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Abstract 

This paper presents the estimation of Weibull parameters by Least Square Method and Maximum Likelihood Method. 
Experimental data of H-451 nuclear-grade graphite have been taken for evaluation. A computer program has been developed for 
the analysis of two parameter Weibull distribution. It is illustrated that maximum likelihood estimator gives more accurate values 
of Weibull model in comparison to least square estimation. Weibull parameters estimated from two methods are match well with 
the results given in referred paper. 
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1. Introduction 

Next generation nuclear graphite reactor design needs gas cooling and nuclear-grade graphite for the fuel element 
and moderator [1]. At present, around 13 countries corporately developing the fourth generation nuclear energy 
system. The Gen IV systems are expected to come into service in 2030. The development of dependable design and 
material characterization methods for the graphite structures used in reactor are important to the Next Generation 
Nuclear Plant (NGNP) Project because large amount of graphite (up to thousands of tons) would be required for the 
reactor core and because the individual graphite bricks that surround the nuclear fuel may experience significant 
loads.    

Graphite is a key material for forth generation (Gen IV) nuclear energy system. It is similar to the ceramic 
materials in some respects that it is not processed via melting [2, 3]. Some of the important characteristics of 
graphite are its strength at high temperature, high thermal conductivity and shock resistance, fire proof and acid and 
alkaline proof. It is similar to other brittle materials in some respect that it does not exhibit plastic deformation and 
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show wide scatter in strength. It has a non-linear stress-strain response and this behavior is different in tension than 
in compression. This is because of the distributed damage and damage accumulation within the material prior to 
rupture. This type of material known as known as quasi-brittle material [4,5].  

The fracture of graphite can be a complex process, with different grades of graphite potentially having different 
failure behaviors. Fracture is nominally brittle or quasi-brittle, with little or no plasticity prior to failure. This means 
that fracture is influenced by pre-existing flaws or inherently weak regions in the material. Porosity can also be an 
important factor for fracture. Tensile fracture occurs when a local concentration of micro-cracks develop and 
coalesce to form an unstable micro-crack of critical size. Tucker et al. [6] discussed the micro-growth tends to be 
trans-granular (through the grains), with the crack path within the individual grain corresponding to the crystalline 
cleavage plane [7,8].    

The theory of statistical extremes, that is, extreme value of a random variable is used for prediction of integrity 
and life of individual components. One of the extreme value distributions for smallest values is the Weibull 
distribution. Weibull [9] developed this distribution to study fatigue and fracture of materials. The Weibull 
distribution is defined by a few parameters and estimation of these parameters for a given data set is necessary to 
describe the data set by the Weibull distribution.  

In this paper, rough estimation method of Weibull parameters is extended to the more accurate methods for 
nuclear grade-graphite specimen data [10] for fatigue and fracture characterization of graphite claded nuclear 
reactor.  

2. Methodology  

Weibull proposed a distribution to describe the life length of materials under fatigue and fracture loads. 
According to this distribution, failure distribution can be described as: 
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where 0x  is the scale parameter. It is the characteristic value of the distribution, such as time-to-failure or load. m is 
the shape parameter of the distribution or the Weibull modulus. It controls the width of the frequency distribution of 
the measured values of the parameters. The higher the value of the m , the narrower the distribution of the measured 
value and the higher its peak. ux  is called the location parameter which is the characteristic smallest value of the 
measured parameter. There is zero probability of failure if the applied stress or time-to-failure x is smaller than ux .  

The Weibull theory uses the weakest link approach to describe the strength of various materials where the 
strength of the weakest link determines the strength of the chain. Consequently, the measured value of the parameter 
is the minimum value (smallest value) from a set of possible values.       

Eq. (1) is a three parameter Weibull distribution. When location parameter is assumed to be zero, the resulting 
distribution is the two parameter Weibull distribution: 
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This two parameter Weibull distribution has been used extensively where the minimum value of random variable 
may be assumed to be equal to zero. The probability density function of Weibull distribution is  
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Depending upon the values of m and 0x , the probability density function can take a wide variety of shapes. 
Rough estimation of the Weibull distribution parameters can also be made graphically by plotting Eq. (2) after 
taking double algorithms and a suitable transformation. More accurate values of Weibull distribution parameters for 
a failure data set of small sized tensile specimens are estimated by following method: 
 Least square estimation (LSE) 
 Maximum likelihood method (MLM) 
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2.1 Least square estimation (LSE) 

Eq. (2) can be transformed into a linear form by rearranging the equation and taking logarithms of both sides 
twice: 
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The probability density function, fP , for a given x  can be calculated from n  measured data after ordering such 
that  1 2 ... nx x x . Using order statistics of Wilks, an unbiased estimator of  fP  is  
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where  i  is the rank of the specimen in order of increasing measured value of x . Although there are other slightly 
different forms of fP , the above form gives the minimum variance. 

Substituting Eq. (5) in Eq. (2), we get  
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Both m and 0x  can be estimated by plotting ln ln( 1) / ( 1 )n n i  against ln x and fitting the straight line. The 
Weibull parameter m is the slope of the best fit straight line. Although a line may be fitted graphically using eye-
estimation, fitting the straight line using least-squares regression is generally preferred for accuracy of estimation. 
Eq. (6) may be written as 
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where ic is the error due to the difference between the observed value of ( )f iP x and its expected value.  

2.2 Maximum likelihood method (MLM) 

The Maximum likelihood method provides a procedure for deriving the estimates of the Weibull distribution 
parameters directly. A random variable x following the Weibull distribution has a probability density function 

0( ; , )f x m x with Weibull parameters m and 0x as given in Eq. (3). The likelihood of obtaining particular sample 
value ix  may be assumed to be proportional to the probability density function at ix . Hence, the likelihood of 
obtaining n  independent observations 1 2, ,..., nx x x  is 
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L is the likelihood function of the data set  1 2, ,..., nx x x . The maximum-likelihood estimator of m and 0x  will 
then be the particular values of m and 0x  so that L or the probability of obtaining the data set is maximized. Due to 
the multiplicative nature of L , it is generally more convenient to maximize the logarithm of the likelihood function 
instead 
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The maximum-likelihood function of Weibull distribution can be written by substituting Eq. (3) in Eq. (8); 
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Taking the logarithm on both sides and rearranging the terms, 
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Taking the derivative of ln( )L  with respect to 0x  and equating it to zero, we get 
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Similarly, equating the derivative of ln( )L  with respect to m  to zero, we get 
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Substituting Eq. (13) in Eq. (14), we get 
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Eq. (15) can be solved for m using the Newton-Raphson iterative method. This method requires evaluation of 
both the function and its derivative at different points. One of the significant advantages of this method is that it 
converges quadratically. The number of significant digits approximately doubles at each step near a root of the 
equation. 

According to Newton-Raphson method, 
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where ( )kf m is the left side of Eq. (15) at the kth iteration of m . Since ( )kf m is ( ) /k kdf m dm , ( )kf m is given by        
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Therefore, 1km  can be calculated from 
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From an initial guess of m , the value of Weibull modulus m can be estimated when the difference between 
subsequent iterations is less than a predefined tolerance value.                                                                                        

3. Results and Discussion  

The estimation of shape and scale parameters of Weibull distribution is carried out by using least square and 
maximum likelihood methods. Experimental data of nuclear graphite is used for evaluation and then the value of 
shape parameter evaluated by different methods is compared with the result given in Price paper. 

Price conducted more than 2000 ambient temperature tensile tests on H-451 nuclear grade graphite specimen. 



370   Saumya Shah et al.  /  Procedia Engineering   144  ( 2016 )  366 – 373 

Four 127mm deep slabs were cut transverse to the axis. Two slabs (1 and 4) were located within 25mm of the two 
ends of the log, and two slabs (2 and 3) were located adjacent to the mid-length plane of the log. Each slab was cut 
into an edge section and center section on a radius of 108mm along the centerline axis of the log. Test specimens 
were core drilled in the axial (with grain) and radial (against grain) orientations from the central zone and the edge 
zone of each slab.  

Figs. (1) and (2) represent the plots of failure stress data of axial and radial orientations, respectively. These plots 
are for the determination of Weibull parameters using Least Square Estimation method. Figures show the best fit 
line graph for a particular location each in axial and radial orientations. This type of graph is drawn for all location 
in both orientations to evaluate the shape and scale parameters. The adjusted R-square value for all graphs is more 
than 95%, which shows that the parameters are accurately determined. Also, in case of Maximum Likelihood 
Method, a program is developed in FORTRAN to estimate the Weibull parameters.      
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Fig. 1 Plot of failure stress data for axial orientaion 
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Fig. 2 Plot of failure stress data for radial orientation 

 

Tables (1) and (2) show the result of Weibull parameters of small tensile specimen at different locations using 
different methods for axial and radial orientations, respectively.  
 

Table 1 Comparison of estimated values of Weibull parameters (axial orientation) 
 

Locations Methods of estimation Shape parameter Scale parameter 
 
End edge 1 

 
Analytically (Price, 1976) 

 
9.4 

 
- 

 LSE 9.2 1.058 
 MLM 10.3 1.057 
End edge 4 Analytically (Price, 1976) 10.0 - 
 LSE 9.35 1.1 
 MLM 9.19 1.08 
End centre 1 Analytically (Price, 1976) 7.5 - 
 LSE 6.8 1.07 
 MLM 7.99 1.02 
End centre 4 Analytically (Price, 1976) 8.2 - 
 LSE 7.56 1.1 
 MLM 8.08 1.07 
Mid length edge 2 Analytically (Price, 1976) 12.6 - 
 LSE 12.09 1.07 
 MLM 12.05 1.06 
Mid length edge 3 Analytically (Price, 1976) 10.0 - 
 LSE 9.18 1.05 
 MLM 9.71 1.05 
Mid length centre 2 Analytically (Price, 1976) 13.4 - 
 LSE 13.16 1.04 
 MLM 13.26 1.04 
Mid length centre 3 Analytically (Price, 1976) 6.8 - 
 LSE 6.31 1.05 
 MLM 7.2 1.04 
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Table 2 Comparison of estimated values of Weibull parameters (radial orientation) 

 
Locations Methods of estimation Shape parameter Scale parameter 
 
End edge 1 

 
Analytically (Price, 1976) 

 
7.2 

 
- 

 LSE 7.02 1.03 
 MLM 8.27 1.02 
End edge 4 Analytically (Price, 1976) 9.9 - 
 LSE 9.45 1.04 
 MLM 10.2 1.05 
End centre 1 Analytically (Price, 1976) 6.2 - 
 LSE 6.7 1.11 
 MLM 6.13 1.109 
End centre 4 Analytically (Price, 1976) 7.2 - 
 LSE 7.6 1.05 
 MLM 7.9 1.03 
Mid length edge 2 Analytically (Price, 1976) 9.7 - 
 LSE 9.3 1.04 
 MLM 10.02 1.04 
Mid length edge 3 Analytically (Price, 1976) 6.8 - 
 LSE 5.77 1.01 
 MLM 6.9 0.99 
Mid length centre 2 Analytically (Price, 1976) 4.6 - 
 LSE 4.45 1.06 
 MLM 5.7 1.04 
Mid length centre 3 Analytically (Price, 1976) 8.3 - 
 LSE 8.12 1.05 
 MLM 9.7 1.05 

 

Tables show the evaluated parameters of two parameter Weibull distribution using Least Square method and 
Maximum Likelihood method. The parameters are calculated for all the four slabs including the edge and centre. 
These values are then compared with the results given in Price paper which is calculated analytically. By using the 
least square and maximum likelihood methods, both shape and scale parameters are estimated. While in Price paper, 
the values of slope parameter are only given. It is found that in both axial and radial orientation, the various values 
of Weibull modulus are nearly same with the referred paper results for all locations. By comparing these values, it 
can be said that modulus value is somewhat larger in case of MLM compared to LSE. The reason of larger value is 
that it determines the value accurately.  

It is seen that the modulus is more for the slabs 2 and 3 compared to slabs 1 and 4 for axial orientation. This 
means that modulus value is more for mid length than end. Moreover, these values are larger in case of slab 2 than 
of slab 3. The maximum value is for the locations mid length edge 2 and mid length centre 2 and minimum for 
locations end centre 1 and mid length centre 3. 

In case of radial orientation, minimum value of Weibull modulus is for mid length centre 2. This is the smallest 
value in both axial and radial orientations. The maximum value is in case of end edge 4. 

Then the values of scale parameter calculated from LSE and MLM are compared. In both axial and radial 
orientation case, these values are almost same and they are nearly equal to one.  

4. Conclusion  

A computer program has been developed to estimate the values of the modulus and scale parameter of Weibull 
model for tensile specimen nuclear graphite data using least square and maximum likelihood methods. These 
parameters are compared with results given in referred paper and it is found that they are matched well. Following 
points can be concluded through the result:  
 It is found that parameters are accurately determined by maximum likelihood method among all methods.   
 The value of shape parameter determined by maximum likelihood method is larger compared to analytical and 

least square estimation. 
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  Scale parameter evaluated thorough maximum likelihood and least square methods are approximately same and 
its value is nearly equal to one. 
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