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a b s t r a c t 

In this presented paper, we investigate the novel numerical scheme for the non-linear reaction-diffusion 

equation and non-linear integro reaction-diffusion equation equipped with Atangana Baleanu derivative 

in Caputo sense (ABC). A difference scheme with the help of Taylor series is applied to deal with frac- 

tional differential term in the time direction of differential equation. We applied a numerical method 

based on quasi wavelet for discretization of unknown function and their spatial derivatives. A formu- 

lation to deal with Dirichlet boundary condition is also included. To demonstrate the effectiveness and 

validity of our proposed method some numerical examples are also presented. We compare our obtained 

numerical results with the analytical results and we conclude that quasi wavelet method achieve accurate 

results and this method has a distinctive local property. On the other hand the method is easy to apply 

on higher order fractional partial differential equation and integro differential equation. 
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. Introduction 

Fractional calculus is an ancient topic of mathematics with

istory as ordinary or integer calculus [1] . It is developing pro-

ressively now. Theory of fractional calculus is developed by N.

. Abel and J. Liouville. The details can be found in [2] . Fractional

alculus allows to generalize derivatives and integrals of integer

rder to real or variable order. It also can be considered as a

ranch of mathematical analysis that allows to investigate with

eal differential operators and equations where types of integral

re convolution or weakly singular. It has a widely applications in

ontrol theory, stochastic process and special functions. Fractional

alculus was considered as a esoteric theory without applications

ut in the last few years there has been a boost of research on its

pplications to economics, control system to finance. Many differ-

nt forms of fractional order differential operators were introduced

s the Hadamard, Caputo, Grunwald-Letnikov, Riemann-Liouville,

iesz and variable order operators. Due to its increasing applica-

ions, the researchers have paid their attention to find numerical

nd exact solutions of the fractional order differential equations.

s there are many difficulties to solve a fractional order differ-

ntial equation by analytic method so there is a need of seeking

umerical solutions. There are many numerical methods available
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n literature viz., eigen-vector expansion, Adomain decomposition

ethod [3] , fractional differential transform method [4] , homo-

opy perturbation method [5] , predictor-corrector method [6] and

eneralized block pulse operational matrix method [7] etc. Some

umerical methods based upon operational matrices of fractional

rder differentiation and integration with Legendre wavelets [8] ,

hebyshev wavelets [9] , sine wavelets, Haar wavelets [10] have

een developed to find the solutions of fractional order differential

nd integro-differential equations. The functions which are com-

only used include Legendre polynomial [11] , Laguerre polynomial

12] , Chebyshev polynomial and semi-orthogonal polynomial as

enocchi polynomial [13] . The modeling and simulations of real

ife problem is described by PDEs, integral and integro-differential

quations. These equations have a lot of applications such as

eat conduction in materials with memory, population dynamics,

uclear reactor dynamics, fluid dynamics, and compression of

iscoelastic media. In many fields like as thermo elasticity and

ynamics of nuclear reactor we have to depict the memory effect

f the systems. When we modeled these systems using PDE,

hich included function at a given point of time and space, we

gnored the effect of history. Therefore to include the memory

ffect of these systems an term of integration is added to this PDE.

artial integro differential equations have a widely applications in

erospace systems, chemical kinetics, biological models, control

heory of financial mathematics and industrial mathematics. Apart
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http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2019.109456&domain=pdf
mailto:sachinraghav522@gmail.com
https://doi.org/10.1016/j.chaos.2019.109456


2 S. Kumar and P. Pandey / Chaos, Solitons and Fractals 130 (2020) 109456 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a  

[

 

 

 

 

 

 

 

f  

i  

w  

t  

e  

r  

i  

t

 

a  

a  

w  

v  

r  

b  

s  

t

2

 

c  

L  

o  

g  

N  

c  

i

2

 

o

I  

F  

ϑ

D  

2

 

fi

D  

H

of it many phenomena in physics like as viscoelastic mechanics,

fluid dynamics, control theory and thermoelastic. 

Reaction-diffusion process has been investigated from a long

time. In the process of reaction- diffusion, reacting molecules are

used to move through space due to diffusion. This definition ex-

cludes other modes of transports as convection, drift those may

arise due to presence of externally imposed fields. 

When a reaction occurs within an element of space, molecules

can be created or consumed. These events are added to the diffu-

sion equation and lead to reaction-diffusion equation of the form

∂c 

∂t 
= D ∇ 

2 c + R (c, t) , (1)

where R ( c, t ) denotes reaction term at time t . The extension of the

reaction-diffusion equation in fractional order system can be found

in the articles [14] . In nature many of the beautiful systems in bi-

ology, physics,chemistry, and physiology can be described by reac-

tion diffusion equations. For example, the distribution and organi-

zation of vegetation-like bushes in arid ecosystems [15] , the stripes

and spots on fish [16] , snakes [17] and the skin or fur of mammals

[18] have been studied by the standing waves which are produced

by reaction-diffusion equations. Now we will discussed the moti-

vation behind using ABC derivative. We know that interchange of

operators is an important concept of mathematical analysis aris-

ing in physics, biology and engineering. Considering two operators

P and Q such that P Q = QP, then we say both of operators com-

mute. But this expression is always specially in physics, statistics

and mathematics. Some examples of operator which follows non-

commutative property are as follows: 

• In quantum mechanics, linear operators like y and 

d 
dy 

does

not commute on wave function ψ( y ) in the formulation of

Schrodinger equation. 
• Lie bracket of a Lie algebra. 
• Lie bracket of Lie ring. 
• Division operator as 1 

2 � = 

2 
1 . 

• Matrix product. 

The general fractional derivatives in R-L and Caputo sense can

be defined as follows 

RL 
0 D 

ϑ 
t g(t) = 

d 

dt 

∫ t 

0 

κ(t − x ) g(x ) d x = 

d 

d t 
κ ∗ g, 

C 
0 D 

ϑ 
t g(t) = 

∫ t 

0 

κ(t − x ) 
d 

dx 
g(x ) dx = κ ∗ d 

dt 
g. 

We have two types of kernel κ(t − x ) = 

1 
�(1 −α) 

(t − x ) −α and κ(t −
x ) = 

M(α) 
(1 −α) 

E α( −α
1 −α (t − x ) −α) . First type of kernel generates frac-

tional derivative with power kernel law and second type gener-

ates derivative with generalized Mittag-Leffler law with Dirac-Delta

properties known as A-B derivative [19] . The power law kernel

corresponds to the Pareto distribution describing the wealth in

society and fitting the shape of a large portion of wealth for a

small portion of the population. The ABC kernel corresponds to

the Mittag-Leffler distribution. The wider applicability and prop-

erties of this kernel to be known in Pareto and Poisson statistics.

If we apply ABC fractional derivative to chaotic problems it pro-

vides a infinite expectation. Since AB fractional derivative are non-

commutative, they are able to model the dynamical system tak-

ing place in the space of Penrose tilling which has several remark-

able properties including its non-periodicity. It is able to describe

the fractal model in the space of irreducible unitary representation

of a discrete group and the model in the space of leaves of foli-

ation. This derivative can be used as a powerful tool for handling

the brillouin zone in quantum hall effect and phase space in quan-

tum mechanics. This is useful to the situation when distribution of
 waiting time does not depend on elapsed time in a certain event

20] . Some properties of AB derivative are 

1. The A-B distribution is a Gaussian to non-Gaussian crossover. 

2. The A-B fraction derivative mean square displacement is a usual

to sub-diffusion crossover. 

3. The asymptotic behavior of A-B match the power law behav-

ior and relate the old ides of fading memory with non-singular

kernels [21] . 

4. The A-B derivative is stochastic as it is comparable to the Brow-

nian motion. 

5. The asymptotic behavior of A-B match the power law behav-

ior and relate the old idea of fading memory with non-singular

kernels. 

The C-F fractional operator attract the interest of researchers in

ew last decades. The applications of this derivatives can be found

n flow of complex rheological media, Keller Segel equation, ground

ater flow mass-spring damped system electric circuit and elas-

icity [22] . The application of non-singular kernel to the Burger’s

quation is presented in article [23] . The series form of newly de-

ived fractional operator involving Mittag-Leffler operator is given

n [24] .The application of these non-singular kernel to optimal con-

rol of tumor-immune surveillance is discussed in the article [25] . 

Our article is outlined as follows. In Section 1 , we discussed

bout Caputo, RL and ABC fractional derivative and presented

 short introduction to the numerical method based on quasi

avelet and fractional calculus in Section 2 . In Section 3 , we de-

elop a detailed difference numerical algorithm based on Taylor se-

ies expansion to discretize the time derivative and quasi wavelet

ased algorithm for spatial-temporal discretization. In Section 4 ,

ome numerical examples and results are presents. The last sec-

ion includes the conclusion of all over work. 

. Preliminaries 

Here, few definitions and important properties of fractional cal-

ulus have been introduced. It is well known that the Riemann-

iouville definition has disadvantages when it comes for modeling

f real world problems. But definition of fractional differentiation

iven by M. Caputo is more reliable for application point of view.

owadays new general type of fractional operators have been dis-

overed. A brief description of Caputo-Fabrizio and ABC derivative

s discussed here. 

.1. Definition of R-L order derivative and integration 

Fractional order integration of Riemann-Liouville type of a given

rder ϑ of a function h ( t ) is given by [26] 

 

ϑ h (t) = 

1 

�(ϑ) 

∫ t 

0 

(t − ω) ϑ−1 h (ω) dω, t > 0 , ϑ ∈ R 

+ . (2)

ractional order derivative of the Riemann-Liouville type of order

> 0 can be defined as 

 

ϑ 
l h (t) = 

(
d 

dt 

)
m (I m −ϑ h )(t) , (ϑ > 0 , m − 1 < ϑ < m ) . (3)

.2. Definition of Caputo derivative 

Fractional derivative of order ϑ> 0 in Caputo sense can be de-

ned as 

 

ϑ 
c h (t) = 

{
d l h (t) 

dt l 
ϑ = l ∈ N 

1 
�(ϑ) 

∫ t 
0 (t − η) l−ϑ−1 h 

l (η) dη l − 1 < ϑ < l. 
(4)

ere, l is an integer, t > 0. 
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Basic properties of Caputo fractional derivative are: 

 

ϑ 
c C = 0 , (5)

here C is a constant. 

 

ϑ 
c t 

σ = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

0 , σ ∈ N ∪ 0 and σ < � ϑ� 
� (1 + σ ) 

�(1 − ϑ + σ ) 
t −ϑ+ σ σ ∈ N ∪ 0 and σ ≥ � ϑ� 

or σ / ∈ N and σ > 
 ϑ � , 
(6) 

here 
 ϑ� is floor function. 

The operator D 

ϑ 
c is linear, since 

 

ϑ 
c (ah (t) + bg(t)) = aD 

ϑ 
c h (t) + bD 

ϑ 
c g(t) , (7)

here a and b are constants. 

Caputo operator and Riemann-Liouville operator have a rela-

ion: 

(I ϑ D 

ϑ 
c g)(t) = g(t) −

l−1 ∑ 

k =0 

g k (0 

+ ) 
t k 

k ! 
, l − 1 < ϑ ≤ l. (8)

.3. Definition of Caputo-Fabrizio derivative 

Let g ( t ) be a function which belongs to Sobolev space H 

1 (0, 1)

hen Caputo-Fabrizio derivative in Caputo sense of order ϑ is de-

ned by 

F C 
 

D 

ϑ 
t g(t) = 

B (ϑ) 

n − ϑ 

∫ t 

0 

∂g(s ) 

∂s 
× exp 

[
−ϑ 

n − ϑ 

(t − s ) 

]
ds, 

n − 1 < ϑ ≤ n, (9) 

here B ( ϑ) is a normalization function such that B (0) = B (1) = 1 . 

.4. Definition of ABC derivative [27–29] 

Let g ( t ) be a function which belongs to Sobolev space H 

1 (0, 1)

hen Atangana–Baleanu Caputo derivative in Caputo sense of order

is defined by 

BC 
 

D 

ϑ 
t g(t) = 

B (ϑ) 

n − ϑ 

∫ t 

0 

∂g(s ) 

∂s 
× E ϑ 

[
−ϑ 

n − ϑ 

(t − s ) ϑ 
]

ds, 

n − 1 < ϑ ≤ n, (10) 

here B ( ϑ) is a normalization function such that B (0) = B (1) = 1

nd E ϑ( z ) is Mittag-Leffler function defined as 

 ϑ (z) = 

∞ ∑ 

i =0 

z i 

�(iϑ + 1) 
. 

.5. Introduction to the numerical method based on quasi-wavelets 

This Quasi-wavelet based algorithm has been emerging as a

ew local spectral collocation method for finding numerical solu-

ion of fractional PDEs and integro differential equation. Firstly, we

efine the discrete singular convolution which is a special math-

matical transformation having significant importance in science

nd engineering. A singular convolution is defined in the distribu-

ion theory as 

(v ) = (G ∗ h )(v ) = 

∫ ∞ 

−∞ 

G (v − x ) h (x ) dx, (11)

here G is a singular kernel and h ( x ) is a test function. A family of

avelets can be constructed from a single function called mother

avelet ϕ using operations of translation and dilation 

 β,γ (x ) = β
−1 
2 ϕ 

(
x − γ

β

)
. (12)

ere β is used in dilation and γ in translation. An arbitrary

avelet subspace is generated by the help of orthonormal wavelet
ases, which can be constructed by the corresponding orthonor-

al scaling functions. In this work, we shall used Shannon’s delta

equence kernel which has the following form 

α(t) = 

1 

π

∫ π

0 

cos (ty ) dy = 

sin (αt) 

πt 
, (13)

here lim α→ α0 
δα(t) = δ(t) . Dirac first discussed about δ in his

ext on quantum mechanics, so we called δ as Dirac delta function.

alter and Blum [30] gave the numerical use of delta sequences

s probability density estimators. Specially when α = π, δπ (t) is

nown as Shannon’s wavelet scaling function. For a given α > 0,

hannon’s delta sequence kernel generates a basis for the Paley-

iener reproducing kernel Hilbert space B 

2 
α[31] that is a subspace

f L 2 (R ) . A function g(y ) ∈ B 

2 
α can be uniquely reproduced by 

(y ) = 

∫ ∞ 

−∞ 

g(y ) δα(y − t) dt = 

∫ ∞ 

−∞ 

g(y ) 
sin (α(y − t)) 

π( y − t) 
dt, ∀ g ∈ B 

2 
α

(14) 

owever, an another form of this sampling scaling function in the

aley-Wiener reproducing kernel, 

α,k = δα(x − x k ) = 

sin ((x − x k ) α) 

(x − x k ) π
, (15)

ere { x k } is considered as a set of sampling points centered around

. Using Eqs. (11) and (12) every function ∀ g ∈ B 

2 
α can be repre-

ented in discrete form 

(y ) = 

∞ ∑ 

k = −∞ 

g(y k ) δα(y − y k ) . (16)

he Shannnon sampling theorem states that the uniformly spatial

iscrete samples for a given bandlimited signal in B 2 α can shown it

f we sample at the Nyquist frequency α. Here α = 

π
� and � is the

rid size in the spatial direction. Now we have 

(y ) = 

∞ ∑ 

k = −∞ 

f (y k ) δα(y − y k ) = 

∞ ∑ 

k = −∞ 

g(y k ) 
sin ( π(y −y k ) 

� ) 
π(y −y k ) 

�

(17)

an proposed a method improve the localized asymptotic behav-

or of Dirichlet’s delta sequence kernel. By introducing a regularizer

 σ ( y ) we increases its regularity such as 

α(y ) → δα,σ = δα(y ) R σ (y ) (18)

here regularizer R σ satisfies 

lim →∞ 

R σ (y ) = 1 

nd 

 ∞ 

−∞ 

lim 

σ→∞ 

R σ (y ) δα(y ) dy = R σ (0) = 1 . 

owever, there are many regularizers satisfying above two condi-

ions but a commonly used regularizer is the Gaussian type 

 σ (y ) = exp 

(
−y 2 

2 σ 2 

)
, σ > 0 (19)

here σ denotes the width parameter of Gaussian envelope. The

elation between � and σ is σ = r × �, where r is parameter

hich will be chosen in computation. Using the Gaussian regular-

zer R σ ( x ), gaussian regularized orthogonal sampling scaling func-

ion is defined as 

�,σ (x ) = 

sin ( πx 
� ) 

πx 
�

exp 

( −x 2 

2 σ 2 

)
. (20) 

ere 

lim →∞ 

δ�,σ (x ) = 

sin ( πx 
� ) 

πx 
�

, 

aussian regularized sampling scaling function is a quasi scaling

unction as it does not follow the property of exact orthonormal

avelet scaling function. 
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2.6. Description of the proposed method 

An arbitrary function g ∈ B 

2 
α can be written as by using quasi

scaling function 

g(y ) = 

∞ ∑ 

k = −∞ 

g(y k ) δα(y − y k ) = 

∞ ∑ 

k = −∞ 

g(y k ) δα(y − y k ) R α(y − y k ) 

(21)

We can clearly see that the taking infinite sampling points is not

possible for computation. Thus we have to restrict our computa-

tional domain to finite sampling points close to x perform numer-

ical calculations. In practical numerical computation, we select the

(2 W + 1) sampling points for this problem. Therefore Eq. (18) can

be simplified as 

g(y ) = 

W ∑ 

k = −W 

g(y k ) δ�,σ (y − y k ) , (22)

for approximation of n th order derivatives of f ( x ) 

g n (y ) = 

W ∑ 

k = −W 

g(y k ) δ
n 
�,σ (y − y k ) , n = 1 , 2 , · · · (23)

where computational bandwidth is equal to (2 W + 1) , centered

around x and superscript ( n ) denotes the n th-order derivative with

respect to x . For the calculation purpose, we give the following de-

tailed formulas of δ
�,σ , δ1 

�,σ and δ2 
�,σ [32] , 

δ�,σ (x ) = 

{ 

exp {− x 2 

2 σ2 } sin ( xπ� ) 
πx 
�

, x � = 0 

1 x = 0 . 
(24)

δ1 
�,σ (x ) 

= 

{ (
− sin ( πx 

� ) 
πx 2 

�

− � sin ( πx 
� ) 

πσ2 

�

+ 

cos ( πx 
� ) 

x 

)
exp 

(
− x 2 

2 σ 2 

)
x � = 0 , 

0 x = 0 . 
(25)

δ2 
�,σ (x ) 

= 

⎧ ⎪ ⎨ 

⎪ ⎩ 

(
2� sin ( xπ� ) 

πx 3 
− 2 cos ( πx 

� ) 
x 2 

+ 

�x sin ( xπ� ) 
πσ 4 

+ 

� sin ( πx 
� ) 

πσ 2 x 
− 2 cos ( πx 

� ) 
σ 2 − π sin ( xπ� ) 

x �

)
exp 

(
− x 2 

2 σ 2 

) x � = 0 , 

0 x = 0 . 

(26)

3. Proposed method 

We presented the quasi wavelet based numerical method for

solving ABC time fractional non-linear reaction-diffusion and inte-

gro integro-diffusion equation. We have taken the following type

of model 

ABC 
0 D 

α
t u (t, x ) = 

∂ 2 u 

∂x 2 
+ au (t, x )(1 − u (t, x )) 

+ bu (t, x ) 

∫ t 

0 

κ(t − s, x ) u (s, x ) ds + f (x, t) , (27)

along with boundary conditions 

u (0 , t) = g 1 (t) , 

u (1 , t) = g 2 (t) , (28)

and the initial condition 

u (x, 0) = g 3 (x ) . (29)

Here κ( x, t ) is known as kernel of above integro fractional partial

differential equation and f ( x, t ) is known as forced term. 
.0.1. Approximation of time fractional ABC derivative 

We shall take the help of Taylor series expansion to discretize

he Atangana–Baleanu time fractional derivative in the Caputo

ense. Let us assume step length in time is denoted by �t and

 n = n × �t where n = 0 , 1 , . . . M. At point t n = n × �t the values

f u ( x, t ) and f ( x, t ) are denoted by respectively u n and f n . 

Taylor series expansion of a function g ( t ) around the point t n in

he interval (t n , t n +1 ) 

 

′ (t) = g ′ (t n ) + g ′′ (t n )(t − t n ) + g ′′′ (t n ) 
(t − t n ) 2 

2! 
+ O ((t − t n ) 

3 ) . 

(30)

y using Taylor series we can easily find the following, 

 

′ (t n ) = 

g(t n +1 ) − g (t n −1 ) 

2�t 
− g (3) ( t n ) 

3! 
× ( �t) 2 + O ( �t) 4 , (31)

nd 

 

′′ (t n ) = 

g(t n +1 ) − 2 g(t n ) + g (t n −1 ) 

( �t) 2 
− g (4) ( t n ) 

4! 
× ( �t) 2 + O ( �t) 4 . 

(32)

sing the value of g ′ ( t ) and g ′′ ( t n ) in the Eq. (30) we get 

 

′ (t) = 

g(t n +1 ) − g (t n −1 ) 

2�t 
+ 

g(t n +1 ) − 2 g(t n ) + g (t n −1 ) 

(�t) 2 
(t − t n ) 

− g (3) (t n ) 

3! 
× (�t) 2 − g (4) (t n ) 

4! 
× (�t) 2 

+ g ′′′ (t n ) 
(t − t n ) 2 

2! 
+ O ((t − t n ) 

3 ) . (33)

ow by the definition of ABC derivative approximation of ∂ αu (x,t) 
∂t α

t grid point ( x, t n ) can be approximated by following quadrature

ormula: 

∂ αu (x, t n ) 

∂t α

= 

B (α) 

�(−α + 1) 

∫ t n 

0 

E α

[ −α

1 − α
(t n − s ) α

] 
× ∂ u (x, s ) 

∂s 
ds 

= 

B (α) 

�(−α + 1) 

n −1 ∑ 

j=0 

∫ t j+1 

t j 

(
u (x, t j+1 ) − 2 u (x, t j ) + u (x, t j−1 ) 

(�t) 2 
(s − t n ) ds 

+ 

u (x, t j+1 ) − u (x, t j−1 ) 

2�t 

)
E α

[
(t n − s ) α(−α) 

1 − α

]

= 

B (α) 

�(−α + 1) 

n −1 ∑ 

j=0 

u j+1 − u j−1 

2�t 

∫ t j+1 

t j 

E α

[ −α

1 − α
(t n − s ) α

] 
ds 

+ 

n −1 ∑ 

j=0 

u (x, t j+1 ) − 2 u (x, t j ) + u (x, t j−1 ) 

(�t) 2 

×
∫ t j+1 

t j 

(s − t n ) E α

[
−α(t n − s ) α

−α + 1 

]
ds 

= 

B (α) 

�(−α + 1) 

n −1 ∑ 

j=0 

u j+1 − u j−1 

2�t 

[
(t n − t j ) E α, 2 

[
(t n − t j ) 

α(−α) 

1 − α

]

− (t n − t j+1 ) E α, 2 

[
(t n − t j+1 ) 

α(−α) 

−α + 1 

]]

+ 

B (α) 

�(−α + 1) 

n −1 ∑ 

j=0 

u j+1 − 2 u j + u j−1 

(�t) 2 

×
∫ t j+1 

t j 

(s − t n ) E α

[ −α

1 − α
(t n − s ) α

] 
ds. 

ow on simplifying 
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w

R

A

R

w

 

u∫

I

∫

S

∫

U  

s

3

m

 

d  

s  

(  

q  

d  

t  

d  

f

u

C i 
∂ αu (x, t n ) 

∂t α
= 

B (α) 

�(−α + 1) 

n −1 ∑ 

j=0 

u 

j+1 − u 

j−1 

2�t 

×
[
(t n − t j ) E α, 2 

[
(t n − t j ) 

α(−α) 

1 − α

]

− (t n − t j+1 ) E α, 2 

[
(t n − t j+1 ) 

α(−α) 

−α + 1 

]]

+ 

B (α) 

�(−α + 1) 

n −1 ∑ 

j=0 

u 

j+1 − 2 u 

j + u 

j−1 

(�t) 2 

×
[
−(t n − t j+1 )�tE α, 2 

[
(t n − t j+1 ) 

α(−α) 

−α + 1 

]

− (t n − t j+1 ) 
2 E α, 3 

[
(t n − t j+1 ) 

α(−α) 

−α + 1 

]

+ (t n − t j ) 
2 E α, 3 

[
(t n − t j ) 

α(−α) 

1 − α

]]
+ R n , (34) 

here 

 n = 

B (α) 

�(1 − α) 

n −1 ∑ 

j=0 

[
−g (3) (t n ) 

3! 
× (�t) 2 + g (3) (t n ) 

(s − t j ) 
2 

2! 

]

× E α

[ −α

1 − α
(t n − s ) α

] 
ds 

= 

B (α) 

�(1 − α) 

n −1 ∑ 

j=0 

−g (3) (t n ) 

3! 

× (�t) 2 
(
(t n − t j ) E α

[ −α

1 − α
(t n − t j ) 

α
] )

− (t n − t j+1 ) E α

[ −α

1 − α
(t n − t j+1 ) 

α
] 

ds 

+ 

B (α) 

�(1 − α) 

n −1 ∑ 

j=0 

∫ t j+1 

t j 

−g (3) (t n ) 

2! 
×

(
(�t) 2 (t n − t j+1 ) 

× E α, 2 

[ −α

1 − α
(t n − t j+1 ) 

α
] 

− 2(�t)(t n − t j+1 ) 
2 E α, 2 

[ −α

1 − α
(t n − t j+1 ) 

α
] 

− 2(t n − t j+1 ) 
3 E α

[ −α

1 − α
(t n − t j+1 ) 

α
] 

+ 2(t n − t j ) 
3 E α

[ −α

1 − α
(t n − t j ) 

α
] )

ds. 

fter simplifying the value of R n we get 

 n ≤ C 1 B (α) 

�(1 − α) 
max 
0 ≤x ≤1 

| g (3) (t) | �t 3 , 

here C 1 is a constant. 

Now to approximate the another term 

∫ t 
0 κ(t − s, x ) u (s, x ) ds we

se product trapezoidal technique 

 t 
n + 1 

2 

0 

κ(t − s, x ) u (x, s ) ds = 

1 

2 

{∫ t n 

0 

κ(t − s, x ) u (x, s ) ds 

+ 

∫ t n +1 

0 

κ(t − s, x ) u (x, s ) ds 

}
. 

f we take κ(t − s, x ) = exp {−(t − s ) } then 

 t n 

0 

κ(t − s, x ) u (s, x ) ds 

= 

n −1 ∑ 

j=0 

∫ t j+1 

t j 

exp {−(t n − s ) } u (x, s ) ds 
= 

n −1 ∑ 

j=0 

∫ t j+1 

t j 

exp {−(t n − s ) }{ u (x, t j+1 ) 
s − t j 

�t 
+ u (x, t j ) 

t j+1 − s 

�t 
} ds 

= 

e −t n 

�t 

n −1 ∑ 

j=0 

{ u j+1 (e t j+1 �t − e t j+1 + e t j ) + u j (−e t j �t + e t j+1 − e t j ) } (35) 

imilarly, 

 t n +1 

0 

κ(t − s, x ) u (x, s ) ds = 

e −t n +1 

�t 
{ u 

n +1 (e t n +1 �t − e t n +1 + e t n ) 

+ u 

n (−e t n �t + e t n +1 − e t n ) } 
+ 

e −t n +1 

�t 

n −1 ∑ 

j=0 

{ u 

j+1 (e t j+1 �t − e t j+1 + e t j ) 

+ u 

j (−e t j �t + e t j+1 − e t j ) } . (36) 

sing Eqs. (34)–(36) , and into given model we get the temporal

emi-discrete form 

B (α) 

�(−α + 1) 

n −1 ∑ 

j=0 

u 

j+1 − u 

j−1 

2�t 

[ 
(t n − t j ) E α, 2 

[ −α

1 − α
(t n − t j ) 

α
] 

− (t n − t j+1 ) E α, 2 

[ −α

1 − α
(t n − t j+1 ) 

α
] ] 

+ 

B (α) 

�(−α + 1) 

n −1 ∑ 

j=0 

u 

j+1 − 2 u 

j + u 

j−1 

(�t) 2 

[
−(t n − t j+1 )�tE α, 2 

×
[ −α

1 − α
(t n − t j+1 ) 

α
] 

− (t n − t j+1 ) 
2 E α, 3 

[ −α

1 − α
(t n − t j+1 ) 

α
] 

+ (t n − t j ) 
2 E α, 3 

×
[ −α

1 − α
(t n − t j ) 

α
] ] 

= bu 

n (x ) 
e −t n + e −t n +1 

2�t 

n −1 ∑ 

j=0 

{
u 

j+1 
i 

(e t j+1 �t − e t j+1 + e t j ) 

+ u 

j (−e t j �t + e t j+1 − e t j ) 
}

+ bu 

n (x ) 
e −t n +1 

2�t 

{
u 

n +1 (e t n +1 �t − e t n +1 + e t n ) 

+ u 

n (−e t n �t + e t n +1 − e t n ) 
}

+ 

∂ 2 u 

n (x ) 

∂x 2 
+ au 

n (x )(1 − u 

n (x )) . (37) 

.1. Discretization in space using quasi wavelet based numerical 

ethod 

Now we apply quasi wavelet method given in Section 2 to

iscretize the spatial derivative. Let �x = 

1 
N denote the spatial

tep. We assume u n 
i 

be the approximation of u ( x, t ) at point

 x i , t n ) where n = 0 , 1 , · · · M and i = 0 , 1 , · · · N. According to the

uasi wavelet based numerical method to approximate the spatial

erivative the value of function at 2 W neighboring points around

hat point itself inside the computational domain or outside the

omain are applied. For example, n th order derivative u (n ) 
x (x i ) of a

unction u ( x ) at the point x i is approximated by 

 

n (x i ) = 

i + W ∑ 

p= i −W 

u (x k , t n ) δ
n 
�,σ (x i − x k ) , 

i = 0 , 1 , · · · , N − 1 , n = 0 , 1 , 2 , · · · . (38) 

onsidering Eq. (37) at point x = x and using Eq. (38) 
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H  

κ  

n  

r

 

 

N  

b  

[  

p

u  
B (α) 

�(−α + 1) 

n −1 ∑ 

j=0 

u j+1 
i 

− u j−1 
i 

2�t 

[ 
(t n − t j ) E α, 2 

[ −α

1 − α
(t n − t j ) 

α
] 

− (t n − t j+1 ) E α, 2 

[ −α

1 − α
(t n − t j+1 ) 

α
] ] 

+ 

B (α) 

�(−α + 1) 

n −1 ∑ 

j=0 

u j+1 
i 

− 2 u j 
i 
+ u j−1 

i 

(�t) 2 

×
[ 
−(t n − t j+1 )�tE α, 2 

[ −α

1 − α
(t n − t j+1 ) 

α
] 

− (t n − t j+1 ) 
2 E α, 3 

[ −α

1 − α
(t n − t j+1 ) 

α
]

+ (t n − t j ) 
2 E α, 3 

×
[ −α

1 − α
(t n − t j ) 

α
] ] 

= b 

i + W ∑ 

k = i −W 

u (x k , t n ) δ�,σ (x i − x k ) 
e −t n + e −t n +1 

2�t 

×
n −1 ∑ 

j=0 

{ u j+1 (e t j+1 �t − e t j+1 + e t j ) 

+ u j (−e t j �t + e t j+1 − e t j ) } 

+ b 

i + W ∑ 

p= i −W 

u (x k , t n ) δ�,σ (x i − x k ) 
e −t n +1 

2�t 
{ u n +1 (e t n +1 �t − e t n +1 + e t n ) 

+ u n (−e t n �t + e t n +1 − e t n ) } + 

i + W ∑ 

p= i −W 

u (x k , t n ) δ
2 
�,σ (x i − x k ) 

+ a 

i + W ∑ 

p= i −W 

u (x k , t n ) δ�,σ (x i − x k ) 

( 

1 −
i + W ∑ 

p= i −W 

u (x k , t n ) δ�,σ (x i − x k ) 

) 

. 

(39)

Let x p − x i = x k , then above equation can be re-written as 

B (α) 

�(−α + 1) 

n −1 ∑ 

j=0 

u 

j+1 
i 

− u 

j−1 
i 

2�t 

[ 
(t n − t j ) E α, 2 

[ −α

1 − α
(t n − t j ) 

α
] 

− (t n − t j+1 ) E α, 2 

[ −α

1 − α
(t n − t j+1 ) 

α
] ] 

+ 

B (α) 

�(−α + 1) 

n −1 ∑ 

j=0 

u 

j+1 
i 

− 2 u 

j 
i 
+ u 

j−1 
i 

(�t) 2 

×
[ 
−(t n − t j+1 )�tE α, 2 

[ −α

1 − α
(t n − t j+1 ) 

α
] 

− (t n − t j+1 ) 
2 E α, 3 

[ −α

1 − α
(t n − t j+1 ) 

α
] 

+ (t n − t j ) 
2 E α, 3 

×
[ −α

1 − α
(t n − t j ) 

α
] ] 

= b 

+ W ∑ 

k = −W 

u 

n 
k + i δ�,σ (−k �x ) 

× e −t n + e −t n +1 

2�t 

n −1 ∑ 

j=0 

{ u 

j+1 
i 

(e t j+1 �t − e t j+1 + e t j ) 

+ u 

j 
i 
(−e t j �t + e t j+1 − e t j ) } 

+ b 

+ W ∑ 

k = −W 

u 

n 
k + i δ�,σ (−k �x ) × e −t n +1 

2�t 
{ u 

n +1 
i 

(e t n +1 �t − e t n +1 + e t n ) 

+ u 

n 
i (−e t n �t + e t n +1 − e t n ) } + 

+ W ∑ 

k = −W 

u 

n 
k + i δ

2 
�,σ (x i − x k ) 

+ a 

i + W ∑ 

k = −W 

u 

n 
k + i δ�,σ (−k �x ) 

( 

1 −
+ W ∑ 

k = −W 

u 

n 
k + i δ�,σ (−k �x ) 

) 

. (40)
ence we get the full discrete form of our model when kernel

(x, t) = e −t . Similarly, full discrete form of our model when ker-

el κ(x, t) = 1 and κ(x, t) = e −x 2 t is given by following equations

espectively 

B (α) 

�(−α + 1) 

n −1 ∑ 

j=0 

u 

j+1 
i 

− u 

j−1 
i 

2�t 

[ 
(t n − t j ) E α, 2 

[ −α

1 − α
(t n − t j ) 

α
] 

− (t n − t j+1 ) E α, 2 

[ −α

1 − α
(t n − t j+1 ) 

α
] ] 

+ 

B (α) 

�(−α + 1) 

n −1 ∑ 

j=0 

u 

j+1 
i 

− 2 u 

j 
i 
+ u 

j−1 
i 

(�t) 2 

×
[ 
−(t n − t j+1 )�tE α, 2 

[ −α

1 − α
(t n − t j+1 ) 

α
] 

− (t n − t j+1 ) 
2 E α, 3 

[ −α

1 − α
(t n − t j+1 ) 

α
] 

+ (t n − t j ) 
2 E α, 3 

×
[ −α

1 − α
(t n − t j ) 

α
] ] 

= b 

(
�t 

4 

n −1 ∑ 

j=0 

(u 

j 
i 
+ u 

j+1 
i 

) + 

�t 

4 

n ∑ 

j=0 

(u 

j 
i 
+ u 

j+1 
i 

) 
)

+ 

+ W ∑ 

k = −W 

u 

n 
k + i δ

2 
�,σ (x i − x k ) 

+ a 

i + W ∑ 

k = −W 

u 

n 
k + i δ�,σ (−k �x ) 

( 

1 −
+ W ∑ 

k = −W 

u 

n 
k + i δ�,σ (−k �x ) 

) 

, (41)

B (α) 

�(−α + 1) 

n −1 ∑ 

j=0 

u 

j+1 
i 

− u 

j−1 
i 

2�t 

[ 
(t n − t j ) E α, 2 

[ −α

1 − α
(t n − t j ) 

α
] 

− (t n − t j+1 ) E α, 2 

[ −α

1 − α
(t n − t j+1 ) 

α
] ] 

+ 

B (α) 

�(−α + 1) 

n −1 ∑ 

j=0 

u 

j+1 
i 

− 2 u 

j 
i 
+ u 

j−1 
i 

(�t) 2 

×
[ 
−(t n − t j+1 )�tE α, 2 

[ −α

1 − α
(t n − t j+1 ) 

α
] 

− (t n − t j+1 ) 
2 E α, 3 

[ −α

1 − α
(t n − t j+1 ) 

α
] 

+ (t n − t j ) 
2 E α, 3 

×
[ −α

1 − α
(t n − t j ) 

α
] ] 

= b 

+ W ∑ 

k = −W 

u 

n 
k + i δ�,σ (−k �x ) × e −t n +1 x 

2 
i 

2�t 

×
n −1 ∑ 

j=0 

{
u 

j+1 
i 

(
e t j+1 x 

2 
i 

x 2 
i 

�t − e t j+1 x 
2 
i 

x 4 
i 

+ 

e t j x 
2 
i 

x 4 
i 

)

+ u 

j 
i 

(
−e t j+1 x 

2 
i 

x 2 
i 

�t + 

e t j+1 x 
2 
i 

x 4 
i 

− e t j x 
2 
i 

x 4 
i 

)}

+ 

+ W ∑ 

k = −W 

u 

n 
k + i δ

2 
�,σ (x i − x k ) + a 

i + W ∑ 

k = −W 

u 

n 
k + i δ�,σ (−k �x ) 

×
( 

1 −
+ W ∑ 

k = −W 

u 

n 
k + i δ�,σ (−k �x ) 

) 

. (42)

ow for discretization of boundary condition we apply a technique

ecause function value u ( x k ) are undefined outside the domain

0,1]. Since our boundary condition are Dirichlet type so we ap-

lied our zero boundary conditions and discretize as follows 

 (i, n ) = u 

n 
i 

= 0 , i < 0 , i > M, n = 0 , 1 , · · · N. (43)
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Fig. 1. Plots of u ( x, t ) for M = 20 , α = 0 . 9 , W = 20 , �t = 0 . 0 0 0 01 and r = 3 . 2 in case of numerical and exact solution. 
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Table 1 

variations of absolute error for different value 

of x at �t = 0 . 0 0 0 01 . 

x ↓ �t = 0 . 0 0 0 01 

0.2 1 . 2 × 10 −5 

0.4 5 . 9 × 10 −6 

0.6 7 . 0 × 10 −7 

0.8 4 . 8 × 10 −6 

1 1 . 1 × 10 −5 

Table 2 

variations of absolute error for different value 

of x at �t = 0 . 0 0 0 01 . 

x ↓ �t = 0 . 0 0 0 01 

0.2 1 . 5 × 10 −3 

0.4 4 . 2 × 10 −3 

0.6 6 . 8 × 10 −3 

0.8 9 . 6 × 10 −3 

1 1 . 1 × 10 −3 

u

g  

 

2  

o  

o  

r

E  

t

A
0

n addition discretization of initial condition is as follows 

 

0 
i = f 3 (x i ) , i = 0 , 1 , · · · M. (44)

.2. Theorem: [33] 

If f ( x ) be a function which belongs to the space

 ∞ 

⋂ 

L 2 (�) 
⋂ 

C s (�) and band-limited to B , s ∈ Z + , σ = �r,

 ∈ N , W ≥ rs √ 

2 
. Then we have 

f s −
W ∑ 

k = −W 

δs 
σ, �(x − x k ) f (x k ) 

∥∥∥∥∥ ≤ β × exp 

(
−γ 2 

2 r 2 

)
(45) 

here 

= min (r 2 (π − B �) , W ) , 

β = ( 
√ 

2 B ‖ f ‖ L s (�) + 2 r‖ f ‖ L ∞ (�) ) ×
e π (s + 1)! r 

γπ�s 
. (46) 

. Results and discussion 

In this section our aim is to show performances of our proposed

ethod. All numerical computations are done with Wolfram Math-

matica version-11.3. 

xample 1. Considering a = 1 , α = 0 . 9 and b = 0 we get the fol-

owing time fractional non-linear reaction-diffusion equation 

BC 
 

D 

0 . 9 
t u (t, x ) = 

∂ 2 u (t,x ) 
∂x 2 

+ u (t, x )(1 − u (t, x )) + f (t, x ) , (47) 

ith the aid of following initial and boundary conditions 

 (x, 0) = 0 , u (0 , t) = 0 , u (1 , t) = sin t, (48)

he force function is f ( x, t ) is such that the exact analytical solution

f above problem is u (x, t) = x sin t . 

We plot the graph of exact and numerical solution with N =
0 , M = 20 , �t = 0 . 0 0 0 01 which is depict by Fig. 1 . The absolute

rror between exact and numerical results for various M and �t is

resented by Table 1 . 

xample 2. If we consider κ(x, t) = 1 , a = 0 , α = 0 . 5 and b = 1 so

hat our model (27) is reduced to 

BC 
 

D 

0 . 5 
t u (t, x ) = 

∂ 2 u (t, x ) 

∂x 2 
−

∫ t 

0 

u (s, x ) ds + f (x, t) . (49)

hich under the prescribed initial and boundary conditions 
 (0 , x ) = 

1 

2 

(
1 − x 2 

)
, 

u (t, 0) = 

cosh (t) 

sinh 

2 
(t) + 2 

, 

u (t, 1) = 0 , (50) 

ives the exact solution of above the problem is u (x, t) =
( 1 −x 2 ) cosh (t) 

sinh 2 (t)+2 
with suitable force function f ( x, t ). 

The graph of numerical and exact solution with N = 10 , M =
0 , �t = 0 . 0 0 0 01 is depict by Fig. 2 . The absolute error for vari-

us M and �t is presented by Table 2 , which clearly predict that

ur numerical results are in complete agreement with the existing

esults. 

xample 3. Consider the following integro reaction diffusion equa-

ion with a = 1 , α = 0 . 9 , b = 1 and kernel κ(t, x ) = e −x 2 t , 

BC 
 

D 

0 . 9 
t u (t, x ) = 

∂ 2 u (t, x ) 

∂x 2 
+ u (t, x )(1 − u (t, x )) 

+ u (t, x ) 

∫ t 

e −x 2 (t−s ) u (s, x ) ds + f (t, x ) . (51) 

0 
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Fig. 2. Plots of u ( x, t ) for M = 20 , α = 1 , W = 20 , �t = 0 . 0 0 0 01 and r = 3 . 2 in case of numerical and exact solution. 

Fig. 3. Plots of u ( x, t ) for M = 20 , α = 1 , W = 20 , �t = 0 . 0 0 0 01 and r = 3 . 2 in case of numerical and exact solution. 

Table 3 

variations of absolute error for different value 

of x at �t = 0 . 0 0 0 01 . 

x ↓ �t = 0 . 0 0 0 01 

0.2 1 . 5 × 10 −7 

0.4 3 . 1 × 10 −7 

0.6 4 . 3 × 10 −7 

0.8 5 . 3 × 10 −7 

1 6 . 7 × 10 −7 
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The Eq. (51) with initial and boundary conditions 

u (x, 0) = 0 , u (0 , t) = sin t, u (1 , t) = 

sin t 

2 

, (52)

gives the exact solution u (x, t) = 

sin t 
1+ x 2 with suitable force function

f ( x, t ). 

We plot the graph of exact and numerical solution with N =
10 , M = 20 , �t = 0 . 0 0 0 01 which is depicted by Fig. 3 . The absolute

error for various M and �t is presented in Table 3 which clearly

predict that our numerical results are in complete agreement with

the existing results. 
xample 4. If we take κ(t, x ) = e −t , a = 1 , α = 0 . 9 and b = 1 then

ur model (27) is reduced to 

BC 
 

D 

0 . 9 
t u (t, x ) = 

∂ 2 u (t, x ) 

∂x 2 
+ u (t, x )(1 − u (t, x )) 

+ u (t, x ) 

∫ t 

0 

e −(t−s ) u (s, x ) ds + f (x, t) . (53)

he Eq. (53) with initial and boundary conditions 

 (x, 0) = 0 , 

u (0 , t) = 0 , 

u (1 , t) = t, (54)

ives the exact solution u (x, t) = xt . 

The graph of numerical and exact solution for N = 10 , M =
0 , �t = 0 . 0 0 0 01 is shown in Fig. 4 and the absolute error is

hown in Table 4 . The results clearly predict that our numerical

esults are in complete agreement with the existing results. 
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Fig. 4. Plots of u ( x, t ) for M = 20 , α = 0 . 9 , W = 20 , �t = 0 . 0 0 0 01 and r = 3 . 2 in case of numerical and exact solution. 

Table 4 

variations of absolute error for different value 

of x at �t = 0 . 0 0 0 01 . 

x ↓ �t = 0 . 0 0 0 01 

0.2 1 . 2 × 10 −6 

0.4 5 . 8 × 10 −7 

0.6 6 . 7 × 10 −8 

0.8 4 . 7 × 10 −7 

1 1 . 7 × 10 −6 
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. Conclusion 

In this article, we developed a difference scheme for discretiza-

ion of time fractional derivative of Atangana–Baleanu type with

he help of Taylor series and quasi wavelet method for discretiza-

ion of spatial derivative and unknown function. This difference

cheme in combination with quasi-wavelet numerical method is

eveloped for solving time fractional with ABC derivative non-

inear reaction-diffusion and integro reaction-diffusion equation.

n the knowledge of author presented method is first time used

ith this ABC fractional derivative. We easily conclude that quasi

avelet method has good accuracy and also valid for time frac-

ional integro-reaction diffusion equation. It also has good ability

o analyze the local characteristic of functions. 
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