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Abstract In the present paper, the progressive wave approach is used to analyze the main
features of weakly nonlinear waves propagating in a non-ideal gas. An evolution equation,
which characterizes the wave process in the high frequency domain and points out the pos-
sibility of wave breaking at a finite time, is derived. Further, we consider a sufficiently weak
shock at the outset and study the propagation of the disturbance given in the formof a sawtooth
profile. The effect of non-idealness on the formation of shock with planar and cylindrical
symmetry is analyzed.

Keywords Non-ideal gas · Sawtooth profile · Progressive wave

Introduction

Discontinuity waves, also known as acceleration waves, are characterized by discontinuity
in the normal first derivative of the flow variable rather than the variable itself. Therefore,
for nonlinear systems, the analysis of these waves has been the subject of the great interest
both from mathematical and physical point of view due to its application in a variety of
fields such as astrophysics, nuclear science, geophysics, plasma physics and interstellar gas
masses. In the study of a physical phenomenon ruled by a quasi-linear hyperbolic system
of equations, it is theoretically possible to look for progressive wave solution. A general
discussion of small-amplitude nonlinear progressive waves has been given by [1,16] who
considered a shockless solution of hyperbolic partial differential equations that depend on
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a single phase function. Using the perturbation method devised by [2–4] and [9] analyzed
nonlinear wave propagation in different material media, while [5] presented a method for
finding a small-amplitude high frequency wave solution of hyperbolic systems of quasilinear
partial differential equations.When the gas flow takes place at a high temperature and density
is too low the assumption that the gas is ideal is no longer valid. In recent years, several studies
have been performed concerning the problem of weak shock waves in a non-ideal gas, in
particular, by [6,7]. Recently [11] have studied evolutionary behaviour of acceleration waves
in a perfectly conducting inviscid radiating gas permeated by a transverse magnetic field.
Zhao et al. [15], has shown that the shock waves in a van der Waal’s fluid exhibit a richer
behaviour than that predicted by the ideal gas model, characterizing compressive shocks,
rarefaction shocks, and shock splitting phenomena together with their admissibility; the
physical meaning of van der Waals gas and its influence on wave motion may be seen in
the papers [17–19]. Ambika et al. [20] have used the theory of progressive waves and some
related procedures to study the attenuation and geometrical spreading of waves of finite and
moderately small amplitudes influenced by the effects of non-linear convection in a non-ideal
gas.

In the present study an asymptotic approach is used to analyze the growth and decay
behaviour of a disturbance given in the form of a sawtooth profile that consists of a shock at
the right and a sonic disturbance at the left in a non-ideal gas. The propagation of a sawtooth
profile that ends in a tail shock can be treated in the same way.

Governing Equations

The basic equations for an unsteady one dimensional planar and non planar flow in a non-ideal
gas, can be written as [12]

ρt + uρx + ρux + mρu/x = 0, (1)

ut + uux + px/ρ = 0, (2)

pt + upx + ρa2 (ux + mu/x) = 0 (3)

where p is the pressure, ρ is the gas density, u is the velocity along the x-axis, t the time,
x is the single spatial co-ordinate being either axial in flows with planar (m = 0) geometry
or radial in cylindrically symmetric flows (m = 1) and γ is the constant specific heat ratio.
Here and throughout, non-numeric subscripts will denote partial differentiation with respect
to the indicated variables unless stated otherwise. When the van der Waals excluded volume
is sufficiently large, the gas is assumed to obey the van der Waals equation of state of the
form [13]

p (1 − bρ)=ρRT, e = cvT = (1 − bρ)p

(γ − 1)ρ
, S = cv ln

[
p(1 − bρ)γ /ργ

] + const, (4)

where T is the temperature, S is the specific entropy, R is the gas constant, and cv = R/(γ −1)
is the specific heat at constant volume. It should be noted that this is a restricted form of the
van der Waals equation for which the molecular attraction constant is zero. If the molecular
attraction constant were nonzero,making the pressure nonmonotonic as a function of density,
serious questions would arise as to whether the newmode propagates in a thermodynamically
unstable state with negative compressibility. These questions are not addressed in this paper.
Also, a = (γ p/ρ (1 − bρ))1/2 is the sound speed.
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Equations (1)–(3) may be written in the matrix form as follows

Ui
t + Ai jU j

x + Bi = 0, i, j = 1, 2, 3, (5)

where U, B are column vectors and A is the matrix of order 3 × 3, given as

U =
⎡

⎣
ρ

u
p

⎤

⎦ , B =
⎡

⎣
mρux−1

0
mρa2ux−1

⎤

⎦ , A =
⎡

⎣
u ρ 0
0 u ρ−1

0 ρa2 u

⎤

⎦ .

Equation (5) is a system of quasilinear hyperbolic partial differential equations with eigen-
values u + a, u − a and u of the coefficient matrix A. The left and right eigenvectors of A
corresponding to the eigenvalue u + a are

l∼ = [
0, ρa, 1

]
, rT = [

1, a/ρ, a2
]

(6)

respectively. Here a superscript means transposition.

Nonlinear Small Amplitude Progressive Waves

We now look for an asymptotic solution of Eq. (5) which exhibits the features of progressive
waves. Let us assume the following asymptotic expansion:

Ui (x, t) = Ui
0 + εUi

1(x, t, ξ) + O(ε2), (7)

where Ui
0 is a known constant solution of (5) such that B

i (U0) = 0. The remaining terms in
Eq. (7) are of a progressive wave nature. The choice of ε depends on the physical problem to
be studied. Let τch be the characteristic time scale for the medium and τa be the attenuation
time describing the dissipative mechanism; then ε = τch/τa � 1. The variable ξ is a ‘fast
variable’ defined as ξ = f (x, t)/ε, where f (x, t) is a phase function characterizing the
wavefront.

It may be noted that the case ε << 1, which corresponds to the situation in which the
characteristic frequency of the medium is much larger than the attenuation frequency, which
characterises a high frequency propagation condition [8].

Introducing the Taylor’s expansion of Ai j and Bi in the neighbourhood of the known
constant solution Ui

0 and using (7), we have

Ai j = Ai j
0 + ε

(
∂Ai j/∂Uk

)

0
Uk
1 + O(ε2), (8)

Bi = ε
(
∂Bi/∂Uk

)

0
Uk
1 + O(ε2), (9)

where the subscript “0” means that the quantity involved is evaluated at the constant stateU0

at rest. Substituting Eqs. (7), (8) and (9) into (5), we obtain the following O(ε0) and O(ε1)

equations respectively:
(
Ai j
0 − λδij

)
∂U j

1 /∂ξ = 0, (10)

(
Ai j
0 − λδij

) ∂U j
2

∂ξ
+

(
∂Ui

1

∂t
+ Ai j

0
∂U j

1

∂x

)

f −1
x +Uk

1

(
∂Ai j

∂Uk

)

0

∂U j
1

∂ξ

+ f −1
x Uk

1

(
∂Bi

∂Uk

)

0
= 0, (11)
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where λ = − ft/ fx , and δij is the Kronecker delta. Equation (10) yields the characteristic
polynomial

λ2
(
λ2 − a20

) = 0,

which yields non-zero eigenvalues ±a0 of A∼ 0. Considering the velocity λ = a0, the corre-

sponding left and right eigenvectors of A∼ 0 are given by Eq. (6) with subscript— 0. Equation

(10) shows that ∂U∼ 1/∂ξ is collinear to r0, and then U∼ 1 may be written as

U∼ 1 (x, t, ξ) = α (x, t, ξ) r∼0 + s∼ (x, t) , (12)

representing a solution of Eq. (10). Here α (x, t, ξ) is the amplitude factor to be determined
and si (components of the column vector s∼) are integration constants, which are not of pro-

gressive wave nature and can therefore be taken as zero. The phase f (x, t)is determined by

ft + a0 fx = 0, (13)

and if f (x, 0) = x − x0, then f (x, t) = (x − x0) − a0t .
Multiplying Eq. (11) by li , we obtain, along the characteristic curves associated with (13),

the following evolution equation for α:

∂α/∂τ + P0α∂α/∂ξ + Q0α = 0, (14)

where ∂/∂τ =∂/∂t + a0∂/∂x is the ray derivative taken along the rays and

P0=
(
∂λ/∂Uk

)

0
rk0 =(γ +1) a0/(2ρ0) > 0, Q0=

(
li r i

)−1

0

(
l j r k∂B j/∂Uk

)

0
=ma0/2x .

Here, Q−1
0 has the dimensions of time and may be taken as the attenuation time τa character-

izing the medium. Equation (14) is a hyperbolic equation and its characteristic equations are

dα/dτ + ma0α/2 (x0 + a0τ) = 0, (15)
dξ

dτ
= P0α. (16)

Equation (15) immediately gives

α (ξ, τ ) = [
x0/(x0 + a0τ)

]m/2
φ (x0, ξ0) ,

where φ (x0, ξ0) = α|τ=0 with ξ0 = ε−1 f |τ=0 and x0 = x |τ=0.

The characteristic Eq. (16), which characterises plane (m = 0) and cylindrical (m = 1)
waves, yields

ξ =
{

ξ0 + τP0φ (x0, ξ0), for m = 0,
ξ0 + {

2P0x0φ (x0, ξ0)/a0
} {

(1 + a0τ/x0)1/2 − 1
}
, for m = 1.

(17)

The existence of an envelope of the characteristics given by (17) gives evidence of the forma-
tion of a shock. It is evident that the shock is formed for τ > 0 only by those characteristics
for which (∂φ/∂ξ)0 < 0, i.e., the shock formation will take place on the wave front if the
initial phase of the pulse is compressive. The shock formation time for plane and cylindrical
compressive waves turns out to be:

τsh =
{
min (P0 |∂φ/∂ξ0|)−1 , for plane waves,

min
[
(x0/a0)

(
1 + a0/(2x0P0 |∂φ/∂ξ0|)

)2 − 1
]
, for cylindrical waves,

(18)

where the minimum is evaluated over an appropriate range of the quantities x0, ξ0.
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Acceleration Waves

The previous analysis may be used to study acceleration waves for the system (1–3). Let
us assume that the acceleration front is described by the curve f (x, t) = 0; across such a
front the velocity is continuous but its first and higher order derivatives suffer finite jump
discontinuity. In the neighbourhood of the front, the velocity u may, therefore, be represented
by an expansion

u = εu1 (x, t, ξ) + O
(
ε2

)
,

where u1 = 0 for ξ < 0, and u1 = O (ξ) for ξ > 0. Now u1 as an element of the column
vector U∼ 1 is given by (12), so we have [4]

α (x, t, ξ) =
{
0, i f ξ < 0,
ξβ(x, t) + O

(
ξ2

)
, i f ξ > 0,

(19)

with β = (ρ0/a0) σ , where σ = [∂u/∂x] denotes the jump in the velocity gradient across
the acceleration front.

If we use (19) in (14), and then evaluate the resulting equation at the front ξ = 0, we
obtain

dσ

dt
+ Q0σ + �0σ

2 = 0, (20)

where �0 = (γ + 1)/2 and Q0 = ma0/(2x), and the derivative d/dt of any quantity, which
is considered to be expressed on the front f (x, t) = 0, is identical with the ordinary time
derivative of the quantity.

Equation (20) is exactly the same as discussed in [10], and hence all the conclusions drawn
therein follow at once. However, the solution of (20), which we shall be using in this section,
can be written as follows:

σ =
{

σ0
/

(1 + σ0�0t) , for m = 0,
σ0 (1 + a0t/x0)−1/2/ [

1 + (2σ0�0x0/a0)
{
(1 + a0t/x0)1/2 − 1

}]
, for m = 1,

(21)
where σ0 is the value of σ evaluated at t = 0.

The above analysis shows that a compression pulse, however weak initially, always turns
into a shock in a finite time. The state of motion in front of and behind the shock, designated
respectively, by the subscripts ‘0’ and ‘1’, satisfy the following shock conditions [14].

ρ1 = ρ0 (1 + δ) , u1 = δG/(1 + δ), p1 = p0 + δρ0G
2 (1 + δ)−1, (22)

where the shock strength parameter δ = (ρ1 − ρ0)/ρ0 and the shock velocityG are connected
by

G2 = 2
(
1 − b̄

)
a20 (1 + δ)

2 − (γ − 1) δ − b̄δ (1 + δ) (γ − 1)
. (23)

For a weak shock δ � 1 Eq. (23) yields the first approximation as

G = a0 (1 + �0δ/2) , (24)

where �0 is same as in Eq. (20).
Subsequently, Eq. (22) yield the first approximation

ρ1 = ρ0 (1 + δ) , u1 = a0δ, p1 = p0 (1 + γ δ) , (25)

where δ is given by (23).
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Decay of a Sawtooth Wave

It is well known that shock waves after having travelled a large distance from the source
become sufficiently weak so as to permit application of the weak shock relations (24) and
(25). We therefore assume a sufficiently weak shock at the outset and study the propagation
of the fluid velocity disturbance given in the form of a sawtooth profile. The left end of the
profile located initially at x0 travels with the sonic speed a0 of the undisturbed fluid, whereas
the shock at the right end located initially at xso moves faster; L0 is the initial length of the
sawtooth profile. Suppressing the subscript −1 notation, let us denote by u and a the state of
the rear side of the shock, which at any time t is located at xs(t) = x0 + a0t + L(t), where
L(t) is the length of the sawtooth at any time t . Then

G = dxs
dt

= a0 + dL

dt
. (26)

Also, on introducing (25) into (24), we get

G = a0 + u�0

2
. (27)

The sawtooth Profile, which runs into a medium at rest, furnishes, with constant ∂u/∂x , the
relation

u = σ L(t), (28)

where σ = (∂u/∂x)x−x0=a0t is the slope of the profile at any time t , and is given by Eq. (21).
On using (28) into (27) and combining the resulting equation with (26), we obtain

dL

dt
= σ L�0

2
. (29)

Let σ0, L0 and G0 be the values of σ, L and G respectively, at t = 0. Then Eqs. (27) and
(28), when evaluated at t = 0 yield the following relation connecting σ0, L0 and G0:

σ0 = 2 (G0 − a0)

L0�0
. (30)

Equation (29), together with (21), yields on integration

L

L0
=

{
(1 + σ0�0t)1/2, for plane waves,
{
1 + (2σ0�0x/a0)

[
(1 + a0t/x)1/2 − 1

]}1/2
, for cylindrical waves,

(31)

where σ0 is given by Eq. (30), and �0 is same as in (20).
Using Eqs. (21) and (31) in (28), we obtain the decay behaviour of the sawtooth profile

as follows:

u=
{
L0σ0 (1 + σ0�0t)−1/2 , for plane waves,

L0σ0 (1+a0t/x0)−1/2
[
(1−M0) + M0 (1 + a0t/x0)1/2

]−1/2
, for cylindrical waves,

(32)
where M0 = 2σ0�0x0/a0.

Result Discussion

Equations (31) and (32) govern the variation in the length and velocity of the sawtooth wave
with time respectively. The length L/L0 and velocity u/a0 are computed using (31) and (32)
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Fig. 1 Variation of length of sawtooth wave with time

Fig. 2 Variation of velocity of sawtooth wave with time

Fig. 3 Variation of length of sawtooth wave with time

for various values of parameter of non-idealness, b̄ and specific heat ratio γ for planar and
cylindrically symmetric flows and presented in Figs. 1, 2, 3, 4, 5, 6.

The typical values of parameters involved in the computation are taken as:

b̄ = 0.0, 0.2, 0.4.

γ = 1.4, 1.67.
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Fig. 4 Variation of length of sawtooth wave with time

Fig. 5 Variation of velocity of sawtooth wave with time

Fig. 6 Variation of velocity of sawtooth wave with time

For the case b̄ = 0.0 which corresponds to ordinary gasdynamics, the Eqs. (31) and (32)
reduce to the results outlined in [14].

From Figs. 1, 2, 3, 4, 5, 6 it is observed that the length L/L0 increases with time, whereas
the velocity decreases with time. Also the effect of increasing values of parameter of non-
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idealness b̄ is to increase the length of profile whereas the same effect causes to decrease
the velocity of the profile as evident from Figs. 1, 2. This implies that the non-idealness of
the gas will cause an early decay of the sawtooth wave as compared to ideal case. Also, the
effect of non-idealness is more dominant in case of cylindrical symmetry as compared to
plane case. It may be noted from Figs. 3, 4, 5, 6 that in both ideal and non-ideal gas the effect
of increasing value of specific heat ratio γ causes to increase (decrease) the length (velocity)
of the profile.

Conclusion

The present paper uses the theory of progressivewaves to analyze themain features of weakly
nonlinear waves propagating in a non-ideal gas. An evolution equation, which characterizes
thewave process in the high frequency domain and points out the possibility of wave breaking
at a finite time, is derived. Further, we consider a sufficiently weak shock at the outset
and study the propagation of the disturbance given in the form of a sawtooth profile. It is
observed that the effect of non-idealness of the gas causes an early decay of the sawtooth
wave as compared to ideal case. Also, the effect of non-idealness is more dominant in case
of cylindrical symmetry as compared to plane case. Further, the effect of increasing values
of specific heat ratio γ is to increase (decrease) the length (velocity) of the profile.
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