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Abstract: Large interconnected modules result in complex system of higher order and often of interval 
structure, making the overall study and analysis, time consuming and complicated. Accepting the 
challenge to state an approximate model of such system, both system analysts and control engineers, 
headed towards the model order reduction. Continuing the same, this paper revisits few noteworthy 
estimation techniques for simplification of discrete-time interval system. In particular, denominator is 
derived through reciprocal algorithm and numerator by two varied algorithms. The proposed algorithms 
are validated with examples from literatures and real-time test systems via assessment of error 
computation. Limitation encountered during the course is also taken into count. 
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

1. INTRODUCTION 

Emergence of order reduction methodologies is an attractive 
field of research till date as seen in the survey papers 
[Bultheel and Barel, 1986; Genesio and Milanese, 1976; 
Gugercin and Antoulas, 2004; Hwang and Lee, 1997]. With 
the time span, system’s complexity increased for accounting 
unmodelled dynamics, parameter variation, disturbances, 
actuators, etc. leading to ambiguity. Systems as flight 
vehicles, electric motors, and robots are formulated under 
continuous-time domain of vague structure. These fears are 
handled by considering interval system, instead of fixed 
coefficient mathematical representation. Algorithms notably 
Routh-Pade [Bandyopadhyay, Ismail and Gorez, 1994], 
Pade approximation [Bandyopadhyay and Ismail, 1995], 
Routh approximants [Sastry, Raja Rao and Rao, 2000], γ −δ 
Routh approximation [Bandyopadhyay, Upadhye and Ismail, 
1997], are available for the reduction of continuous-time 
interval systems.   

The outburst of discrete-time signals and systems, grabbed 
the interest of order reduction of discrete-time interval 
system for being considerably simple and computationally 
easy. Techniques for such systems are few but are proficient, 
specifically Pade approximation allowing dominant poles 
retention [Ismail, Bandyopadhyay and Gorez, 1997], 
accessing higher-order integrators [Hsu and Wang, 2000], μ-
dependent approach [Zhang, Boukas and Shi, 2009], and 
pole retention with direct series expansion [Singh and 
Chandra, 2011]. In [Dolgin and Zeheb, 2004], finite impulse 
response is used for order reduction of discrete-time interval 
system. In recent past, algorithms by [Choudhary and Nagar, 
2013 (a, b)] are applied to discrete-time interval system, 
showing their acceptable extension to interval structure from 
fixed coefficient system. Freshly, in [Choudhary and Nagar, 
2015] a glimpse of algorithm similar to the methodology 
briefed in this paper is discovered with a significant 
difference between them. 

Add on to the existing algorithms of discrete-time interval 
system is proposed in this paper. The techniques discussed 
here exist for fixed coefficient and continuous-time interval 
system, yet, state to be novel for order reduction of discrete-
time interval system. The attempt in the paper is to propose 
new mixed methods. Precisely, denominator is computed by 
a new algorithm of reciprocity and numerator by two 
different prevailing techniques namely direct truncation and 
Pade approximation as explained in the next section. The 
algorithms are illustrated through examples from the 
literatures and are compared for their validation based on the 
error sum between the original and reduced representations 
in section 3. Two real-time test systems are also considered 
to strengthen the algorithm. Section 4 discusses the 
competence of the proposed algorithms taking the affordable 
limitation into count. Finally, paper concludes with an 
emergence of two varied simple and efficient mixed 
algorithms for obtaining reduced model of interval form.  

2. METHODOLOGY 

Conceive the higher order interval transfer function and its 

approximate lower order transfer function with k n be  
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Proceeding towards the derivation of a simple representation 
of higher order system, Routh Approximation is considered 
for obtaining denominator polynomial. Prime concern for 
applying this approximation is its computational simplicity 
and possibility to attain stable reduced model.  
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competence of the proposed algorithms taking the affordable 
limitation into count. Finally, paper concludes with an 
emergence of two varied simple and efficient mixed 
algorithms for obtaining reduced model of interval form.  

2. METHODOLOGY 

Conceive the higher order interval transfer function and its 

approximate lower order transfer function with k n be  
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     

 (2) 

Proceeding towards the derivation of a simple representation 
of higher order system, Routh Approximation is considered 
for obtaining denominator polynomial. Prime concern for 
applying this approximation is its computational simplicity 
and possibility to attain stable reduced model.  
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Conduct of continuous-time domain algorithm over ( )nG z , 

insist its transformation to an appropriate domain and is 

ended by substituting
1

1

w
z

w





, known as bilinear or Tustin 

transformation. This transforms the z-domain system to its 
w-domain equivalent; much closer to continuous-time 
domain system. The transformation result in 
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 (3) 

Consider the reciprocal form of the above denominator 

polynomial  nN w to obtain the reduced denominator 

polynomial represented as ˆ ( )nN w ; 

  1
0 0 1 1

1 1ˆ , , ..... ,n n
n n n nN w N B B w B B w B B

w w

                         

 (4) 

Use ˆ ( )nN w to draft the first two rows of the Routh array as 

shown in Table I.  

Table I: Routh Approximation for Denominator 
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Entries down the third row in the table is computed by 
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where   i=3,4,……..,n and j=1,2,…… 

with   
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          i=1,2,…k,.....n       (6) 

provided  1,1 1,1, 0i iB B 
 

     

The reduced denominator, ˆ ( )kN w is obtained according to 

equation (7) as stated for definite system [Hutton and 
Friedland, 1975] 

     1 2
ˆ ˆ ˆ,k k k k kN w wN w N w  

 
      (7) 

with      1
ˆ 1N w  ,              0

ˆ 1N w   

For instance, if k=1, 2 then denominator polynomial is 

   1 1 1
ˆ , 1,1N w w        (8a) 

and    2
2 1 1 2 2 2 2

ˆ , , , 1,1N w w w                        (8b) 

The resulting  ˆ
kN w is reciprocated back to  kN w  which 

on inverse bilinear transformation give the required  kN z . 

The numerator  kM z  is computed by implicating two 

algorithms discussed below; 

2.1 Algorithm 1 

Direct Truncation [Choudhary and Nagar, 2013 b] is hired 
for obtaining the reduced numerator polynomial declared as  

  1 2
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     

 (9) 

2.2 Algorithm 2 

Another prevailing technique; Pade approximation [Bultheel 
and Barel, 1986] used for obtaining the numerator 
polynomial is illustrated here. Once the denominator 

 kN w exist, numerator  kM w  is obtained by matching 

first t time moments and l Markov parameters, such that

t l k  .  

Assume the reduced model of order k be  
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 (10) 

Equate (10) and (3), cross multiply and compare left & right 
hand side for similar coefficients.  
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(11b) 

Place the obtained coefficient in equation (10) and apply 

inverse bilinear transformation, 
1

1

z
w

z





to obtain  kR z . 

Reduced models are validated for their acceptable existence 
through the error sum computation known as performance 
index and expressed as 

   
2

0
k

k

J y k y k




                 (12) 

where,  y k  and  ky k  are the unit step responses of 

original system  nG z  and its reduced model  kR z . 
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Conduct of continuous-time domain algorithm over ( )nG z , 

insist its transformation to an appropriate domain and is 

ended by substituting
1

1

w
z

w


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
, known as bilinear or Tustin 

transformation. This transforms the z-domain system to its 
w-domain equivalent; much closer to continuous-time 
domain system. The transformation result in 
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Consider the reciprocal form of the above denominator 

polynomial  nN w to obtain the reduced denominator 

polynomial represented as ˆ ( )nN w ; 
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Use ˆ ( )nN w to draft the first two rows of the Routh array as 

shown in Table I.  
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The reduced denominator, ˆ ( )kN w is obtained according to 

equation (7) as stated for definite system [Hutton and 
Friedland, 1975] 
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ˆ 1N w  ,              0
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For instance, if k=1, 2 then denominator polynomial is 
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The resulting  ˆ
kN w is reciprocated back to  kN w  which 

on inverse bilinear transformation give the required  kN z . 

The numerator  kM z  is computed by implicating two 

algorithms discussed below; 

2.1 Algorithm 1 

Direct Truncation [Choudhary and Nagar, 2013 b] is hired 
for obtaining the reduced numerator polynomial declared as  
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2.2 Algorithm 2 

Another prevailing technique; Pade approximation [Bultheel 
and Barel, 1986] used for obtaining the numerator 
polynomial is illustrated here. Once the denominator 

 kN w exist, numerator  kM w  is obtained by matching 

first t time moments and l Markov parameters, such that

t l k  .  

Assume the reduced model of order k be  
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Equate (10) and (3), cross multiply and compare left & right 
hand side for similar coefficients.  
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Place the obtained coefficient in equation (10) and apply 

inverse bilinear transformation, 
1

1

z
w

z





to obtain  kR z . 

Reduced models are validated for their acceptable existence 
through the error sum computation known as performance 
index and expressed as 
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where,  y k  and  ky k  are the unit step responses of 

original system  nG z  and its reduced model  kR z . 
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3. ILLUSTRATIVE EXAMPLES 

The algorithms proposed are examined on the examples 
from literatures and two real-time test systems. The obtained 
results are then compared with the existing techniques to 
validate their potential.  

Example 1: Consider the higher order system available from 
literatures [Ismail, Bandyopadhyay and Gorez, 1997; Singh 
and Chandra, 2011; Choudhary and Nagar, 2013 (a, b), 
2015] be 

 
     

       

2

3 3 2

1,2 3,4 8,10

6,6 9,9.5 4.9,5 0.8,0.85

z z
G z

z z z

 

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 (13) 

By the proposed algorithm, its w-domain representation is 

 
       

       

3 2

3 3 2

9, 5 17,27 34, 24 12,16

0.55,1.2 5.9,6.65 19.45,20.2 20.7,21.35

w w w
G w

w w w

      


  
  

 (14) 

     

   

3 2
3 3

1 1ˆ 20.7,21.35 19.45,20.2

                                          5.9,6.65 0.55,1.2

N w N w w
w w

w

 
   

 

 

 (15) 

From  3N̂ w , required Routh array is outlined in Table II; 

Table II: Denominator Table 

3w   20.70,21.35   5.90,6.65  

2w   19.45,20.20   0.55,1.20  

1w   4.58,6.08   

0w   0.55,1.20   

Required parameters procured from the above table are  

 1 1, 1.02,1.09      ,  2 2, 3.19, 4.40       

The second order reduced denominator polynomial by 
equation (8) result in   

       2
2

ˆ 3.27,4.83 3.19,4.40 1,1N w w w     (16) 

On appropriate reciprocal transformation and inverse 
bilinear transformation gives the reduced denominator as   

       2
2 7.46,10.24 4.54,7.66 0.13,2.63N z z z     (17) 

Numerators by the two varied algorithms resulting to the 
overall reduced model are as; 

Algorithm 1: 

Direct truncation, result the reduced model as 

 
   

     
2 2

3, 4 8,10

7.46,10.23 4.54,7.66 0.12,2.63

z
R z

z z




  
 (18) 

Algorithm 2: 

Pade approximation through equation (11) provide 

 0 0, 1.83,3.73C C   
 

and  1 1, 9.73, 2.05C C     
 

 which 

result,  2M w  as 

     2 9.7351, 2.0504 1.8389,3.7368M w w      (19) 

And the overall reduced model after inverse bilinear 
transformation as  

 
     
     

2

2 2

7.89,1.68 3.67,7.47 3.88,13.47

7.46,10.24 4.54,7.66 0.13,2.63

z z
R z

z z

  


  
 (20) 

Table III, is used to display the results obtained by the 
proposed algorithms and the existing ones.  

Table III. Error for 1st and 2nd Order Reduced Models 
of the Best Case with the Prevailing Techniques 

Methods Error 

 Lower Limit Upper Limit 

Proposed Algorithm 1 0.0553 0.0033 

Proposed Algorithm 2 1.1265 0.2183 

Choudhary and Nagar 
2015 

0.1079 0.0342 

Ismail, Bandyopadhyay 
and Gorez, 1997 

0.1810 0.0741 

Singh and Chandra, 2011 0.3237 0.3229 

Choudhary and Nagar, 
2013 a 

0.1292 0.0443 

Choudhary and Nagar, 
2013  b 

0.0278 0.0077 

 

Example 2: Consider another example from [Ismail, 
Bandyopadhyay and Gorez, 1997] be 

 
   
   

2 2

0.3428,0.4117 0.2301,0.3372

1.1866,1.5114 0.3012,0.5488

z
G z

z z




 
 (21) 

with its w-domain equivalent as 

 
     
     

2

2 2

0.18, 0.01 0.67, 0.46 0.57,0.74

2.48,3.06 0.21,0.36 1.32,1.39

w w
G w

w w

     


  
 (22) 

Table IV: Denominator Table 

2w   1.32,1.39   2.48,3.06  

1w   0.21,0.36   

0w   2.48,3.06   

 

Above table give  1 1, 6.64,3.85       to obtain  

     1 5.64, 4.85 7.64,2.85N z z     (23)
 

Algorithm 1: 

Reduced model derived is  
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 
 

   1

0.23,0.33

5.64, 4.85 7.64, 2.85
R z

z


  
 (24) 

Algorithm 2: 

The reduced model of system described in (21) is 

 
 

   1

3.75, 2.17

5.64, 4.85 7.64, 2.85
R z

z




  
 (25) 

Cumulative error for comparing the algorithms with the 
prevailing one is made known in Table V.  

Table V: Cumulative Errors of Example 2 

Methods Error Summation 

 Lower Limit Upper Limit 

Proposed Algorithm 1 0.1471 0.1172 

Proposed Algorithm 2 0.1038 0.0014 

Ismail, Bandyopadhyay 
and Gorez, 1997 

2.888 0.1411 

 

Example 3: Consider a real-time digital control system 
shown in figure 1, where 

 
6 5 4 3 2

6 5 4 3 2

1.68 0.566 0.356 0.204z 0.312z 0.05z 0.006

1.159 0.76 0.466 0.096 0.016 0.003

z z z
D z

z z z z z z

     


     
 

 (26) 

 

 

 

Figure 1: Digital Control system 

With T=(0.5)1/2sec, and robustness of the system into count, 
the overall transfer function alters to 

 

     

     

   
     

 

7 6 5

4 3 2

8 8 7 6

1.6484,1.7156 1.0937,1.1383 0.2142, 0.2058

0.1490,0.1550 0.5263, 0.5057 0.2672, 0.2568

0.0431,0.0449 0.0061, 0.0059

23.52,24.48 1.7156, 1.6484 1.1383, 1.0937

0.2058,0.2142

z z z

z z z

z
G z

z z z

z

   

      

   


     

    

     

5 4 3

2

0.1550, 0.1490 0.5057,0.5263

0.2568,0.2672 0.0449, 0.0431 0.0059,0.0061

z z

z z

   

    

  (27) 

By the algorithms, the reduced models are obtained as  

Algorithm 1: 

 
 

   1

0.006, 0.005

1.11,1.13 0.88, 0.86
R z

z

 


  
 (28) 

 
   

     
2 2

0.04,0.04 0.006, 0.005

1.38,1.45 1.91, 1.89 0.64,0.71

z
R z

z z

  


   
 (29) 

Algorithm 2: 

 
   
   1

0.01,0.01 0.01,0.01

1.11,1.13 0.88, 0.86

z
R z

z




  
 (30) 

 
     
     

2

2 2

0.02,0.05 0.007,0.01 0.04, 0.01

1.38,1.45 1.91, 1.89 0.64,0.71

z z
R z

z z

   


   
(31) 

Table VI, present the cumulative error computed for the 
obtained reduced models.  

Example 4: Let automatic voltage regulator be defined by 
the block diagram in Fig. 2, with T1=5, T2=2, T3=0.07, T4= 
0.04, T5=0.1, a1=2.5, a2=3.2, a3=6, a4=3, a5=3, through 
zero order hold equivalent with sampling time t=0.1sec. 
Allowing the perturbation in the system result the overall 
transfer function as   

 

 

 

 

 

Figure 2: Higher Order Model of AVR 
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2
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3 2

0.98,1.02 11.4562,11.9238

11.9266,12.4134 1.8228,1.8972

0.0323,0.0337

173.5384,180.6216 459.6936, 441.6664

360.9634,375.6966 91.4328, 87.8472

3.9576, 3.8024 1.2138, 1.1662

AVR

z z

z z

G z
z z

z z

z



 




  

   

     

 (31) 
The reduced order models obtained are  

Algorithm 1 

 
 

   1

0.03,0.03

0.51,1.48 1.48, 0.51
R z

z


  
 (32) 

 
   

     
2 2

1.82,1.89 0.03,0.03

0.85,1.11 2.09, 1.90 0.88,1.14

z
R z

z z




   
 (33) 

Algorithm 2 

 
   
   1

0.60,0.60 0.60,0.60

0.51,1.48 1.48, 0.51

z
R z

z

  


  
 (34) 

 
     
     

2

2 2

0.35,0.35 0.11,0.11 0.35,0.35

0.85,1.11 2.09, 1.90 0.88,1.14

z z
R z

z z

    


   
 (35) 

Cumulative error is made known in Table VII.  
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 
 

   1

0.23,0.33

5.64, 4.85 7.64, 2.85
R z

z


  
 (24) 

Algorithm 2: 

The reduced model of system described in (21) is 

 
 

   1

3.75, 2.17

5.64, 4.85 7.64, 2.85
R z

z




  
 (25) 

Cumulative error for comparing the algorithms with the 
prevailing one is made known in Table V.  

Table V: Cumulative Errors of Example 2 

Methods Error Summation 

 Lower Limit Upper Limit 

Proposed Algorithm 1 0.1471 0.1172 

Proposed Algorithm 2 0.1038 0.0014 

Ismail, Bandyopadhyay 
and Gorez, 1997 

2.888 0.1411 

 

Example 3: Consider a real-time digital control system 
shown in figure 1, where 

 
6 5 4 3 2

6 5 4 3 2

1.68 0.566 0.356 0.204z 0.312z 0.05z 0.006

1.159 0.76 0.466 0.096 0.016 0.003

z z z
D z

z z z z z z

     


     
 

 (26) 

 

 

 

Figure 1: Digital Control system 

With T=(0.5)1/2sec, and robustness of the system into count, 
the overall transfer function alters to 

 

     

     

   
     

 

7 6 5

4 3 2

8 8 7 6

1.6484,1.7156 1.0937,1.1383 0.2142, 0.2058

0.1490,0.1550 0.5263, 0.5057 0.2672, 0.2568

0.0431,0.0449 0.0061, 0.0059

23.52,24.48 1.7156, 1.6484 1.1383, 1.0937

0.2058,0.2142

z z z

z z z

z
G z

z z z

z

   

      

   


     

    

     

5 4 3

2

0.1550, 0.1490 0.5057,0.5263

0.2568,0.2672 0.0449, 0.0431 0.0059,0.0061

z z

z z

   

    

  (27) 

By the algorithms, the reduced models are obtained as  

Algorithm 1: 

 
 

   1

0.006, 0.005

1.11,1.13 0.88, 0.86
R z

z

 


  
 (28) 

 
   

     
2 2

0.04,0.04 0.006, 0.005

1.38,1.45 1.91, 1.89 0.64,0.71

z
R z

z z

  


   
 (29) 

Algorithm 2: 

 
   
   1

0.01,0.01 0.01,0.01

1.11,1.13 0.88, 0.86

z
R z

z




  
 (30) 

 
     
     

2

2 2

0.02,0.05 0.007,0.01 0.04, 0.01

1.38,1.45 1.91, 1.89 0.64,0.71

z z
R z

z z

   


   
(31) 

Table VI, present the cumulative error computed for the 
obtained reduced models.  

Example 4: Let automatic voltage regulator be defined by 
the block diagram in Fig. 2, with T1=5, T2=2, T3=0.07, T4= 
0.04, T5=0.1, a1=2.5, a2=3.2, a3=6, a4=3, a5=3, through 
zero order hold equivalent with sampling time t=0.1sec. 
Allowing the perturbation in the system result the overall 
transfer function as   

 

 

 

 

 

Figure 2: Higher Order Model of AVR 
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 (31) 
The reduced order models obtained are  

Algorithm 1 

 
 

   1

0.03,0.03

0.51,1.48 1.48, 0.51
R z

z


  
 (32) 

 
   

     
2 2

1.82,1.89 0.03,0.03

0.85,1.11 2.09, 1.90 0.88,1.14

z
R z

z z




   
 (33) 

Algorithm 2 

 
   
   1

0.60,0.60 0.60,0.60

0.51,1.48 1.48, 0.51

z
R z

z

  


  
 (34) 

 
     
     

2

2 2

0.35,0.35 0.11,0.11 0.35,0.35

0.85,1.11 2.09, 1.90 0.88,1.14

z z
R z

z z

    


   
 (35) 

Cumulative error is made known in Table VII.  
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Table VI: Cumulative Error for 1st and 2nd Order Reduced Models Example 3 

 

Methods 

Error Summation 

1st Order   2nd Order 

 Lower Limit Upper Limit Lower Limit Upper Limit 

Proposed Algorithm 1 0.0057 0.0057 0.0015 0.0015 

Proposed Algorithm 2 0.0021 0.0016 0.0011 0.0021 

Table VII: Cumulative Error for 1st and 2nd Order Reduced Models Example 4 

 

Methods 

Error Summation 

1st Order 2nd Order 

 Lower Limit Upper Limit Lower Limit Upper Limit 

Proposed Algorithm 1 0.0032 2.9294*10-4 4.4863 2.8770 

Proposed Algorithm 2 3.1492 1.0709 2.5712 1.0126 

4. DISCUSSION 

From the above tables of cumulative error, limitation of 
getting a relatively higher error sum is clearly observed (For 
example: In Table 1; lower limit of Proposed Algorithm 1 is 
higher than Choudhary and Nagar 2013b; Upper limit of 
Proposed Algorithm 2 is higher than Ismail, Bandyopadhyay 
and Gorez, 1997; Choudhary and Nagar, 2013 a, b). Similar 
limitation is observed for example 2. This limitation is 
considered with a confrontation that these error differences 
are very minute and the algorithms proposed are 
computationally simple and easy relative to the prevailing 
ones.  Negligence of this limitation is also strengthened, 
when these proposed algorithms are applied to the real-time 
systems and error sum obtained is minimal as desired. 

Moreover, an attempt to check the stability of this uncertain 
system is also performed. The Khariton software package is 
used to check the stability. When checked, it is found that 
example 2, 3 and 4 results in stable reduced model but 
example 1 do not. This leaves a problem for future research 
as to find a suitable reduction methodology that result in a 
stable reduced model.  

5. CONCLUSION 

An attempt to provide new techniques for order reduction of 
discrete-time interval system is achieved successfully. 
Though the considered methodologies are in existence for 
their sole importance, yet, proofs themselves to be new as 
per the elaboration in this paper. The method to find the 
reduced denominator polynomial is fresh. From the two 
algorithms for finding the numerator polynomial, Algorithm 
1 uses Direct Truncation which earlier exists for discrete-
time interval system but in this paper; it’s used in mixed 
form. For Algorithm 2 again a mixed nature is used for 
obtaining the reduced model. During the course of 
computing the reduced model a limitation derived is also 
discussed. The paper leaves a possible future work for 
researchers and control engineers to develop an algorithm 
based on this simple methodology to generate stable reduced 
models. Finally, the paper ends with a confrontation of two 
mixed approaches to derive reduced models.  
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