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Abstract: In this article, the active control method and the
backsteppingmethod are usedduring the synchronization
of fractional order chaotic systems. The salient feature of
the article is the analysis of time of synchronization be-
tween fractional order Chen and Qi systems using both
the methods. Numerical simulation and graphical results
clearly exhibit that backstepping approach is better than
active control method for synchronization of the consid-
ered pair of systems, as it takes less time to synchronize
while using the first one compare to second one.
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1 Introduction

The beginning of the fractional calculus [1] is considered
to be the Leibniz’s letter to L’Hospital in 1695, where the
notation for differentiation of non-integer order 1/2 is dis-
cussed. In addition, Leibniz wrote, "Thus it follows that
d1/2x will be equal to x

√
dx : x, and this is an apparent

paradox from which, one day, useful consequences will
be drawn." Nowadays, not only fractions but also arbitrary
real and even complex numbers are considered as order of
differentiation. The theory of fractional calculus gives us
flexibility for the generalization of the order of the deriva-
tive and integration from integer to any real number. Nev-
ertheless, the name "fractional calculus" is kept for the
general theory. Again due to the non-local property of frac-
tional order differential operator, it takes into account the
fact that the future state depends upon the present state
as well as all of the history of its previous states, the frac-
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tional calculus which was in earlier stage considered as
mathematical curiosity now becomes the object for the ex-
tensive development of fractional order partial differential
equations for its applications in various physical areas of
science and engineering. Geometric and physical interpre-
tations of fractional differentiation and fractional integra-
tion can be found in Podlubny’s work [2].

Though the idea of chaos theory came from observing
weather patterns [3], but eventually it has become appli-
cable to a variety of other disciplines. Some areas in math-
ematics, computer science, microbiology, meteorology, bi-
ology, engineering, geology, finance, economics, algorith-
mic trading, politics, population dynamics, psychology,
philosophy and robotics are already benefited by chaos
theory.

Chaos synchronization is an important topic in the
nonlinear science. Generally speaking, the synchroniza-
tion phenomenon has the feature that the trajectories of
two systems (drive and response systems) are identical,
in spite of starting from different initial conditions. How-
ever, slight changes in the initial conditions may lead to
completely different trajectories. Therefore, how to control
two chaotic systems to be synchronized have received a
great deal of interest in past twodecades to the researchers
working in the field of chaos theory.

Various forms of synchronization that have been ob-
served in the literature are phase synchronization, lag syn-
chronization, generalized synchronization and sequential
synchronization. Notable among the various methods for
achieving this aim include linear feed-back, adaptive syn-
chronization, backstepping control, sliding mode control,
active control method, OGY method, projective synchro-
nization, inverse optimal control ([4–12]).

Active control method, proposed by Bai and Lon-
ngren [13] has widely been accepted as an efficient tech-
nique for the synchronization of non-identical chaotic sys-
tems, a feature for which it has got advantage over other
synchronization methods. After giving a generalized de-
sign of the method by Ho and Hung [14], the method had
been treated as one of the most interesting control strate-
gies for its simplicity. Despite of the fact that active con-
trol method is an expensive strategy as its takes compar-
ative more time for synchronization as compared to other
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exiting methods, it is noticed that the method is effective
and convenient to synchronize since Lyapunov exponents
are not required mathematical calculation. The method
has been well tested to many practical systems such as
spatiotemporal dynamical systems, nonlinear bloch equa-
tions modeling, nuclear magnetic resonance, electric cir-
cuitsmodeling, complexdynamos, acoustic gravitywaves,
parametrically excited systems and RCL-shunted Joseph-
son junctions etc. It is seen from literature that Vincent
and Laoye [15] used active control based synchronization
scheme for controlling directed transport arising from co-
existing attractors in non-equilibrium physics.

Backsteppingdesignandactive control are both recog-
nised as powerful design methods for chaos synchroniza-
tion. Backstepping design can guarantee global stability,
tracking and transient performance for a broad class of
strict-feedback nonlinear systems ([16–18]). The method
has been employed for controlling and synchronizing
many chaotic systems as well as hyperchaotic systems.
Some of the method is widely used for synchronization
of chaotic systems for the advantage that it needs only
one controller to realize synchronization between chaotic
systems and finally there are no derivatives in the con-
troller [19].

In the present article, active control method and back-
stepping approach are used to synchronize the fractional
order chaotic systems. The fractional order Chen and Qi
systems are taken to synchronize using both the methods.
In 2008, both the methods are used by Vincent [21] dur-
ing synchronization of identical integer order systems al-
ready considered by A.M. Harb and M.A. Zohdy. This has
inspired the authors to extend it in fractional order sys-
tem. The main feature of the article is a comparative study
of time of synchronization through numerical simulation
and graphical presentation.

2 Definition and lemma

Definition: There are several definitions for fractional
order derivative ([22–24]). Since the Caputo’s fractional
derivative of a constant is zero, we choose Caputo’s defi-
nition [25] which is written as

c
aDq

t x(t) =
dqx(t)
dtq =

⎧⎪⎨
⎪⎩

1
Γ(n − q)

t∫
a

x(n)(τ)
(t−τ)q+1−n dτ , n − 1 < q < n

dnx(t)
dtn , q = n ,

where 0 < q ∈ R, n ∈ N and Γ( · ) is the Gamma function.

Lemma: [26] Let x(t) ∈ R be a continuous and derivable
function. Then, for any time instant t ≥ a ,

1
2
c
aDq

t x
2(t) ≤ x(t) caDq

t x(t), ∀ q ∈ (0, 1).

3 Systems’ descriptions

3.1 Fractional order Chen system

The fractional order Chen system [27] of order q, is given
by

dqx1
dtq = a1 (x2 − x1) ,

dqx2
dtq = (a3 − a1)x1 − x1x3 + a3x2,

dqx3
dtq = x1x2 − a2x3, 0 < q < 1, (1)

where a1, a2, a3 are the parameters of the system. The
phase portrait of the fractional order Chen system in x1 −
x2 − x3 space is depicted through Fig. 1 at q = 0.96 for the
values of parameters a1 = 35, a2 = 3, a3 = 28 and the
initial condition (10, 25, 36).

Fig. 1: Phase portrait of the Chen system in x1 − x2 − x3 space at the
order q = 0.96.

3.2 Fractional order Qi system

The fractional order Qi system [28] of order q, is given by

dqy1
dtq = b1 (y2 − y1) + y2y3,

dqy2
dtq = b3y1 − y2 − y1y3,

dqy3
dtq = −b2y3 + y1y2, 0 < q < 1, (2)

where b1, b2 and b3 are the parameters of the system.
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The phase portrait of system (2) at q = 0.96 is de-
picted through the Fig. 2 at the values of the parameters
b1 = 35, b2 = 8

3 , b3 = 80 and initial condition (3, 2, 1) .

Fig. 2: Phase portrait of the Qi system in y1 − y2 − y3 space for the
order of derivative q = 0.96.

4 Synchronization of fractional
order Chen and Qi systems using
active control method

In this section, our aim is to achieve synchronization be-
tween fractional order Chen system and Qi system by us-
ing active control method. In this method, we assume that
the Chen system (1) drives the Qi system (2). The response
system is defined as

dqy1
dtq = b1 (y2 − y1) + y2y3 + u1(t),

dqy2
dtq = b3y1 − y2 − y1y3 + u2(t),

dqy3
dtq = −b2y3 + y1y2 + u3(t), (3)

where u1(t), u2(t) and u3(t) are control functions.
Let us define the error e = (e1(t), e2(t), e3(t))t as

ei(t) = yi − xi , i = 1, 2, 3. (4)

Since the derivative operator is linear, we get the error sys-
tem as
dqe1
dtq = b1 (e2 − e1) + (b1 − a1)(x2 − x1) + y2y3 + u1(t),

dqe2
dtq = b3e1 − e2 + (b3 − a3 + a1)x1 + x1x3 − y1y3

− (1 + a3)x2 + u2(t),
dqe3
dtq = −b2e3 + (a2 − b2)x3 + y1y2 − x1x2 + u3(t). (5)

To achieve our aim, we have to re-define the active control
function as

u1(t) = V1(t) − (b1 − a1)(x2 − x1) − y2y3,
u2(t) = V2(t) − (b3 − a3 + a1)x1 − x1x3 + y1y3 + (1 + a3)x2,
u3(t) = V3(t) − (a2 − b2)x3 − y1y2 + x1x2.

Using above equations in system (5), we get the error sys-
tem as

dqe1
dtq = b1 (e2 − e1) + V1(t),

dqe2
dtq = b3e1 − e2 + V2(t),

dqe3
dtq = −b2e3 + V3(t). (6)

To control the linear error system (6) with control in-
puts V1(t), V2(t) and V3(t) as functions of the error states
ei(t), i = 1, 2, 3, our aim is to find the feedback control
function in such a way that ei(t) → 0 as t → ∞ , i =
1, 2, 3, so that the systems (1) and (3) are globally syn-
chronized. To achieve this, there are many choices for the
control functions V1(t), V2(t) and V3(t). We choose⎡

⎢⎣ V1(t)
V2(t)
V3(t)

⎤
⎥⎦ = A

⎡
⎢⎣ e1

e2
e3

⎤
⎥⎦ ,

where A is a 3 × 3 constant matrix. In order to make the
closed loop system stable, we choose the elements of the
matrix A in such way that the error system must have all
the eigenvalues with negative real parts.

Let the matrix A is chosen in the form

A =

⎡
⎢⎣ b1 − 1 −b1 0

−b3 0 0
0 0 b2 − 1

⎤
⎥⎦ .

In this particular choice, the closed loop system (6) has the
eigenvalues −1, −1 and −1. This choice leads to a stable
system and thus the synchronization between fractional
order Chen system and Qi system is achieved.

5 Synchronization of fractional
order Chen and Qi systems using
backstepping approach

The drive system is taken as fractional order Chen system
(1) and fractional order Qi system considered as response
system (3).
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Defining error states as e1 = y1 − x1, e2 = y2 − x2, e3 =
y3 − x3, the error dynamical system reduces to

dqe1
dtq = b1 (e2 − e1) + e2e3 + e2x3 + e3x2 + φ1 + u1(t),

dqe2
dtq = b3e1 − e2 − e1e3 − e1x3 − e3x1 + φ2 + u2(t),

dqe3
dtq = −b2e3 + e1e2 + e1x2 + e2x1 + φ3 + u3(t), (7)

where

φ1 = x2x3 + (b1 − a1)(x2 − x1),
φ2 = b3x1 − x2 − (a3 − a1)x1 − a3x2,
φ3 = (a2 − b2)x3.

Equation (7) can be considered as control problem where
the system is to be controlled by the control functions
u1(t), u2(t) and u3(t) which are the functions of error vec-
tors e1(t), e2(t) and e3(t).

If the error states e1(t), e2(t) and e3(t) converge to
zero as time t becomes large, then the systems (1) and (3)
are said to be synchronized. Now our aim is to design the
control functions for synchronization of fractional order
chaotic systems using backstepping approach.
Theorem. If the control function are chosen as

u1(t) = −φ1 − w3x2,
u2(t) = −φ2 − b3w1 − b1w1,
u3(t) = −φ3 − w1x2 − w1w2,

where w1 = e1, w2 = e2, w3 = e3, then the drive system
(1) will be synchronized with the response system (3).

Proof. To achieve our results we use backstepping proce-
dure which has three steps.
Step-I: Defining w1 = e1, we have

dqw1
dtq = b1 (e2 − w1)+ e2e3 + e2x3 + e3x2 +φ1 +u1(t), (8)

where e2 = α1(w1) is regarded as an virtual controller. For
thedesignof α1(w1) to stabilizew1−subsystem, choose the
Lyapunov function as

v1 =
1
2w

2
1.

The q−th order derivative of v1 is

dqv1
dtq = 1

2
dqw2

1
dtq ≤ w1

dqw1
dtq (using lemma)

i.e.,

dqv1
dtq ≤ w1

[
b1(α1(w1) − w1) + α1(w1)e3 + α1(w1)x3

+e3x2 + φ1 + u1(t)
]
.

If we choose u1(t) = −φ1 − e3x2 and α1(w1) = 0, then
dqv1
dtq ≤ −b1w2

1 < 0 is negative definite. This implies that the
w1−subsystem (8) is asymptotically stable.

Defining the error variable between e2 and the estima-
tive virtual controller α1(w1) as w2 = e2 − α1(w1), we can
obtain the following (w1, w2)−subsystem as

dqw1
dtq = b1 (w2 − w1) + w2e3 + w2x3,

dqw2
dtq = b3w1 − w2 − w1e3 − w1x3 − e3x1 + φ2 + u2(t),

(9)

where e3 = α2(w1, w2) is a virtual controller.
Step-II: In this step, we define the following Lyapunov
function v2 to stabilize (w1, w2)−subsystem (9) as

v2 = v1 +
1
2w

2
2 =

1
2w

2
1 +

1
2w

2
2.

The q−th order derivative of v2 w.r. to t is

dqv2
dtq = 1

2
dqw2

1
dtq + 1

2
dqw2

2
dtq ≤ w1

dqw1
dtq + w2

dqw2
dtq

(using lemma), i.e.,

dqv2
dtq ≤ −b1w2

1 − w2
2 + w1[b1w2 + w2α2(w1, w2) + w2x3]

+w2[b3w1−w1α2(w1, w2)−w1x3−α2(w1, w2)x1+φ2+u2(t)].

If we choose α2(w1, w2) = 0 and u2(t) = −φ2 − b3w1 −
b1w1, then dqv2

dtq ≤ −b1w2
1 −w2

2 < 0 is negative definewhich
shows that (w1, w2)−subsystem (9) is asymptotically sta-
ble.

Similarly consideringw3 = e3−α2(w1, w2), we get the
following (w1, w2, w3)−system as

dqw1
dtq = b1 (w2 − w1) + w2w3 + w2x3,

dqw2
dtq = −w2 − w1w3 − w1x3 − w3x1 − b1w1,

dqw3
dtq = −b2w3 + w1w2 + w1x2 + w2x1 + φ3 + u3(t).

(10)

Step-III: In order to stabilize (w1, w2, w3)−system, define
the Lyapunov function v3 as

v3 = v2 +
1
2w

2
3 =

1
2w

2
1 +

1
2w

2
2 +

1
2w

2
3.

The q−th order fractional order derivative of v3 w.r. to t is

dqv3
dtq = 1

2
dqw2

1
dtq + 1

2
dqw2

2
dtq + 1

2
dqw2

3
dtq

≤ w1
dqw1
dtq + w2

dqw2
dtq + w3

dqw3
dtq (using lemma)
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i.e.,

dqv3
dtq ≤ −b1w2

1 − w2
2 − b2w2

3 − w2w3x1

+ w3[w1w2 + w1x2 + w2x1 + φ3 + u3(t)].

If we choose u3(t) = −φ3 − w1x2 − w1w2, then
dqv3
dtq ≤ −b1w2

1 − w2
2 − b2w2

3 < 0, which implies that
(w1, w2, w3)−system is asymptotically stable. Thus for
w1 = e1, w2 = e2 − α1(w1) = e2, w3 = e3 − α2(w1, w2) =
e3, the state errors e1, e2 and e3 converge to zero after a
finite period of time, confirm the synchronization between
fractional order Chen system and Qi system.

6 Numerical simulation and results

In this section, we take the earlier considered val-
ues of the parameters of both the systems. The ini-
tial conditions of drive and response systems are
taken as (x1(0), x2(0), x3(0)) = (10, 25, 36) and
(y1(0), y2(0), y3(0)) = (3, 2, 1), respectively. Hence the
initial conditions of error system is (e1(0), e2(0), e3(0)) =
(−7, −23, −35). During synchronization of the systems,
the time step size is taken as 0.005. The synchronization
between x1 − y1, x2 − y2 and x3 − y3 are depicted through
Fig. 3 and Fig. 5 at q = 0.96,for active control method
and backstepping approach respectively. The error func-
tions are depicted through Fig. 4 and Fig. 6 for active con-
trol method and backstepping approach respectively at
q = 0.92, 0.96, 1. It is clear from the figures that in both
the cases it takes less time to synchronize as the systems
pair approaches from standard order to fractional order.
Also it is found from the figures that it takes less time for
synchronization for the backstepping method compared
to active control method.

7 Conclusion

The theme of the present research article is to investigate
the synchronization between two non-identical fractional
order chaotic systems using active control method and
backstepping method. Based on stability analysis, the re-
quired synchronization of the chaotic systems, viz., Chen
and Qi systems has been achieved. The components of er-
ror systems tending to zero as time progresses is attempt
through proper choices of control functions. This helps to
get the time required for synchronization. The novelty of

(a)

(b)

(c)

Fig. 3: State trajectories of drive system (1) and response system (3)
for fractional order q = 0.96, (a) between x1 and y1, (b) between x2
and y2, (c) between x3 and y3 using active control method.

the article is the finding that less time is necessary for syn-
chronization, when the system pair approaches to frac-
tional order from the standard order upon application of
both the methods, exhibited through graphical presenta-
tions. Additionally a comparison of time requirement for
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(a)

(b)

(c)

Fig. 4: The evolution of the error functions e1(t), e2(t) and e3(t): (a)
q = 0.92, (b) q = 0.96, (c) q = 1, using active control method.

both standard and fractional order derivatives applying
the active control method and backstepping method has
been done.

(a)

(b)

(c)

Fig. 5: State trajectories of drive system (1) and response system (3)
for fractional order q = 0.96: (a) between x1 and y1, (b) between x2
and y2, (c) between x3 and y3 using backstepping method.
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(a)

(b)

(c)

Fig. 6: The evolution of the error functions e1(t), e2(t) and e3(t): (a)
q = 0.92, (b) q = 0.96, (c) q = 1, using backstepping method.
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