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In this research, we have solved non-linear reaction-diffusion equation and non-linear Burger’s–Huxley 

equation with Atangana Baleanu Caputo derivative. We developed a numerical approximation for the ABC 

derivative of Legendre polynomial. A difference scheme is applied to deal with fractional differential term 

in the time direction of differential equation. We applied Legendre spectral method to deal with unknown 

function and spatial ABC derivatives. A formulation to deal with Dirichlet boundary condition is also in- 

cluded. After applying this spectral method our problem reduces to a system of fractional partial differ- 

ential equation. To solve this system we developed finite difference scheme by which our FPDEs system 

reduces to a system of algebraic equations. Taking the help of initial conditions we solve this algebraic 

system and find the value of unknowns, To demonstrate the effectiveness and validity of our proposed 

method some numerical examples are also presented. We compare our obtained numerical results with 

the analytical results. 
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. Introduction 

Fractional calculus is an ancient topic of mathematics with

istory as ordinary or integer calculus [1] . It is developing pro-

ressively now. Theory of fractional calculus is developed by N.

. Abel and J. Liouville. The details can be found in [2] . Fractional

alculus allows to generalize derivatives and integrals of integer

rder to real or variable order. It also can be considered as a

ranch of mathematical analysis that allows to investigate with

eal differential operators and equations where types of integral

re convolution or weakly singular. It has a widely applications in

ontrol theory, stochastic process and special functions. Fractional

alculus was considered as a esoteric theory without applications

ut in the last few years there has been a boost of research on its

pplications to economics, control system to finance. Many differ-

nt forms of fractional order differential operators were introduced

s the Hadamard, Caputo, Grunwald–Letnikov, Riemann–Liouville,

iesz and variable order operators. Due to its increasing applica-

ions, the researchers have paid their attention to find numerical

nd exact solutions of the fractional order differential equations.

s there are many difficulties to solve a fractional order differ-

ntial equation by analytic method so there is a need of seeking
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umerical solutions. There are many numerical methods available

n literature viz., eigen-vector expansion, Adomain decomposition

ethod [3] , fractional differential transform method [4] , homotopy

erturbation method [5,6] , homotopy perturbation transform

ethod [7] , predictor-corrector method [8] and generalized block

ulse operational matrix method [9] etc. Some numerical methods

ased upon operational matrices of fractional order differenti-

tion and integration with Legendre wavelets [10] , Chebyshev

avelets [11] , sine wavelets, Haar wavelets [12] have been de-

eloped to find the solutions of fractional order differential and

ntegro-differential equations. The functions which are commonly

sed include Legendre polynomial [13] , Laguerre polynomial [14] ,

hebyshev polynomial and semi-orthogonal polynomial as Genoc-

hi polynomial [15] . The series solution for the time-fractional

oupled mKdV equation using Homotopy analysis method is inves-

igated by Francisco Gómez [16] . An analytic method i.e, Laplace

omotopy analysis method for solving FPDEs having non-singular

ernel is given in [17,18] . The numerical solution of Fractional

unter–Saxton equation involving partial operators with bi-order

n Riemann–Liouville and Liouville–Caputo sense is investigated

n [19] . The Fengâs first integral method for the solution of non-

inear mKdV space-time fractional partial differential equation is

eveloped in article [20] . The modeling and simulations of real

ife problem is described by PDEs, integral and integro-differential

quations. These equations have a lot of applications such as

https://doi.org/10.1016/j.chaos.2019.109402
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heat conduction in materials with memory, population dynamics,

nuclear reactor dynamics, fluid dynamics, and compression of

viscoelastic media. In many fields like as thermo elasticity and

dynamics of nuclear reactor we have to depict the memory effect

of the systems. When we modeled these systems using PDE,

which included function at a given point of time and space, we

ignored the effect of history. Therefore to include the memory

effect of these systems an term of integration is added to this PDE.

Partial integro differential equations have a widely applications in

aerospace systems, chemical kinetics, biological models, control

theory of financial mathematics and industrial mathematics. Apart

of it many phenomena in physics like as viscoelastic mechanics,

fluid dynamics, control theory and thermoelastic. 

Reaction-diffusion process has been investigated from a long

time. In the process of reaction- diffusion, reacting molecules are

used to move through space due to diffusion. This definition ex-

cludes other modes of transports as convection, drift those may

arise due to presence of externally imposed fields. 

When a reaction occurs within an element of space, molecules

can be created or consumed. These events are added to the diffu-

sion equation and lead to reaction-diffusion equation of the form

∂c 

∂t 
= D ∇ 

2 c + R (c, t) , (1)

where R ( c, t ) denotes reaction term at time t . The extension of

the reaction-diffusion equation in fractional order system can be

found in the articles [21] . In nature many of the beautiful systems

in biology, physics,chemistry, and physiology can be described by

reaction diffusion equations. For example, the distribution and or-

ganization of vegetation-like bushes in arid ecosystems [22] , the

stripes and spots on fish [23] , snakes [24] and the skin or fur of

mammals [25] have been studied by the standing waves which

are produced by reaction-diffusion equations. Hodgkin and Hux-

ley [26] proposed a model, known henceforth as the Huxley equa-

tion, to explain the ionic mechanisms underlying the initiation and

propagation of action potentials in the squid giant axon. The most

general form of the Huxley equation, known as the generalized

BurgersHuxley equation. The generalized BurgersHuxley equation

describes a wide class of physical nonlinear phenomena such as

the interaction between reaction mechanisms, convection effects,

and diffusion transports. It is used in many fields such as biology,

chemistry, metallurgy,combustion, mathematics, and engineering. 

Many mathematical functions arising in social sciences, en-

gineering and natural sciences follow three mathematical laws

namely power function, exponential decay law and Mittag–Leffler

function. The fractional differentiation based upon these three

laws are known as Riemann–Liouville and Caputo, Caputo–Fabrizio

and Atangana–Baleanu derivative. A new fractional derivative with

combination of power law, exponential law and Mittag–Leffler ker-

nel is developed by Abdon Atangana and Francisco Gómez [27] .

Some researchers gives a novel fractional conformable derivative

of R-L type having order α = n − ε where ε is a small quantity.

These type of derivative is useful for the electrical circuits LC and

RL and for the equation that characterize the motion of charged

particle in electromagnetic field [28] . The normal distribution a

common continuous probability distribution is highly used in so-

cial sciences and natural science to portray real-valued random

variables [29] . The application of fractional operator having non

index law to statistics and dynamical systems is shown in article

[30] taking 4 examples of 3-D novel chaotic system, King cobra

chaotic system, lkeda delay system and chameleon system. Hyper

chaotic behavior obtained via a nonlocal operator with exponential

decay and Mittag–Leffler laws is given in article [31] . 

Our article is outlined as follows. In Section 2 , we discussed

about Caputo, RL and ABC fractional derivative and presented some

properties of these derivatives. In Section 3 , we develop a approx-
mation formula of ABC derivative of the function x k . It also con-

inues definition and properties of Legendre polynomial with ap-

roximation of arbitrary function which has been written in linear

ombination of these Legendre polynomial.In Section 4 , a spectral

ethod to find out the numerical solution of Burger–Huxley equa-

ion and reaction-diffusion equation with combination of finite dif-

erence scheme is given. In Section 5 , some numerical examples

nd results are presents. The last section includes the conclusion

f all over work. 

. Preliminaries 

Here, few definitions and important properties of fractional cal-

ulus have been introduced. It is well known that the Riemann–

iouville definition has disadvantages when it comes for modeling

f real world problems. But definition of fractional differentiation

iven by M. Caputo is more reliable for application point of view.

owadays new general type of fractional operators have been dis-

overed. A brief description of ABC derivative is discussed here. 

.1. Definition of R-L order derivative and integration 

Fractional order integration of Riemann–Liouville type of a

iven order ϑ of a function h ( t ) is given by [32] 

 

ϑ h (t) = 

1 

�(ϑ) 

∫ t 

0 

(t − ω) ϑ−1 h (ω) dω, t > 0 , ϑ ∈ R 

+ . (2)

ractional order derivative of the Riemann–Liouville type of order

> 0 can be defined as 

 

ϑ 
l h (t) = 

(
d 

dt 

)m 

(I m −ϑ h )(t) , (ϑ > 0 , m − 1 < ϑ < m ) . (3)

.2. Definition of Caputo derivative 

Fractional derivative of order ϑ> 0 in Caputo sense can be de-

ned as 

 

ϑ 
c h (t) = 

{ 

d l h (t) 
dt l 

ϑ = l ∈ N 

1 
�(l−ϑ) 

∫ t 
0 (t − η) l−ϑ−1 h 

l (η) dη l − 1 < ϑ < l. 
(4)

ere, l is an integer, t > 0. 

Basic properties of Caputo fractional derivative are: 

 

ϑ 
c C = 0 , (5)

here C is a constant. 

 

ϑ 
c t 

σ = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

0 , σ ∈ N ∪ 0 and σ < � ϑ� 
� (1 + σ ) 

�(1 − ϑ + σ ) 
t −ϑ+ σ σ ∈ N ∪ 0 and σ ≥ � ϑ� 

or σ / ∈ N and σ > 	 ϑ 
 , 
(6)

here 	 ϑ
 is floor function. 

The operator D 

ϑ 
c is linear, since 

 

ϑ 
c (ah (t) + bg(t)) = aD 

ϑ 
c h (t) + bD 

ϑ 
c g(t) , (7)

here a and b are constants. Caputo operator and Riemann–

iouville operator have a relation: 

(I ϑ D 

ϑ 
c g)(t) = g(t) −

l−1 ∑ 

k =0 

g k (0 

+ ) 
t k 

k ! 
, l − 1 < ϑ ≤ l. (8)

.3. Definition of ABC derivative [33–35] 

Let g ( t ) be a function which belongs to Sobolev space H 

1 (0, 1)

hen Atangana–Baleanu Caputo derivative in Caputo sense of order

is defined by 

ABC 
0 D 

ϑ 
t g(t) = 

B (ϑ) 

� ϑ� − ϑ 

∫ t 

0 

∂ n +1 g( s ) 

∂s n +1 
× E ϑ 

[
−ϑ 

� ϑ� − ϑ 

(t − s ) ϑ 
]

ds, 

n < ϑ ≤ n + 1 , (9)



S. Kumar and P. Pandey / Chaos, Solitons and Fractals 130 (2020) 109402 3 

w  

a

E

3

T  

T

n

A
0

 

 

P

A
0  

=

=

A

ψ  

A  

L

u  

T

b  

 

w

0  

T  

(

A
0

w

Π

P  

E

A
0  

I

A
0  

N

A
0

N  

g

4

 

s  

d  

e

0

w  

b

u  

a

0  

w  

d

u  

T  

s  

w

u  

S

∑

 

 

 

here B ( ϑ) is a normalization function such that B (0) = B (1) = 1

nd E ϑ( z ) is Mittag–Leffler function defined as 

 ϑ (z) = 

∞ ∑ 

i =0 

z i 

�(iϑ + 1) 
. 

. Approximation of ABC derivative 

heorem 1. If φ( x ) ∈ H 

1 ( a, b ) is a function such that φ(x ) = x γ .

hen the approximation of ABC derivative w.r.t x of order n < ϑ ≤
 + 1 of this function can be defined as follows: 

BC 
 

D 

ϑ 
x x 

γ

= 

B (ϑ)�(γ + 1) 

� ϑ� − ϑ 

( 

γ −n −1 ∑ 

j=0 

x γ + jϑ−n 

�(γ + jϑ − n + 1) 
×

(
−ϑ 

� ϑ� − ϑ 

) j 
) 

.

(10)

roof: Using the definition (9) of ABC derivative we have 

BC 
 

D 

ϑ 
x x 

γ = 

B (ϑ) 

� ϑ� − ϑ 

∫ x 

0 

∂ n +1 

∂s n +1 
s γ × E ϑ 

[
−ϑ 

� ϑ� − ϑ 

(x − s ) ϑ 
]

ds (11)

 

B (ϑ) 

� ϑ� − ϑ 

∫ x 

0 

�(γ + 1) s γ −n −1 

�(γ − n ) 
× (x − s ) jϑ 

�(ϑ j + 1) 

(
−ϑ 

� ϑ� − ϑ 

) j 

ds 

(12) 

 

B (ϑ)�(γ + 1) 

� ϑ� − ϑ 

γ −n −1 ∑ 

j=0 

x γ + jϑ−n 

�(γ + jϑ − n + 1) 

(
−ϑ 

� ϑ� − ϑ 

) j 

. (13) 

 series form of Legendre polynomial is defined as follows 

 j (x ) = 

j ∑ 

k =0 

(−1) j+ k 
( j + k )! 

( j − k )!(k !) 2 
x k . (14)

ny function u ( x ) ∈ L 2 [0, 1] can be written as linear combination of

egendre polynomials as 

 (x ) = 

m ∑ 

i =0 

b i ψ i (x ) . (15)

he coefficients b i can be determined as follows 

 i = (2 i + 1) 

∫ 1 

0 

u (x ) ψ i (x ) dx. (16)

The lth order integer derivative of ψ i ( x ) with respect to x is as

ritten as follows: 

 

D 

l 
x ψ i (x ) = 

i ∑ 

j=0 

(−1) i + j (i + j )! j ( j − 1) . · · · ( j − l + 1) 

(i − j )!( j !) 2 
x j−l . (17)

heorem 2. The approximation of ABC 
0 

D 

ϑ 
x u (x ) with the help of Eq.

15) is defined as 

BC 
 

D 

ϑ 
x u (x ) = 

m ∑ 

i = � ϑ� 

i ∑ 

j= � ϑ� 
b i 

(−1) i + j (i + j)! 

(i − j )!( j !) 2 
B (ϑ)�( j + 1) 

� ϑ� − ϑ 

Πi, j,ϑ (x ) , 

(18) 

here, 

i, j,ϑ (x ) = 

j−n −1 ∑ 

s =0 

x j+ sϑ−n 

�( j + sϑ − n + 1) 

(
−ϑ 

� ϑ� − ϑ 

)s 

. (19) 
roof: Operating ABC derivative of order ϑ w.r.t x on the both side of

q. (15) and using the linear property of ABC derivative we get 

BC 
 

D 

ϑ 
x u (x ) = 

m ∑ 

i =0 

b i × ABC 
0 D x (ψ i (x )) . (20)

n the contrast of Theorem 1 we have 

BC 
 

D x (ψ i (x )) = 0 , i = 0 , 1 , . . . , � ϑ� − 1 . (21)

ow for i = � ϑ� . . . , m we obtain 

BC 
 

D x (ψ i (x )) = 

i ∑ 

j= � ϑ� 

(−1) i + j (i + j)! 

(i − j )!( j !) 2 
× B (ϑ)�( j + 1) 

� ϑ� − ϑ 

×
j−n −1 ∑ 

s =0 

x j+ sϑ−n 

�( j + sϑ − n + 1) 

(
−ϑ 

� ϑ� − ϑ 

)s 

. (22) 

ow putting this value in Eq. (20) and considering the Eq. (21) we

et the desired result. 

. Procedure for the solution of the problem 

In this section we investigate the non-linear time and

pace fractional generalized Burger–Huxley equation involving ABC

erivative and space-time fractional non-linear reaction-diffusion

quation. 

Considering the following equation 

 

D 

α
t u (x, t) = 

ABC 
0 D 

ϑ 
x u (x, t) − au 

δ(x, t) 
∂u (x, t) 

∂x 

+ bu (x, t)(1 − u 

δ(x, t))(u 

δ − η) , (23) 

here a, b, δ ≥ 0, 0 < α ≤ 1 and 1 < ϑ≤ 2 along with initial and

oundary conditions 

 (x, 0) = f 1 (x ) , u (0 , t) = g 1 (t) , u (1 , t) = g 2 (t) , (24)

nd following reaction-diffusion equation 

 

D 

α
t u (x, t) = 

ABC 
0 D 

ϑ 
x u (x, t) − du (x, t)(1 − u (x, t)) + f (x, t) , (25)

here 0 < α ≤ 1 and 1 < ϑ≤ 2 along with initial and boundary con-

itions 

 (x, 0) = f 1 (x ) , u (0 , t) = g 1 (t) , u (1 , t) = g 2 (t) . (26)

o find numerical solution of above two model we use Legendre

pectral method with combination of finite difference method. First

e take an approximation of u ( x, t ) as follows 

 (x, t) = u m 

(x, t) = 

m ∑ 

i =0 

u i (t) ψ i (x ) . (27)

ubstituting the value of u ( x, t ) in Eq. (23) we obtain 

m 

 

i =0 

∂ αu i (t) 

∂t α
ψ i (x ) = 

m ∑ 

i =0 

ABC 
0 D 

ϑ 
x ψ i (x ) u i (t) 

−a 

( 

m ∑ 

i =0 

u i (t) ψ i (x ) 

) δ
m ∑ 

i =0 

∂ψ i (x ) 

∂x 
u i (t) 

+ b 

( 

m ∑ 

i =0 

u i (t) ψ i (x ) 

) 

⎛ 

⎝ 1 −
( 

m ∑ 

i =0 

u i (t) ψ i (x ) 

) δ
⎞
⎠

×

⎛ 

⎝ 

( 

m ∑ 

i =0 

u i (t) ψ i (x ) 

) δ

− η

⎞ 

⎠ . (28)
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Now using the Theorem 2 we can rewrite the above equation as

follows 

m ∑ 

i =0 

∂ αu i (t) 

∂t α
ψ i (x ) = 

m ∑ 

i = � ϑ� 

i ∑ 

j= � ϑ� 

× (−1) i + j (i + j)! 

(i − j )!( j !) 2 
B (ϑ)�( j + 1) 

� ϑ� − ϑ 

Πi, j,ϑ (x ) u i (t) 

−a 

( 

m ∑ 

i =0 

u i (t) ψ i (x ) 

) δ
m ∑ 

i =0 

i ∑ 

j=0 

(−1) i + j (i + j)! x j−1 

(i − j )! j !( j − 1)! 
u i (t) 

+ b 

( 

m ∑ 

i =0 

u i (t) ψ i (x ) 

) 

⎛ 

⎝ 1 −
( 

m ∑ 

i =0 

u i (t) ψ i (x ) 

) δ
⎞ 

⎠ 

×

⎛ 

⎝ 

( 

m ∑ 

i =0 

u i (t) ψ i (x ) 

) δ

− η

⎞ 

⎠ . (29)

We collocate Eq. (31) at m + 1 − � ϑ� points x = x r with r =
0 , 1 , . . . , m − � ϑ� . So that we obtained a first order system of frac-

tional ODEs: 

m ∑ 

i =0 

∂ αu i (t) 

∂t α
ψ i (x r ) = 

m ∑ 

i = � ϑ� 

i ∑ 

j= � ϑ� 
(30)

× (−1) i + j (i + j)! 

(i − j )!( j !) 2 
B (ϑ)�( j + 1) 

� ϑ� − ϑ 

Πi, j,ϑ (x r ) u i (t) 

−a 

( 

m ∑ 

i =0 

u i (t) ψ i (x r ) 

) δ
m ∑ 

i =0 

i ∑ 

j=0 

(−1) i + j (i + j)!(x r ) j−1 

(i − j )! j !( j − 1)! 
u i (t) 

+ b 

( 

m ∑ 

i =0 

u i (t) ψ i (x r ) 

) 

⎛ 

⎝ 1 −
( 

m ∑ 

i =0 

u i (t) ψ i (x r ) 

) δ
⎞ 

⎠ 

×

⎛ 

⎝ 

( 

m ∑ 

i =0 

u i (t) ψ i (x r ) 

) δ

− η

⎞ 

⎠ . (30)

In view of Eq. (27) boundary conditions (24) can be written as 

m ∑ 

i =0 

ψ i (0) u i (t) = g 1 (t) , 

m ∑ 

i =0 

ψ i (1) u i (t) = g 2 (t) . (31)

Now to solve the system of FPDEs (30) and (31) we apply the fi-

nite difference scheme and will find out the unknowns u i ( t ) for

i = 0 , 1 , . . . , m. So first we discretized the time fractional deriva-

tive. Let the time interval is divided into N parts and t n = n �t,

n = 0 , 1 , . . . , N. The value of u i ( t ) at point t = t n is denoted by u n
i 

and using the definition of Caputo’s definition (4) we have 

∂ αu i (t n ) 

∂t α
= 

1 

�(1 − α) 

∫ t n 

0 

(t n − s ) −α ∂u i 

∂s 
ds 

= 

1 

�(1 − α) 

n −1 ∑ 

j=0 

u 

j+1 
i 

− u 

j 
i 

�t 

∫ t j+1 

t j 

(t n − s ) −αds 

= 

1 

�(2 − α) 

n −1 ∑ 

j=0 

u 

j+1 
i 

− u 

j 
i 

�t 

[
(t n − t j ) 

1 −α − (t n − t j+1 ) 
1 −α

]
(32)
onsidering the system of FPDEs (30) and (31) at point t = t n and

sing Eq. (32) we get a set of non-linear algebraic equations 

1 

�(2 − α) 

m ∑ 

i =0 

n −1 ∑ 

j=0 

u 

j+1 
i 

− u 

j 
i 

�t 

[
(t n − t j ) 

1 −α − (t n − t j+1 ) 
1 −α

]
ψ i (x r ) 

= 

m ∑ 

i = � ϑ� 

i ∑ 

j= � ϑ� 

(−1) i + j (i + j)! 

(i − j )!( j !) 2 
B (ϑ)�( j + 1) 

� ϑ� − ϑ 

Πi, j,ϑ (x r ) u 

n 
i 

−a 

( 

m ∑ 

i =0 

u 

n 
i ψ i (x r ) 

) δ
m ∑ 

i =0 

i ∑ 

j=0 

(−1) i + j (i + j)!(x r ) j−1 

(i − j )! j !( j − 1)! 
u 

n 
i 

+ b 

( 

m ∑ 

i =0 

u 

n 
i ψ i (x r ) 

) 

⎛ 

⎝ 1 −
( 

m ∑ 

i =0 

u 

n 
i ψ i (x r ) 

) δ
⎞ 

⎠ 

×

⎛ 

⎝ 

( 

m ∑ 

i =0 

u 

n 
i ψ i (x r ) 

) δ

− η

⎞ 

⎠ , (33)

nd by the boundary conditions 

m ∑ 

i =0 

ψ i (0) u 

n 
i = g 1 (t n ) , 

m ∑ 

i =0 

ψ i (1) u 

n 
i = g 2 (t n ) . (34)

ow to find the initial approximation, we will take the help of ini-

ial condition as follows 

m 

 

i =0 

u 

0 
i ψ i (x r ) = f 1 (x r ) . (35)

ollocating this equation at collocation points x r with r =
 , 1 , . . . , m + 1 − � ϑ� we get a system of algebraic equations. By

olving this system we get the value of initial approximation and

sing this initial approximation in FPDEs (33) –(34) we can find the

alue of unknowns u i ( t ). In a similar way we can find the solution

f reaction-diffusion Eq. (25) under initial and boundary conditions

26) . 

. Results and discussion 

In this section our aim is to show validity and effectiveness of

ur proposed method. All numerical computations are done with

olfram Mathematica version-11.3. 

xample 1. Considering a = 0 , α = 1 , η = 0 . 5 , and b = 1 , we get

he following time-space fractional Fisher’s equation with ABC

erivative 

 

D t u (t, x ) = 

ABC 
0 D 

1 . 5 
x u (t, x ) + u (t, x )(1 − u (t, x ))(u − η) , (36)

ith the aid of following initial and boundary conditions 

 (x, 0) = 

1 

2 

(1 + η) + 

1 

2 

(1 − η) tanh 

( √ 

1 

8 

(1 − η) x 

) 

, 

u (0 , t) = 

1 

2 

(1 + η) + 

1 

2 

(1 − η) tanh 

(
1 

4 

(1 − η2 ) t 
)
, 

u (1 , t) = 

1 

2 

(1 + η) + 

1 

2 

(1 − η) tanh 

( √ 

1 

8 

(1 − η) + 

1 

4 

(1 − η2 ) t 

) 

. 

(37)

he exact analytical solution of above problem is u (x, t) = 

1 
2 (1 +

) + 

1 
2 (1 − η) tanh ( 

√ 

1 
8 (1 − η) x + 

1 
4 (1 − η2 ) t) . 
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Fig. 1. Plots of u ( x, t ) for m = 4 and �t = 0 . 0 0 01 in case of numerical and exact 

solution. 

 

0  

e  

p  

E  

s  

o

E  

t

0  , 

w

u

g  

s

 

0  

i  

r

E  

ϑ

0

T

u  

Fig. 2. Plots of u ( x, t ) for m = 4 and �t = 0 . 0 0 01 in case of numerical and exact 

solution. 

Fig. 3. Plots of u ( x, t ) for m = 4 and �t = 0 . 0 0 01 in case of numerical and exact 

solution. 
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We plot the graph of exact and numerical solution with η =
 . 5 , m = 4 , �t = 0 . 0 0 01 which is depict by Fig. 1 . The absolute

rror between exact and numerical results for various x and �t is

resented by Table 1 . The absolute error obtained in article [36] for

xample 1 is of range (0 , 10 −3 ) , while from Table 1 we can easily

ee that our error range is (0 , 10 −9 ) . It demonstrate the superiority

f our method. 

xample 2. If we consider a = 0 , α = 0 . 9 , ϑ = 1 . 5 and b = 1 so

hat our model (23) is reduced to 

 

D 

0 . 9 
t u (t, x ) = 

ABC 
0 D 

1 . 5 
x u (t, x ) + u (t, x )(1 − u (t, x ))(u − η) + f (x, t)

(38) 

hich under the prescribed initial and boundary conditions 

 (0 , x ) = 0 , 

u (t, 0) = 0 , 

u (t, 1) = t, (39) 

ives the exact solution of above the problem is u (x, t) = x 2 t with

uitable force function f ( x, t ). 

The graph of numerical and exact solution with m = 4 , �t =
 . 0 0 01 is depict by Fig. 2 . The absolute error for various x and �t

s presented by Table 2 , which clearly predict that our numerical

esults are in complete agreement with the existing results. 

xample 3. Consider the following equation with a = 1 , α = 0 . 9 ,

 = 1 . 5 , b = 1 , δ = 1 and η = 0 . 5 

 

D 

0 . 9 
t u (t, x ) = 

ABC 
0 D 

1 . 5 
x u (t, x ) − u (x, t) 

∂u 

∂x 

+ u (t, x )(1 − u (t, x ))(u − η) + f (x, t) . (40) 

he Eq. (40) with initial and boundary conditions 

 (x, 0) = (1 − x ) 2 x 2 , u (0 , t) = 0 , u (1 , t) = 0 , (41)
Table 1 

Variations of absolute error for differ- 

ent value of x at �t = 0 . 0 0 01 and �t = 

0 . 0 0 0 01 . 

x ↓ �t = 0 . 0 0 01 �t = 0 . 0 0 0 01 

1 
10 

3 . 1 × 10 −7 3 . 0 × 10 −9 

3 
10 

6 . 7 × 10 −7 6 . 6 × 10 −9 

5 
10 

1 . 0 × 10 −6 1 . 0 × 10 −8 

7 
10 

1 . 2 × 10 −6 1 . 2 × 10 −8 

9 
10 

1 . 1 × 10 −6 1 . 1 × 10 −8 

g

ives the exact solution u (x, t) = (1 − x ) 2 x 2 e t with suitable force

unction f ( x, t ). 

We plot the graph of exact and numerical solution with m =
 , �t = 0 . 0 0 01 which is depicted by Fig. 3 . The absolute error for

arious x and �t is presented in Table 3 which clearly predict that

ur numerical results are in complete agreement with the existing

esults. 

xample 4. Considering the following reaction-diffusion equation

 particular case of model (25) 

 

D 

0 . 5 
t u (t, x ) = 

ABC 
0 D 

1 . 5 
x u (t, x ) + u (t, x )(1 − u (t, x )) + f (x, t) , (42)

he Eq. (42) with initial and boundary conditions 

 (x, 0) = 0 , 

u (0 , t) = 0 , 

u (1 , t) = t sin 1 , (43) 

ives the exact solution u (x, t) = t sin (x ) . 
Table 2 

Variations of absolute error for differ- 

ent value of x at �t = 0 . 0 0 01 and �t = 

0 . 0 0 0 01 . 

x ↓ �t = 0 . 0 0 01 �t = 0 . 0 0 0 01 

1 
10 

4 . 1 × 10 −7 6 . 6 × 10 −11 

3 
10 

9 . 4 × 10 −7 1 . 5 × 10 −10 

5 
10 

1 . 3 × 10 −6 2 . 1 × 10 −10 

7 
10 

1 . 4 × 10 −6 2 . 3 × 10 −10 

9 
10 

1 . 24 × 10 −6 1 . 9 × 10 −10 
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Fig. 4. Plots of u ( x, t ) for m = 4 and �t = 0 . 0 0 01 in case of numerical and exact 

solution. 

Table 3 

Variations of absolute error for differ- 

ent value of x at �t = 0 . 0 0 01 and �t = 

0 . 0 0 0 01 . 

x ↓ �t = 0 . 0 0 01 �t = 0 . 0 0 0 01 

1 
10 

3 . 9 × 10 −4 6 . 3 × 10 −6 

3 
10 

4 × 10 −4 6 . 5 × 10 −6 

5 
10 

1 . 6 × 10 −3 2 . 5 × 10 −5 

7 
10 

2 . 1 × 10 −3 3 . 1 × 10 −5 

9 
10 

1 . 4 × 10 −3 2 . 2 × 10 −5 

Table 4 

Variations of absolute error for differ- 

ent value of x at �t = 0 . 0 0 01 and �t = 

0 . 0 0 0 01 . 

x ↓ �t = 0 . 0 0 01 �t = 0 . 0 0 0 01 

1 
10 

6 . 1 × 10 −7 5 . 1 × 10 −10 

3 
10 

1 . 4 × 10 −6 1 . 8 × 10 −9 

5 
10 

4 . 5 × 10 −6 3 . 1 × 10 −9 

7 
10 

8 . 5 × 10 −6 8 . 9 × 10 −9 

9 
10 

6 . 7 × 10 −6 4 . 9 × 10 −9 
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The graph of numerical and exact solution for m = 4 , �t =
0 . 0 0 01 is shown in Fig. 4 and the absolute error is shown in

Table 4 . The results clearly predict that our numerical results are

in complete agreement with the existing results. 

6. Conclusion 

In this presented article, we have developed a approximation

formula for the ABC derivative of Legendre polynomial. Here we

solved non-linear Burger’s–Huxley equation and reaction-diffusion

equation having spatial ABC derivative with Caputo time fractional

derivative. First we apply Legendre spectral method to the mod-

els. And we presented a finite difference scheme to solve obtained

system of FPDEs from the model. The graph of numerical and ex-

act solution shows the effectiveness of our numerical method. The

accuracy of our method can be easily shown by the errors Tables.

The error Tables depicted that our numerical results are in excel-

lent agreement with the exact ones. 
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