(tui is to be designed in such a way that the master and response systems are synchronized through 

the proper definitions of errors. 

2.2 Systems description 

2.2.1 Non-autonomous hyperchaotic Liu system 

The non-autonomous hyperchaotic Liu system [16] is given by 
 

1
1 2 1( ),dx a x x

dt
2

2 1 5 1 3 4,dx a x a x x x
dt

23
3 1 4 3,dx a x a x

dt
4

2 3sin( )dx t x x
dt

                                                      (4) 

where  is the angular frequency of the input signal. For the parametric values’ 1 2 3 4 510, 50, 4, 2a a a a a  

and [3.02, 3.13], [3.47, 3.915] or [4.04, 5]   the system (4) shows the hyperchaotic behaviour. Phase portraits of Liu 

hyperchaotic system is depicted through Fig. 1 for considered values of the parameters and initial condition 

1 2 3 4( (0), (0), (0), (0)) (0.5,  1, 2, 5)x x x x . 

Let us define the uncertain non-autonomous Liu hyperchaotic system as 

1
1 2 1 3 4( ) 0.1 0.03 ,dx a x x x x

dt
2

2 1 5 1 3 4 10.02 ,dx a x a x x x x
dt

23
3 1 4 3 40.3 ,dx a x a x x

dt  
4

2 3 2sin( ) 0.5dx t x x x
dt                                

                                                                                                        (5) 

where 1

0 0 0.1 0.03
0.02 0 0 0

0 0 0 0.3
0 0.5 0 0

A   is the uncertain parameter. Fig. 2 shows the phase portraits of non-autonomous 

Liu hyper chaotic system with uncertain parameter.  
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                                                            (c)                                                      (d) 
Fig.1. Phase portraits of non-autonomous Liu hyperchaotic system without uncertainties: (a) in 1 2 3x x x   space, (b) in 1 2 4x x x  space, 

(c) in 1 3 4x x x   space, (d) in 2 3 4x x x  space.  

 
                                                                (a)                                                  (b) 

 
                                                             (c)                                                   (d) 
Fig.2. Phase portraits of non-autonomous Liu hyperchaotic system with uncertainties: (a) in 1 2 3x x x  space, (b) in 1 2 4x x x   space, (c) 

in 1 3 4x x x  space, (d) in 2 3 4x x x space.  

2.2.2 Non-autonomous 4D hyperchaotic system 

The non-autonomous 4D hyperchaotic system [11] is given as 

1
1 2 1 2 3 4( ) ,dy b y y y y y

dt
2

2 1 2 1 3 4( ) ,dy b y y y y y
dt

3
3 4 3 1 2 4[ sin( )] ,dy b b t y y y y

dt
4

5 4 1 2 3
dy b y y y y
dt

         

(6) 

where 1 2 3 4 5, , , andb b b b b are the parameters. At the values of the parameters 1 30b , 2 10b , 3 95b , 4 5 40b b   and 

initial condition 1 2 3 4( (0), (0), (0), (0))y y y y  (3,  -1, 8, 6)  the 4D system shows hperchaotic behaviour. Phase portraits 

of equation (6) are depicted through Fig. 3. 

The 4D hyerchaotic system with uncertain parameters is defined as 

1
1 2 1 2 3 4 2 3( ) 0.02 0.4 ,dy b y y y y y y y

dt
2

2 1 2 1 3 4 4( ) 0.1 ,dy b y y y y y y
dt

3
3 4 3 1 2 4 1[ sin( )] 0.05 ,dy b b t y y y y y

dt
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4
5 4 1 2 3 30.25dy b y y y y y

dt
                                                                                                                                       (7) 

 

where uncertain parameter 2

0 0.02 0.4 0
0 0 0 0.1

0.05 0 0 0
0 0 0.25 0

A  The phase portraits of 4D hyperchaotic system with 

uncertain parameter are displayed through Fig. 4. 

 
                                                             (a)                                                    (b)    

 
                                                            (c)                                                    (d) 
Fig.3. Phase portraits of non-autonomous 4D hyperchaotic system without uncertainties: (a) in 1 2 3y y y  space, (b) in 1 2 4y y y   space, 

(c) in 1 3 4y y y   space, (d) in  2 3 4y y y space.  

 
                                                         (a)                                                          (b) 

 
                                                             (c)                                                     (d) 
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Fig.4. Phase portraits of non-autonomous 4D hyperchaotic system with uncertainties: (a) in 1 2 3y y y   space, (b) in 1 2 4y y y  space, (c) 

in 1 3 4y y y   space, (d) in 2 3 4y y y space. 

3. Synchronization between non-autonomous Liu and 4D hyperchaotic systems with uncertainties through 

active control method 

The non-autonomous Liu hyperchaotic system with uncertainties (5) is considered as master system and 4D 

hyperchaotic system with uncertainties (7) is taken as response system as 

1
1 2 1 2 3 4 2 3 1( ) 0.02 0.4 ( ),dy b y y y y y y y u t

dt
2

2 1 2 1 3 4 4 2( ) 0.1 ( ),dy b y y y y y y u t
dt

 

3
3 4 3 1 2 4 1 3[ sin( )] 0.05 ( ),dy b b t y y y y y u t

dt
4

5 4 1 2 3 3 40.25 ( )dy b y y y y y u t
dt

                                               (8) 

where )(1 tu , )(2 tu , )(3 tu , )(4 tu  are the control functions to be designed. From equation (5) and equation (8) 

we get the following error systems as 

1
1 2 1 2 3 1 1 2 1 2 3 4 2 3 4 1( ) 0.02 0.4 ( )( ) 0.02 0.3 0.03 ( ),de b e e e e b a x x x x x y y y u t

dt
 

2
2 1 2 4 2 1 4 5 1 3 2 1 2 1 3 4 2( ) 0.1 ( 0.02) 1.1 ( ) ( ),de b e e e a x x a x x b x x y y y u t

dt
 

23
1 3 4 3 1 2 4 1 3 1 4 3 4 30.05 [ sin( )] 0.05 0.3 ( ),de e b b t y y y y x a x a x x u t

dt
            

4
5 4 3 1 2 3 5 4 3 2 2 3 40.25 0.25 0.5 sin( ) ( )de b e e y y y b x x x t x x u t

dt
                                                                    (9) 

where , 1,2,3,4.i i ie y x i   Here our goal is to design the control functions )(1 tu , )(2 tu , )(3 tu , )(4 tu  ( [5] ) as 

1 1 1 2 1 2 3 4 2 3 4 1( ) ( )( ) 0.02 0.3 0.03 ( ),u t b a x x x x x y y y V t  

2 2 1 4 5 1 3 2 1 2 1 3 4 2( ) ( 0.02) 1.1 ( ) ( )u t a x x a x x b x x y y y V t  

2
3 3 4 3 1 2 4 1 3 1 4 3 4 3( ) [ sin( )] 0.05 0.3 ( )u t b b t y y y y x a x a x x V t  

4 1 2 3 5 4 3 2 2 3 4( ) 0.25 0.5 sin( ) ( )u t y y y b x x x t x x V t  

which leads to error systems as 

1
1 2 1 2 3 1( ) 0.02 0.4 ( ),de b e e e e V t

dt
2

2 1 2 4 2( ) 0.1 ( ),de b e e e V t
dt

3
1 30.05 ( ),de e V t

dt
 

4
5 4 3 40.25 ( )de b e e V t

dt
                                                                                                                                       (10) 

The error system (10) is a linear system with control inputs 1( )V t , 2( )V t , 3( )V t  and 4( )V t as the functions of 

1 2 3 4, , ande e e e . Now design control inputs to stabilize the above error system.  

Let us choose 
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1 1

2 2

3 3

4 4

( )
( )
( )
( )

V t e
V t e

A
V t e
V t e

 

Where A   is the 4 4   matrix. In order to make the closed loop system stable, matrix A   should be selected in such 
a way that the feedback system will have the eigenvalues , 1, 2,3i i  with negative real parts.  
Choosing the matrix A   as  

1 1

2 2

5

1 0.02 0.4 0
1 0 0.1

0.05 0 1 0
0 0 0.25 1

b b
b b

A

b

 

Thus the error system (10) reduced to  
1

1,de e
dt

2
2,de e

dt
3

3,de e
dt

4
4

de e
dt        

                                                                                                           (11) 

All the eigenvalues of the error systems (11) are negative and hence the systems are stable and required 
synchronization between non-autonomous systems is obtained. 

 
                                                      (a)                                                                        (b) 

 
                                                     (c)                                                                        (d) 

 
(e) 

Fig.5. State trajectories of master system(  ) and response system ( ): (a) between 1x  and 1y ;  (b) between 2x  and 2y ; (c) between 3x  and 

3y ; (d) 4x  and 4y ; (e) The evolution of the error functions 1 2( ), ( )e t e t , 3( )e t
 
and 4( )e t . 

4. Numerical simulation and results 
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In this section, we take the earlier considered values of the parameters of both the systems. The initial conditions of 
drive and response systems are taken as 1 2 3 4( (0), (0), (0), (0)) (0.5,  1, 2, 5)x x x x  and 

1 2 3 4( (0), (0), (0), (0)) (3,  -1, 8, 6)y y y y  respectively. Hence the initial conditions of error system are

1 2 3 4( (0), (0), (0), (0)) (2.5, 2, 6, 1)e e e e . The synchronization between 1 1x y , 2 2x y , 3 3x y  and 4 4x y are 
depicted through Fig.5(a)-5(d). The error functions are depicted through Fig. 5(e). We can see that from Fig. 5(a)-
5(e) the considered non-autonomous hyperchaotic systems with uncertainties are synchronized after a small time of 
duration.  
5. Conclusion 

The authors have successfully used the active control method to achieve synchronization between the non-

autonomous hyperchaotic systems with uncertainties along a desired trajectory, which clearly exhibits the reliability 

and potential of the method. The graphical representation of the numerical results is clearly shows that non-

autonomous Liu and 4D hyperchaotic systems with uncertainties are synchronized when the error states tending to 

zero as time becomes large. 
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