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Abstract This paper presents a new algorithm based on operational matrix of fractional integra-
tions for fractional Bloch equation in Nuclear Magnetic Resonance (NMR). For construction of
operational matrix Legendre scaling functions are used as a basis. Using this operational matrix
in the equations, we obtain approximate solutions for fractional Bloch equation. Convergence as
well as error of the proposed method is given. Results are also compared with known solution.
Absolute errors graph are plotted to show the accuracy of proposed new algorithm.
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1. Introduction

The Bloch equations, namely

dM (1) M, (1)

@ - M) - =
P10 gt - 212, (1)
dM.(t) M, — M.(t)

d T, ’

with initial conditions

M.(0)=0, M,(0)=100and M.(0)=0.

are used in physics, chemistry, nuclear magnetic resonance
(NMR), electron spin resonance (ESR) and magnetic reso-
nance imaging (MRI).
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Where M (1), M,(f) and M.(¢) represent the system mag-
netisation in x, y and z component respectively, M is the equi-
librium magnetisation, w, is the resonant frequency given by
the Larmor relationship w, = yB,, where B, is the static mag-
netic field in z-component, 7} is spin-lattice relaxation time,
and 7, is spin-spin relaxation time. Well posed-ness of this
equation is known when derivatives are of integer order. The
set of analytic solution of the system of Eq. (1) with initial con-
ditions in Eq. (2) is given as
M, (t) = e (M(0) cos wt + M, (0) sin wyt),

M, (1) = e/ (M,(0) cos gt — M (0) sin wyt), (2)
M.(1) = M.(0)e™/™ + Mo(1 — e "/T).

The aim of this paper was to study Eq. (1) by replacing inte-
ger order time derivatives to fractional order derivatives
because some physical quantity depends on the past so it is

physically very important to study such systems. The frac-
tional model of Bloch equation is given as follows:
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d'M(1) M.(1) d w4+ )

O Hm:lﬂPUHE—A!wY' @
PV M) - - g

a7 oM T, .Legendre scaling functl_ons are constructeq normalising the
IM.(1) My — M.(1) shifted Legendre polynomials. So the collection {¢;(#)} forms

i T, ) an orthonormal basis for [0, 1]. The Legendre scaling func-

where 0 < o, 8,y < 1

The fraction in time derivative suggests a modulation—or
weighting—of system memory, and the assumption of frac-
tional derivatives plays an important role affecting the spin
dynamics described by the Bloch equations in Eq. (3), see
[1,2]. In addition, it is known that fractional derivative is
strongly dependent on the initial conditions; therefore, we
should choose the fractional derivative most appropriate for
handling the initial conditions of our physical problem. In
NMR the initial state of the system is specified by the compo-
nents of the magnetisation, and hence these need to be clearly
recognised. The physical meaning of the fractional Bloch equa-
tions goes back to the basic formulation of the fractional
Schrodinger equation in quantum mechanics.

There are several methods to obtain approximate solution
for Bloch equation in NMR [3-10]. Recently some authors
solve mathematical model of Bloch equation with fractional
time derivative [11-13].

In this paper we present a new algorithm based on opera-
tional matrix of integration for the approximate solution of
time fractional model of Bloch equation. Operational matrix
has several applications in fractional calculus. For the con-
struction of operational matrices and their applications in frac-
tional calculus see [14-25]. Using operational matrix in Bloch
model we obtain unknown coefficients for approximated
parameter in model. Using these coefficients we obtain approx-
imate solution for fractional model of Bloch equation in
NMR. Convergence as well as error of the proposed method
is given.

The present paper is organised as follows. In Section 2, we
describe basic preliminaries. In Section 3, we construct opera-
tional matrix using Legendre scaling functions as basis. In Sec-
tion 4, we describe the algorithm for the construction of
approximate solutions. In Section 5, we show the convergence
of approximate solution to the exact solution. In Section 6, we
give error bound for the proposed method. In Section 7, we
give numerical experiments and discussion for different cases
of time derivative to show the effectiveness of the proposed
method.

2. Preliminaries

There are several definitions of fractional order derivatives and
integrals. These are not necessarily equivalent. In this paper,
the fractional order differentiations and integrations are in
well-known Caputo and Riemann-Liouville sense respectively
[26,27].

The Legendre scaling functions {¢;(¢
are defined by

o0) = {0 Qi+ P2t — 1),

where P;(7) is Legendre polynomials of order i on the interval
[—1, 1], given explicitly by the following formula:

)} in one dimension

for0 << 1.

otherwise,

tion of degree i is given by
. 1 d itk (l + k) t*
b,(1) = i+ 1)) (-1 (5
k; (i— k) (k1)?
A function f¢€ L*[0,1], with bounded second derivative

If" ()] < M, expanded as infinite sum of Legendre scaling
function and the series converges uniformly to the function

f(t)7

1) = lim > e 1), (©
i=0

where ¢; = (f(1), $,(¢)), and (.,

L*[0,1].
If the series is truncated at n = m, then we have

.) is standard inner product on

[ Zc,qs, CTo(1) @
where C and ¢(r) are (m + 1) x 1 matrices given by

C= [007 Clyeeny Cm]T and ¢(Z) = [(;bO([)? d’l (z)7 ety (z)m(l)]T’

3. Operational matrix

Theorem 3.1. Let  ¢(x) = [¢o(x), ¢ (x),...,d,(x)]", be

Legendre scaling vector and consider o > 0, then

Fgi(x) = I9¢(x), (®)

where I = (w(i,})), is (n+ 1) x (n+ 1) operational matrix of
fractional integral of order o and its (i,j) th entry is given by

%+ 1) 1/222

(i+k)!(j+ 1)
(i = k)G — D)) (e + k4 1+ DD(a+k + 1)
0<ij<n

1+/+k+l

o(ij) = (2i+1)"*(2

X

Proof. Using the Legendre scaling function of degree i, we get

1 /2 Z
1 /2 Z 1+k

using Legendre scaling function approximation for x***, we
have

= ZC/¢/

/(x), where
S

l+k l+k ' 1 I k
=R (k1)?

( + ) x1+k
KT (o + k + 1)

Ii(x)

l+/(]+ 1 1
DU(M? etk +1+1)

©)
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Hence, we obtain,
N C'lL—C'I, = F, 21
Fox) = > (i), (o) T GE=R ey
= C'lL+CIL = Fy, (22)
where w(i,]) is defined by
i CiL = F;, (23)
CoN . 1/2/~. 1/2 _1)\ititkH
(,U(l,.]) - (2l+1) (2]+1) ;;( l) 11,12,137147157F1,F2 and F3 are known.
. (i + )G+ 1! On solving Eqgs. (21) and (22) we get,
. -1
(i — k)= D)D) (o + k+ [+ ) (o + k + 1) Cl = (AL + BL) (L + LL') (24)
(1) 1
Hence = {(FE' + BL) (W + L) - LG, (29)
From Eq. (23), we can write
pd’[(x) = [(U(l, 0)7 w(lv 1)7 w(la 2)7 ey (,U(l, n)]q)(x) (12)
=R (26)
O

4. Method of solution

In this section, we describe the algorithm for the construction
of approximate solution of the Bloch equation.
Let us consider

&M, d'm,

P crgnn, PO = e,

M crgn, (13)
from Eq. (13), we can write
M(1) = C{I? (1) + AT (1), (14)
M, (1) = 31D (1) + B (1), (15)
M.(1) = CI1V (1) + DT (1), (16)

where M, (0) = A7 (1), M,(0) = B $(t), M.(0) = D" p(z).
Using Egs. (13)—(16) in Bloch model we obtain following
equations

1 1
CMI+—=1") — 0y CI1" = wyB" — — A", (17)
Tz TZ
1 1
wyC{I? + CJ ( T+ —1P ) =~ A" — — B, (18)
- T, T,
cr 1+iﬂ"') — g Lpr (19)
3 T T,

where I® I and I") are operational matrices of fractional
integration of order o, § and y respectively. 7 is an identity
matrix and 5t = E"¢(z). Using following notations in Egs.

(17)(19)
11:1+i1<1> 12:1+iﬂﬂ> 13:1+iﬂ>’> I = wI?”
T2 ? T2 ) T] ) )

1526001([),)7

1 1 1
Fi=wBT ——A", F, = —wyA" ——B", ;= ET ——DT
1 (O] T , 12 o T , I3 T, 5

(20)

Using Egs. (24)—(26) in Egs. (14)-(16) respectively, we get
approximate solution for Bloch equations in NMR.

5. Convergence analysis

Theorem 1. Suppose that y(x) € L*[01] and y,(x) be the its nth
approximation obtained by using (n + 1) elements of Legendre
scaling vector. Suppose |D*y(x)| < K, then y,(x) — y(x) in the
L? -sense with the following inequality:

K 1

||y(x)_yn(x)”L2[o,1] SB(—5+n), (27)
16 2

where F,(z) is Poly Gamma function.

Proof. Let,

¥ = 2@@@)7 (28)
Truncati;lg series in Eq. (28),

5a() = ﬁ;c,-@(x). (29)
Subtractir_lg Eq. (29) from Eq. (28),

Y0 30 = - el (30)

From Eq. (30), we can write,

() = v ()220, </0 (icfd%()c)) ; (31)

i=n+1

Now Eq. (31), can be written as,

o0

poy < D6 (32)

i=n+1

1y(x) = yu(x)

Coefficients in the expansion given in Eq. (28), are given by,

ol—

¢ = / y(x)p;(x)dx = (2i+ 1) / y(x)P;(2x — 1)dx, (33)
0 0

substituting 2x — 1 = ¢, in Eq. (33), we get,
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~—
ol—

2i+1

[ (5o

_ (@)%/1y(%)d(1)iﬂ(l)_l)il(t))d[' (34)

Now using integration part formula two times in Eq. (34), we
get,

Ci =

kZ
|ci|2< b} b}
32(2i+1)(2i — 1)*(2i + 3)
202i— 1) 8(2i+1)° 2(2i+3)
2i+5 2i+ 1 2i—3 |’
K2
o < % (35)
8(2i — 3)

Using Eq. (35) in Eq. (32), we get,

I9) = <5 D (36)

i=, n+l

Summing the above series we get,

K 1
_yn(x)HLz[O,l] <1_6F3( 2+ )
)

From Eq. (36) as n — 0o, y,(x) — p(x) in the L* -sense. [

[ly(x)

6. Error analysis

Theorem 2. Let (Iy)(x) be the nth approximation of Riemann-
Liouville fractional integral operator (I"y)(x) then we have the

Sfollowings upper bounds of absolute error in its nth
approximation

1
I'y)(x) — (Ly)(x —s+n 37
190 = Bl < 1oz (-5 +) 67

Proof. From the definition of Riemann-Liouville fractional
integral operator, we can write

1Y) () = (E9) () 2. = % / = )

Ol (38)
Using Eq. (36) in (38), we get
)W) = (N < 7z [ =7 fer (=g
K 1 el
16\/_ ( +n>/0 (x—1)""dr
190 = (B Ol € g i P (g o) 69

Since x € [0, 1], Eq. (39) can be written as,

[(FY)(x) = (L) ()] 20,1 < 16\/—‘ ( % n)

O

7. Numerical results and discussion

In all the figures given below we have taken
wo=1, Ty =1(s)" and T> =20 (ms)?. In Figs. 4-6, absolute
errors are denoted by E, E,, E5 for n = 3,7 and 11 respec-
tively. In these respective figures £, E; are multiplied by 10°.

Figs. 1-3, represent approximate and exact solution for
M (1), M,(t) and M.(t) respectively. These figures show accu-
racy of the proposed method.

Figs. 4-6, show the behaviour of absolute errors of integer
order Bloch equation for different values of n = 3,7 and 11.
From Figs. 4-6, it is observed that absolute error decreases
with the increasing n. Similarly as we increase the dimension
of basis function, we obtain more accurate numerical solution.

Figs. 7-9, show the behaviour of solutions with time for dif-
ferent values of «, f# and y. It is clear that the solution varies
continuously for Bloch equation in NMR and for
a=pf=vy=1 solution for standard Bloch equation is
obtained. From Figs. 7 and 9 it is clear that the approximate
solution for M,(r) and M.(¢) increases with the increase in
time for different values of « =y =0.7,0.8,0.9 and 1. But in
Fig. 8 the approximate solution for M, () decreases with the
increase in time for different values of f=0.7,0.8,0.9 and 1.

In Table 1, we have compared our results from the Homo-
topy Perturbation Method (HPM) [11], iterative method [13]
and exact solution.

From the table it is observed that the accuracy by our
method (n = 4) is better than the method in [11] for n = 4
and the iterative method in [13] in which we have taken thou-
sands of iterations.

8. Conclusions and future works

Our numerical algorithm is easy in comparison with existing
methods for the approximate solution of fractional Bloch
equation in NMR because construction of operational matrix
is very easy. Better accuracy is attained because we are approx-
imating time derivative first. It is shown that how the approx-
imate solution varies continuously for different values of o,

90 T T T T T T T T T

8ot
70t *****

B0} A .
50} P g

w0} "

Mx ()

L A 4
30 ¥

20} 4 g

o4 % numerical solution
— — —exact solution

-10 1 I I 1 1 I I I I
0 0.1 02 03 04 05 06 07 08 09 1

Figure 1
M.(1).

Comparison of exact and approximate solution for
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Figure 3 Comparison of exact and approximate solution for

M.(1).

0.015
0.01

0.0057

comparison of absolute errors for Mx (1)
o
[S]

—Ft
———10%E2

10%°E3

Figure 4 Comparison of absolute errors for M, () at different
values of n = 3, 7 and 11.

0.045

0.04

0.035
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0.01

comparison of absolute errors for My (t)

0.005

—Et
———10%E2
* 10%E3

0015}

Figure 5 Comparison of absolute errors for M, (r) at different

values of n = 3, 7 and 11.
x10*
35 r ; : T : : : T .
—E1
———10%E2
3 ; 5
+ 10%E3
25H g
2t |

comparison of absolute errors for Mz (t)

Figure 6 Comparison of absolute errors for M.(r) at different

values of n = 3, 7 and 11.

90 T T T T T T T T T
80 |
70 |
60 |
50 |
= 40t
=
30+
20
10 alpha=1
‘ ———alpha=0.9
09 +  alpha=0.8 |4
© - alpha=0.7
_10 1 1 1 1 1 1 1 I I
0 01 02 03 04 05 06 07 08 09 1
t

Figure 7 Approximate solution for M, (¢) at different values of a.
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Figure 8  Approximate solution for M, (¢) at different values of f5.
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+  gamma=0.8 (]
©-gamma=0.7
01 L 1 | ) | L I T T
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Figure 9  Approximate solution for M. (¢) at different values of y.

Table 1 Comparison among the approximate solutions of
exiting methods, present method and exact solution of Mx, My
and Mz for alpha = 1.

M t Exact Present Method in  Method in
solution method [11] [13]
M) 0.2 19.6693 19.6693 19.6677 19.6597
0.4 38.1707 38.1707 38.1413 38.1621
0.6 54.7955 54.7955 54.6270 54.7803
0.8 68.9228 68.9228 68.3307 68.9168
1.0 80.0432 80.0433 78.4583 80.0388
M) 0.2 97.0315 97.0315 97.0783 97.0329
0.4 90.2823 90.2823 90.3399 90.2846
0.6 80.0943 80.0943 79.8246 80.1033
0.8 66.9388 66.9389 65.5723 66.9425
1.0 51.3951 51.3952 47.6269 51.3992
M.(t) 0.2 0.1813 0.1813 0.1813 0.1812
0.4 0.3297 0.3297 0.3297 0.3296
0.6 0.4512 0.4512 0.4512 0.4511
0.8 0.5507 0.5507 0.5507 0.5506
1.0 0.6321 0.6321 0.6321 0.6321

and y. For future work we can use operational matrices of dif-
ferent orthonormal polynomials to achieve better accuracy.
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