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Abstract: This article deals with the interactions between 
a central crack and a pair of outer cracks situated at the 
interface of orthotropic elastic half planes under thermo-
mechanical loading. The mixed boundary value problem 
has been reduced to a pair of singular integral equations 
which has been solved numerically using Jacobi polyno-
mial method. The interaction effects have been obtained 
in terms of stress magnification factors depending on the 
crack spacing and crack length. The phenomena of crack 
shielding and crack amplification have been depicted 
through graphs for different particular cases.
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1  Introduction
It looks that microscopic flows do not lead to safe structure 
to fail. Sometimes, it becomes very expensive to replace 
the component of engineering structures. In fact, on one 
hand, due to increasing demands for energy and material 
conservations, the safety margins assigned to structures 
have to be smaller. On the other hand, the detection of a 
flaw in a structure does not automatically mean that it is 
not safe to use anymore. This is particularly relevant in 
the case of expensive materials or components of struc-
tures whose usage it would be inconvenient to interrupt. 
In this setting fracture, mechanics plays a key role during 
the analysis of materials which exhibits cracks and also to 
predict whether and in which manner failure may occur.

A property of a structure relating to its ability to 
sustain defects until repair is called damage tolerance. 

During design of engineering structures, the damage toler-
ance is always taken in account as it is assumed that flaws 
can exist in any structure and such flaws propagate with 
usage. In aerospace engineering structures, this approach 
is necessary to avoid the extension of cracks. In fracture 
mechanics, crack growth is exponential in nature, that is, 
the crack growth rate is a function of an exponent of crack 
size according to the Paris law. The exponential crack 
growths led to the development of non-destructive testing 
methods through which the structural engineers may 
inspect invisible cracks occur in structures which grow 
slowly. So amounts of maintenance checks are reduced by 
nondestructive inspections. Crack propagation and arrest 
have become important topics in a structure containing 
isolated region of an unstable crack growth. So emergence 
of an unstable crack from bad region can still be arrested 
using the surrounding of good materials, provided good 
materials have sufficiently high fracture toughness i.e., 
materials have large resistance to protect the structure 
from crack propagation. This clearly exhibits the impor-
tance of studying propagation of cracks occur in struc-
tures and the arrest of crack propagation for the safety of 
the structure. The physical quantities such as stress inten-
sity factor, crack energy, stress magnification factor (SMF) 
play important roles during the study of crack arrest [1–8].

Problems consist of heat and deformation that has 
attracted much interest to the scientists and engineers 
for last couple of decades. The thermal stress concentra-
tion near the crack tips has become an interesting topic 
of research nowadays. In the formation of structural 
members of airplanes, motor vehicles and high speed 
trains, composite materials are used widely due to their 
light weight and strong nature. When a cracked structural 
member is subject to different temperature fields, then 
the evaluation of stress intensity factors becomes essen-
tial due to disturbance in heat flux. The study of thermal 
stress around the cracked surface becomes important 
for the prediction of stability and service life of cracked 
engineering materials and structures. In linear elastic 
fracture mechanics, the study of geometry of collinear 
cracks has practical importance as pre-existing cracks 
lead to fracture due to interaction of cracks which forms 
a major crack in a medium. In 2002, Noda and Wang [9] 
have studied the interaction between collinear cracks 
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situated in an inhomogeneous medium under transient 
loading. During thermo elastic analysis of a cracked solid, 
a considerable effort has been given by the research-
ers based on the theory of the thermo-elasticity. In 1962, 
Sih [10] observed the singular character of thermal stress 
near a crack in an infinite plate when heat flows perpen-
dicular to the crack. A solution of a thermo-elastic crack 
problem had been given by Atkinson and Clement [11] in 
an anisotropic medium with single crack. Applying the 
method given by Muskhelishvili [12], Clement [13] solved 
the thermo-elastic crack problem bonded between dis-
similar anisotropic materials. He assumed that the heat 
flows through the two surfaces of a crack equally but 
opposite in direction. In 1977, Sekine [14] calculated the 
thermal stresses near the crack tips of an isolated line 
crack in a semi-infinite medium subjected to uniform heat 
flow. In 1979, same author studied thermo-elastic inter-
action between two cracks [15]. In 1991, Itou [16] has cal-
culated the thermal stresses around an isolated crack in 
an infinite elastic strip in which the surfaces of the strip 
are maintained at different temperature. In 1993, Itou and 
Rengen [17] studied the thermal stresses around two paral-
lel cracks situated at the interface positions of two bonded 
dissimilar elastic half planes. In 1995, Itou and Rengen 
[18] have solved a problem of two collinear cracks in an 
adhesive layer sandwiched between two dissimilar elastic 
half planes. In 2001, thermal stresses in an infinite ortho-
tropic plate around two parallel cracks under uniform 
heat flow were evaluated by Itou [19]. In 2007, Zhou et al. 
[20] have investigated transient two-dimensional thermal 
crack problem in a functionally graded orthotropic strip 
using Laplace and Fourier transform techniques. In 2007, 
Baksi et al. [21] have determined the thermal stresses and 
displacement fields in an orthotropic plane containing a 
pair of equal collinear Griffith cracks using integral trans-
form technique based on displacement potential func-
tions under steady-state temperature field. In 2013, Zhong 
et al. [22] have investigated the thermal stress around two 
collinear Griffith cracks in an orthotropic solid subjected 
to thermo-mechanical loading using Fourier transform 
technique. Recently, Itou [23] has calculated the thermal 
stress in an infinite orthotropic plane around two upper 
collinear cracks placed parallel to a lower crack. Problem 
related to thermal stress can also be found in the research 
articles [24–29]. But to the best of authors’ knowledge, the 
problem related to interaction between interfacial cracks 
under thermo-mechanical loading are not yet been done 
by any researcher.

The main goal of this article is to analyze the inter-
action among three collinear Griffith cracks situated 
at the interface of two orthotropic thermo-elastic half 

planes under uniform heat flux. To study the effect of 
temperature on displacements and stresses, an integral 
technique has been applied. The problem is reduced to 
a dual form of the integral equations, which is solved 
numerically using Jacobi polynomials. The expressions 
of SIFs at the tips of the cracks are found analytically. 
The graphical presentations of the effect of outer cracks 
on the propagation of central crack and also the prop-
agation tendency of outer crack due to the presence of 
central one for different particular cases are the key 
feature of this article.

2  Problem Formulation
Consider two bonded homogeneous orthotropic elastic 
half planes y  ≥  0 and y  ≤  0 containing three collinear Grif-
fith cracks at the interface of y = 0 when Cartesian co-ordi-
nate axes coincide with the axes of symmetry of the elastic 
material. When thermal conditions are applied to the 
surface of an arbitrary two-dimensional orthotropic half 
planes, then temperature field only depends on in-plane 
co-ordinates under steady-state condition. The tempera-
ture distribution functions T(i) (x,y) are assumed to satisfy 
the following heat conduction equation in the orthotropic 
media as

	

∂ ∂+ =
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2
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where =( ) 2 ( ) ( )( ) /i i i
y xK K K  and ( ) ,i

yK
( )i
xK  (i = 1, 2) are the 

thermal conductive coefficients of half planes along y- 
and x-directions, respectively.

The general solution of T (j) (x,y) is (c.f., Akoz and 
Tauchert [30])
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where = −1,i  j = 1, 2 and A(j)(p) and A̅(j)(p) are the arbitrary 
functions of p.

Here, we have assumed that
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and hence the Fourier integral form of temperature distri-
bution may be written as
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From (2) and (4), we get

	

∞ ∞

−∞ −∞

= − =∫ ∫( ) ( ) ( ) ( )( ) ( )exp[ ]d , ( ) ( )exp[ ]d ,i i i iA p h ip A p h ipξ ξ ξ ξ ξ ξ

� (5)

From (2) and (5), the temperature distribution T (i)(x,y) 
can be expressed as
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Consider

	 =( )( ) ( ),ih x xδ � (7)

where h(x) is the prescribed temperature distribution, 
which becomes line source along y-axis, and δ(x) is Dirac 
delta function. Therefore, resultant temperature distribu-
tion is reduced to

	
=

+

( )
( )

( ) 2 2
1 ( / )( , )

( / )

i
i

i
y KT x y

y K xπ
�

(8)

The relations between plane stress induced by the dis-
tributions of temperature and displacement components 
u(i) and v(i) are given by
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The elastic constants are given by 
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 and stress–temperature coefficients are 

defined by
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yxυ  are Poisson’s ratios, and ( )i
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expansion coefficients. The quantities with superscripts 
i = 1, 2 refer to those for the half plane-1 and half plane-
2, respectively. It is to be noted that the unit of ( )i

jkC ’s is 
taken in GPa and units of ( )i

xβ  and ( )i
yβ  are considered as 

GPa/deg.
The displacement equations of equilibrium are 

given by
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in which u(i) = u(i)(x, y), v(i) = v(i)(x, y) are the displacement 
components along x- and y-directions. It is assumed that 
at the interface y = 0, the central crack defined by |x| < a 
and the outer defined by b < |x| < 1 are opened by internal 
normal and shearing tractions p1(x) and p2(x), respectively 
(Figure 1). The boundary conditions on y = 0 are given by

y

–l –b

p1(x)

p2(x)

(1)

(2)

a b l–a
o

x

Figure 1: Geometry of the problem.
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In Figure 1, the inclined arrows represent the regions 
for the semi-infinite half planes, the vertical arrows 
denote the direction of the applied normal stress and the 
horizontal arrows denote the direction of shearing stress 
for our considered mixed mode type problem.

3  Solution of the Problem
During solution of the problem, we first introduce 
displacement potentials ψ(i)(x, y) and ( )( ,  )i

j x yφ  as 
(Sharma [31])
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Potential functions for the half planes are given by
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The displacement components u(i) and v(i) may be 
written as
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The corresponding thermal stresses are
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The displacement equations (12) and (13) are satisfied 
by (20) for nontrivial ( )i

jφ  if
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Here, potential functions ( )i
jφ  satisfy the following 

differential equation:
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and after lengthy process of mathematical manipulations, 
boundary conditions (14) and (15) finally lead to the 
following singular integral equations
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Equations (31) and (32) are reduced to the follow-
ing singular integral equations for the determination of 
unknown functions fi(x) satisfying the conditions
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The solution of above integral equations (34) may be 
assumed as
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with ckn are unknown constants. Now using (33), we get 
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which implies ck0 = 0, k = 1, 2.
From (31) and (32), we get
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Multiplying the above-mentioned equation by 
− −− ( , )1( ) ( )k k

k jx P xα βω  and integrating from –1 to 1 with 
respect to x, we get
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with k = 1, 2, j = 0, 1.

and the principal value of 
−
∫
1

1

dx
x

 is considered as zero.

Finally, the stress intensity factors at the crack tips at 
x = a, x = b and x = 1 are calculated as
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Now SMFs are defined by ∗ ∗ ∗= = =
1
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I
aK  and ∗

II
aK   

 
are the Mode-I and Mode-II stress intensity factors at x = a 
due to the presence of only central crack situated at the 
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interface of two half planes. 
∗ ∗

I II, b bK K  and 
∗ ∗1 1

I II,  K K  are the 
stress intensity factors at x = b and x = 1, respectively, due 
to the presence of only outer cracks situated at the inter-
face of two half planes.

4  Numerical Results and Discussion
In this section, the numerical computations have been 
done to find physical quantities viz., stress intensity 
factors and stress magnification factors for three collinear 
cracks situated at the interface of two orthotropic materi-
als as α-Uranium and Epoxy Boron. The elastic constants 
of the orthotropic material α-Uranium have been taken as 
C11 = 21.47 × 106 psi (148.03 GPa), C12 = 4.65 × 106 psi (32.06 
GPa), C22 = 19.36 × 106 psi (133.48 GPa),

C66 = 7.43 × 106 psi (51.22 GPa) (Mukherjee and Das 
[5]). The elastic constants of the other considered 
orthotropic material Boron-Epoxy have been taken as 
C11 = 30.3 × 106 psi (208.91 GPa), C12 = 3.78 × 106 psi (26.06 
GPa), C22 = 4.04 × 106 psi (27.85 GPa), C66 = 1.13 × 106 psi (7.79 
GPa) (Sih and Chen [32]). During computations, the load-
ings are considered to be p1(x) = p, p2(x) = 0. The dimen-
sionless stress magnification factors for both the Mode-I 
and Mode-II types at the tip of the central crack x = a are 
described through Figures 2 and 3, respectively, for differ-
ent values of dimensionless quantity b/a keeping a = 0.5 
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Figure 2: Plot of I
aM  vs. b/a at a = 0.5.
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Figure 3: Plot of II
aM  vs. b/a at a = 0.5.
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bM  vs. b/a at b = 0.6.
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Figure 5: Plot of II
bM  vs. b/a at b = 0.6.
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Figure 6: Plot of 1
IM  vs. b/a at b = 0.6.
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Figure 7: Plot of 1
IIM  vs. b/a at b = 0.6.

and varying b = 0.6(0.1) 0.9. Again keeping the outer crack 
length fixed b = 0.6 and varying a = 0.1(0.1) 0.5, the stress 
magnification factors at the outer crack tips x = b and x = 1 
are depicted through Figures 4–7, respectively, for various 
values of b/a for Mode-I and Mode-II types.
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It is seen from Figure 2 that as the length of the outer 
crack increases, then stress magnification factor I

aM  
decreases. This is due to the formation of large plastic 
zone with the increase in crack length at the vicinity of 
the crack tip that resists the propagation of the crack. To 
overcome the effect of the plasticity, we have either to 
increase the crack length or have to apply more thermo-
mechanical load. If we further increase the crack length 
then stress magnification factor oscillates which shows 
the plastic behavior, i.e. crack reaches in plastic region 
causes crack propagation tendency. Same type of behav-
ior is observed through Figure 4 for stress magnification 
factor I .bM  It is seen from the Figures 3 and 5 that there 
is a possibility of shielding with increase in crack length, 
whereas Figures 6 and 7 show that there is a possibility of 
amplification. Thus, the propagation tendency at x = 1 of 
outer interfacial crack increases with increase in central 
crack length.

The variations of mode-II stress magnification factor 
depend on the crack separation distance and crack 
length. Figure 3 shows that central crack experiences 
shielding effect due to the presence of outer crack. This 
effect is maximum when outer crack size is minimum and 
crack separation distance between the outer crack and 
central crack is maximum. As the length of the outer crack 
decreases together with simultaneous increase in crack 
separation, the shielding effect increases gradually. When 
the outer crack size is 40% and crack separation distance 
is 10% of main crack size then shielding is about 45%. 
When the size of the outer cracks is one-twentieth and 
crack separation is nine-twentieth to the central crack, 
then shielding is about 80%.

Figure 5 reveals that outer crack experiences shield-
ing effect due to the presence of central crack. This effect 
is maximum when central crack size is maximum and 
crack separation distance between the outer crack and 
central crack is minimum. As the length of the central 
crack decreases together with simultaneous increase in 
crack separation distance, the shielding effect gradually 
decreases. When the central crack size is 120% and crack 
separation distance is 25% to the outer crack size, then 
shielding is about 80%. When the size of the central crack 
is half and crack separation is five-forth to the outer crack, 
then shielding is about 60%.

5  Conclusion
In this article, the authors have achieved three important 
goals. The first one is the investigation of three collinear 

cracks at the interface of two orthotropic media under 
thermo-mechanical loading. Second one is finding the 
analytical form of the stress intensity factors at the vicin-
ity of the crack tips. Third one is the graphical presenta-
tions of amplification and shielding effect through the 
stress magnification factors which helps to find the pos-
sibilities of arrest of central crack due to the presence of 
outer cracks and vice versa.
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