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Interstitial-free steel workpieces are deformed by equal-channel angular pressing (ECAP) for equivalent
strain evm = 3 and evm = 21 followed by flash annealing. Microstructures are analyzed by optical micro-
scopy, scanning electron microscopy and transmission electron microscopy. Mechanical properties are
evaluated by hardness testing. Yield strength of materials is calculated from hardness values. Flash
annealing (at 675 �C) of ECAPed samples for evm = 3 and evm = 21 results in abnormal subgrain growth
and abnormal grain growth, respectively. Flash annealing at 700 �C of ECAPed (at evm = 3) IF steel
converts abnormally grown subgrains to grains which serve as nuclei for recrystallization and that result in
bimodal grain size distribution. Bimodal grain size distribution is also produced when ECAPed IF steel for
evm = 21 is flash annealed at 675 �C due to abnormal grain growth or secondary recrystallization. Flash
annealing of IF steel samples ECAPed for low evm, in the temperature range 600-675 �C, decreases the
hardness continuously with increase in the annealing temperature but it increases at high evm. The former is
due to annihilation of defects but the later is caused by ordering of nonequilibrium boundaries. The
hardening and strengthening behaviors are similar.

Keywords ECAP, flash annealing, interstitial-free steel, scanning
electron microscopy, transmission electron micro-
scopy

1. Introduction

Interstitial-free (IF) steel is one of the recently developed
steels used widely in the automotive industry because of its
excellent deep drawability and high planar isotropy when the
microstructure contains micrometer size grains (Ref 1) but it
possesses low strength (Ref 2, 3). The strength can be improved
by various strengthening methods. Most of the strengthening
mechanisms lower ductility and formability. The grain size
refinement is the only mechanism that improves strength with
retained or improved ductility (Ref 4-6). Grain size can be
reduced to ultrafine grain (UFG) range by severe plastic
deformation (SPD) techniques (Ref 4, 5, 7-10). UFG steel is
several times stronger than its coarse-grained counterpart, but it
suffers with low ductility due to restricted dislocation activities
in submicron size grained alloys (Ref 4-6). The SPD methods
can produce UFGs by imposition of extremely large plastic
strain to the material while preserving the initial dimensions of
the workpiece (Ref 5, 7, 11, 12). Among the SPD techniques,
the ECAP seems to be the most viable method because of the
fact that bulk material can be deformed without any change in

cross section of the workpiece and in reasonable dimension
limited by the capacity of press (Ref 8, 13-15). This technique
has been applied to synthesize bulk UFG structure in IF steel
sheets (Ref 2, 3, 16-21) with excellent mechanical properties
(Ref 16-22). However, the UFG microstructure brought about
limited ductility with a few percent uniform elongation that
limits its applications (Ref 23). Previous reports have shown
that the ductility of UFG materials can be enhanced without
compromising the strength by appropriate annealing treatments
after SPD (Ref 22-25).This improvement was attributed to the
bimodal grain size distribution introduced into the deformed
microstructure with the combination of fine and coarse grains
(Ref 25-29). Review of UFG low carbon steel suggests that
both high strength and ductility can be achieved by combining
a few percentage of micron-sized (1-10 lm) grains in UFG
matrix (Ref 4). In addition, the annealing synthesized can be
applied also to the UFG materials processed by the SPD
techniques to obtain a microstructure with enhanced stability
(Ref 15). Wang et al. (Ref 26) annealed nano-grained Cu which
resulted in a bimodal grain size distribution, with �25%
volume fraction of micrometer-sized grains of 1-3 lm embed-
ded inside a matrix of �75% volume fraction of nano-
crystalline and ultrafine grains (<300 nm). Bimodal grain size
distribution is reported in IF steel ECAPed for equivalent strain
(evm) 9.24 followed by annealing at 500 �C for 1 h duration
due to recrystallization and coarsening of grains (Ref 2). UFG
material containing ferrite and cementite microstructure with
bimodal distribution of ferrite grains is reported to have a larger
impact toughness compared to the material containing ferrite
and pearlite, quenched and quenched and tempered martensite,
in a low carbon steel (Ref 30). In case of commercial purity
UFG Al, considerable efforts to introduce a bimodal grain
structure failed (Ref 31), since grain coarsening occurred in a
more or less homogeneous manner. The reason for this is
reported as strong and rapid initial recovery and no left driving
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force for subsequent recrystallization, favoured by high stack-
ing fault energy. Although some reports are available on the
processing of UFG IF steel synthesized by ECAP (Ref 2, 16-
19) followed by prolonged isothermal annealing treatments
(Ref 16, 32), however, to the best of our knowledge, no
systematic study has been published yet on the effect of flash
annealing of UFG IF steel to get bimodal grain size distribu-
tion. Therefore, the present work is aimed at developing the
microstructure with bimodal/multimodal grain size distribution
in IF steel by ECAP followed by flash annealing.

2. Experimental Details

The workpieces of 15 mm diameter and 60 mm length are
prepared from the hot-rolled plate of IF steel. The chemical
composition of steel sample used for this study is C-0.0038%,
Mn-0.5%, Si-0.008%, S-0.007, P-0.036, Ti-0.057, Nb-0.016%,
Al-0.031% (all by wt.%) and balance is Fe. The workpieces are
deformed at room temperature by the ECAP adopting the route
Bc in which the sample is rotated by 90� about its axis always
in one direction between two passes to obtain homogeneity in
deformation (Ref 8) using a hydraulic universal testing machine
of 30 ton capacity. The workpieces are coated with a lubricant
mixture of high-density paraffin with MoS2 to reduce the
friction between the workpiece and the die. The ECAP die is
consisted of two channels of 15 mm diameter intersecting at an

inner angle (U) 120� and an outer arc angle (W) 60� that
introduces an equivalent strain of �0.6 in every passage of the
workpiece through the die. The workpieces are deformed to
equivalent strains (evm) levels of 3 and 21, and the deformed
samples are designated as ECAP3 and ECAP21, respectively.
The deformed samples are sectioned along Y plane for
microstructural investigation. The X plane is the transverse
plane perpendicular to the extrusion direction. The Y plane is
the flow plane vertical to the extruded workpiece, and Z plane
is the horizontal plane but parallel to the top surface along the
extrusion direction (Ref 8). The ECAPed samples are flash
annealed for 5 min in the 100% NaNO3 melt maintained at
550-700 �C and in the air furnace at 725-750 �C followed by
water quenching. The flash-annealed ECAP3 or ECAP21
samples are designated as ECAP3-FAT or ECAP21-FAT,
respectively, where T indicates the temperature of annealing.
The grain size of the as-received material is measured from the
optical micrograph using Heyn�s lineal intercept method. Thin
foils of 3 mm diameter and 40 lm thickness are electropol-
ished at �30 �C using an electrolyte of 5 vol.% perchloric acid
and 95 vol.% methanol at 30 V, �60 mA. The detailed
microstructures are characterized by Tecnai 20G2 transmission
electron microscope (TEM) operating at 200 kV. The annealed
samples of 109 10 mm2 are metallographically polished
followed by electropolishing at 10 �C, 16 V for 40 s using
20 vol.% perchloric acid and 80 vol.% methanol. The elec-
tropolished samples are investigated in Quanta 200 FEG
scanning electron microscope (SEM). The hardness is mea-

Fig. 1 (a) Optical microstructure of as-received IF steel; TEM bright field images of ECAP3 (b-c) and ECAP21 (d)
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Fig. 2 SEM images of IF steel deformed up to evm = 3 and flash-annealed (a) ECAP3-FA550, (b) ECAP3-FA600, (c) ECAP3-FA650, (d)
ECAP3-FA675, (e) ECAP3-FA700, (f) ECAP3-FA725 and (g) ECAP3-FA750
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sured by Shimadzu HMV-2T microhardness tester at 980 mN
load using Vickers indenter in the extrusion plane, i.e., the Y
plane of ECAPed samples. The theoritical hardness values are
calculated from Hall-Petch constants (Ho and K, calculated
from a fit by method of least square from experimental hardness
values) within the grain size range. From the measured
hardness value and tensile test data reported elsewhere (Ref
33, 34), ratio of hardness to yield strength is calculated in two
regions—one in deformed state and other well-annealed state.
From these ratios, yield strength is calculated for both the
regions in the present experimental conditions for different
flash-annealed IF steels from the theoretical harness values.

3. Results and Discussion

Figure 1(a) represents an optical micrograph of the as-
received IF steel showing the microstructure of mostly
equiaxed coarse-grained structure of ferrite with an average
grain size of about 57.6± 21 lm. At evm = 3, in ECAP3,
coarse grains get split into deformation bands of width
298± 30 nm and bands get aligned toward deformation
direction, which can be observed in Fig. 1(b). Some of the
bands are also fragmented due to the orthogonal change in

deformation direction between two passes (Fig. 1b). Some of
the dislocations get dynamically recovered during deformation
and get distributed unevenly as well as tangled to form subgrain
boundaries (Fig. 1c). At evm = 21 (in ECAP21), Fig. 1(d)
shows that the near-equiaxed ultrafine-grained structure which
is developed progressively by shearing of ribbon grains and
average grain size reaches 256± 61 nm. At low strain level,
low fraction of high-angle grain boundaries exists but with
increase in strain low-angle grain boundaries are being
converted to the boundary of higher misorientation by pro-
gressive lattice rotation. However, a few grains still contain
significant amount of dislocations. Boundaries of grains are
showing some contour type structures which are indicative of
their highly strained (nonequilibrium) condition (Fig. 1d).

The microstructure of ECAP3-FA550 consists of recovered
banded structure of average bandwidth of 444± 54 nm
(Fig. 2a). Annealing of ECAP3 at 600 �C, i.e., the ECAP3-
FA600 sample also shows the elongated grains with the
recovered banded structures of size 448± 35 nm (Fig. 2b).
When ECAP3 sample is flash annealed at 650 �C, the
morphology of grains is maintained (Fig. 2c) and the bands
grow to 459± 87 nm by grain boundary migration. Subgrain
growth is dependent on energy of low-angle grain boundaries,
and growth rate is a function of subgrain misorientation (Ref
35). When the deformed samples are annealed at 675 �C, the

Fig. 3 TEM bright field images of IF steel deformed up to evm = 3 and flash-annealed (a) ECAP3-FA675, (b) ECAP3-FA700, (c) ECAP3-
FA725 and (d) ECAP3-FA750

5160—Volume 25(12) December 2016 Journal of Materials Engineering and Performance



discontinuous subgrain growth occurs. The microstructure
contains the fine subgrains of 319± 73 nm size along with
coarse subgrains of 838± 20 nm (Fig. 2d, 3a). Further
increasing annealing temperature to 700 �C, some of the
abnormally grown subgrains eventually become grains and
that leads to recrystallization. The recrystallized microstruc-
ture shows bimodal grain size distribution where equiaxed
fine grains coexist with abnormally grown grains (Fig. 2e,
3b). The microstructure contains 77% fine grains of average
size of 620± 28 nm and 23% of coarse grains of average
size of 1.5± 0.24 lm (Fig. 2e, 3b; Table 1). On annealing of
ECAP3 at 725 �C, grains are uniformly coarsened to
1.7± 0.38 lm (Fig. 2f, 3c). Flash annealing at 750 �C results
in coarsening of grains to average size of 2.6± 0.36 lm
(Fig. 2g, 3d).

On flash annealing of ECAP21 sample at 600 �C, fine grains
increase to average size of 377± 94 nm (Fig. 4a, 5a) but the
elongated nature is maintained. When ECAP21 sample is
annealed at 625 �C, recrystallization begins and microstructure
contains 93% fine grains of average size 388± 83 nm with 7%
coarse grains of average size of 1.2± 0.26 lm (Fig. 4b, 5b;
Table 1). On flash annealing at 675 �C, the material is
recrystallized and that results in bimodal grain size distribution.

The microstructure contains 81.5% recrystallized grains of
average size of 455± 60 nm and 18.5% of abnormally grown
grains of 1.3± 0.21 lm (Fig. 4c, 5c). Further flash annealing at
700 �C leads to uniform coarsening of grains to 3.8± 0.39 lm
size (Fig. 4d, 5d). Figure 6(a) represents the variation of
Vickers microhardness of ECAP3 with the annealing temper-
ature. As deformed ECAP3 sample shows the highest hardness
value of 323 VHN. As this material is annealed, hardness
remains at 360 VHN due to the recovery and slightly decreases
to 342 VHN at 650 �C. Recovery observed after flash
annealing at 550, 600, 650 �C of ECAP3 is referred to
rearrangement of dislocations and formation of cell structures
(as observed in Fig. 2a-c, 4a) as morphology of microstructure
is not changed and most of the grains are of elongated in nature.
At 675 �C, hardness value decreases to 302 VHN due to
abnormal grain growth. The rate of decrease in the hardness is
rapid up to 700 �C due to recrystallization and consequently the
hardness value drops down to 243 VHN. The discontinuous
subgrain growth is because of high-angle boundary mobility for
small misorientations. Those subgrains which are slightly more
misoriented than the average give rise to discontinuous
subgrain growth. During plastic deformation at evm = 3, high
density of dislocations gets annihilated and forms subgrain and

Fig. 4 SEM images of IF steel deformed up to evm = 21 and flash-annealed (a) ECAP21-FA600, (b) ECAP21-FA625, (c) ECAP21-FA675 and
(d) ECAP21-FA700
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cell structures. When this material is annealed, a few subgrains
grow abnormally large due to nonuniform grain boundary
mobility. These subgrains transform to grains and serve as
nuclei for recrystallization (Ref 36). Hardness drops signifi-
cantly at this stage due to rearrangement and annihilation of
dislocations. The process of abnormal subgrain growth is

truncated by onset of recrystallization (Ref 35) which is
observed after flash annealing at 700 �C (Fig. 3b) and that
results in rapid decrease in hardness (Fig. 6a). Recrystallized
grains are seen to nucleate at the periphery of abnormally
grown grains (Fig. 3b) where abnormally grown subgrain
boundary acts as nuclei for recrystallization to occur. Nucle-

Fig. 5 TEM images of IF steel deformed up to evm = 21 and flash-annealed (a) ECAP21-FA600, (b) ECAP21-FA625, (c) ECAP21-FA675 and
(d) ECAP21-FA700

Fig. 6 Variation of hardness value with flash annealing temperature of deformed IF steel at (a) evm = 3 and (b) evm = 21)

5162—Volume 25(12) December 2016 Journal of Materials Engineering and Performance



ation of recrystallized grains was predicted through modeling
by number of workers (Ref 35, 37, 38).

Further annealing of ECAP3 at 725 �C leads to decrease
in hardness to 227VHN due to coarsening of fine grains
(Fig. 2f, 4d). Coarse grains grow through grain boundary
migration by consuming smaller grains as coarse grains have
lower relative grain boundary curvature (Ref 39, 40). Even
though grain growth is observed at this temperature but effect
of deformation is visible as dislocations as well as cells are
present (Fig. 3c). Annealing at 750 �C brings uniform
coarsening (Fig. 2f, 3d) with sharp grain boundaries. Hard-
ness at this temperature range decreases and becomes
minimum (Fig. 6a).

On flash annealing of ECAP21 at 600 �C, the recovery is
observed with increased subgrain size that leaves the hardness
value constant similar to that of deformed state. After the flash
annealing of ECAP21 sample at 625 and 675 �C, the increase
in hardness could be observed even though the grain size is
more in the later case (Fig. 4b, c, 5b, c).

The relation between microhardness (H) and grain size (d)
can be presented by classical Hall-Petch (H-P) equation (Ref
41, 42) as

H ¼ H0 þ kd�1=2

where H0 is the hardness of coarse-grained material and K is
gradient which is constant for material of single-phase mi-
cron-sized polycrystalline grains.

Figure 7(a) represents variation in hardness with inverse
square root of grain size for IF steel samples ECAPed for
evm = 3 followed by flash annealing at 550-750 �C. A linear fit
of method of least square from the experimental hardness
values (MPa) against the inverse square root of the grain size
(d�1/2) results in a value of H0 and K are �7160.3 MPa and
7.12 MPa m1/2, respectively, for samples annealed at 550 to
650 �C (line B¢) and 1954 MPa and 0.34 MPa m1/2, respec-
tively, for samples annealed at 700-750 �C (line A¢). The
equations which were formed by least square method are
H = 1954 MPa + 0.34 MPam1/2 d�1/2 (for A¢) and
H = �7160.3 MPa +7.12 MPa m1/2 d�1/2(for line B¢). This
indicates the mechanism of strengthening changes at 700 �C.
At lower temperature, abnormal subgrain growth but above
700 �C it changes to recrystallization and normal grain growth.
Whereas, fit of the experimental hardness values against the

Fig. 7 Variation of hardness with inverse of grain size (d�1/2) for flash-annealed ECAPed IF steel samples ECAPed for (a) evm = 3 and (b)
evm = 21. Theoritical hardness values are calculated based on constants and grain size values which are indicated as red color filled circles in
respective graphs

Fig. 8 Variation of calculated yield strength with grain size �1/2 for (a) ECAP 3 category and (b) ECAP21 category IF steel samples
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inverse square root of the grain size gives negative slope and
Hall-Petch constants Ho and K are 3801 MPa and
�0.104 MPa m1/2, respectively, in case of flash-annealed
ECAP21 at 600-675 �C (line D¢) (Fig. 7b). Hardness increases
due to ordering of nonequilibrium boundaries which ap-
proaches toward equilibrium but it decreases when flash
annealed at 700 �C due to coarsening of grains where Hall-
Petch constants Ho and K become 3468 MPa and
0.26 MPa m1/2, respectively, (line C¢).

Due to limited amount of processed material, the bulk
mechanical property like tensile testing could not be per-
formed on all materials. From the measured hardness value
and tensile test data reported elsewhere (Ref 33, 34), ratio of
hardness to yield strength is calculated in two regions—one in
deformed state and other well-annealed state. From these
ratios, yield strength is calculated using measured hardness
values for different flash-annealed IF steel [43]. The calcu-
lated yield strength values (Table 1) are plotted against grain
size�1/2 (Fig. 8a, b). Hardening and strengthening behaviors
are similar for each type of ECAPed and flash-annealed IF
steel samples.

Increase in strength after annealing is observed by many
authors (Ref 44-48). Hasnaoui et al. (Ref 44) have suggested by
molecular dynamic simulation that after processing, grain
boundaries of nano-crystalline materials are often in a nonequi-
librium state, and annealing results in grain boundaries and
triple-junction regions to approach toward equilibrium which
strengthens the material. Greer et al. have proposed that in
small crystals, the dislocations travel smaller distance to free
surface, thereby reducing the probability of dislocation multi-
plication processes (Ref 46). As a consequence dislocations
leave the small crystals before getting multiplied and disloca-
tion starvation region is created. After dislocation starvation
conditions very high stresses are required to nucleate new
dislocation and lead to increased strength (Ref 46). Hung et al.
have suggested that closely spaced high-angle boundaries act as
dislocation sinks to reduce the number of dislocation sources
during annealing and lead to increase in the yield stress to
activate new dislocation sources during straining (Ref 47).
Further rising flash annealing temperature for ECAP21 to
700 �C, the grain size increases to a large value (Fig. 4d, 6b)
leading to lowering of hardness.

4. Conclusions

The following conclusions can be drawn from the present
investigation:

1. Equal-channel angular pressing of IF steel followed by
flash annealing can be utilized to produce bimodal grain
size distribution in the ultrafine grain range even though
the mechanism of bimodal grain size distribution differs
for different equivalent strains. Flash annealing (at
675 �C) of IF steel samples ECAPed for evm = 3 and
evm = 21 results in abnormal subgrain growth and abnor-
mal grain growth/secondary recrystallization. Flash
annealing of lower equivalent strained sample at 700 �C
converts abnormally grown subgrains to grain which
serve as nuclei for recrystallization.

2. The recrystallization temperature of ultrafine-grained IF
steel decreases with the increase in equivalent strain.T
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3. The temperature of the abnormal grain growth in IF steel
increases with decrease in equivalent strain.

4. The hardness of severely deformed IF steel can be re-
tained by flash annealing up to 650 �C for short duration
of 300 s.

5. Flash annealing of IF steel samples ECAPed for high
evm, in the temperature range 600-675 �C, increases the
hardness continuously with increase in the annealing tem-
perature due to ordering of nonequilibrium boundaries to-
ward equilibrium.

6. Hardening and strengthening behavior are similar for
ECAPed IF steel.
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