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Abstract
The simulation-optimization approach is often used to solve water resource management
problem although repeated use of the simulation model enhances the computational load. In
this study, Artificial Neural Network (ANN) and Bagged Decision Trees (BDT) models were
developed as an approximator for Analytic Element Method (AEM) based groundwater flow
model. Developed ANN and BDT models were coupled with Particle Swarm Optimization
(PSO) model to solve the well-field management problem. The groundwater flow model was
developed for the study area and used to generate the dataset for the training and testing of the
ANN & BDT models. These coupled ANN-PSO & BDT-PSO models were employed to find
the optimal design and cost of the new well-field system by optimizing discharge & co-
ordinate of wells along with the cost effective layout of piping network. The Minimum
Spanning Tree (MST) based model was used to find out the optimal piping network layout
and checking the hydraulic constraints in the piping network. The results show that the ANN
& BDT models are good approximators of AEMmodel and they can reduce the computational
burden significantly although ANN model performs better than BDT model. The results show
that the coupling of piping network model with simulation-optimization model is very
significant for finding the cost effective and realistic design of the new well-field system.
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1 Introduction

The groundwater management problems are often solved by simulation-optimization
approach (Lefkoff and Gorelick 1986; Zheng and Wang 2002; Finney and Samsuhadi
1992; Emch and Yeh 1998; Gaur et al. 2011; Ayvaz 2016; Karatzas 2017). In the
simulation-optimization process, simulation model is repetitively called by optimization
model for generating the groundwater levels along with the velocity, concentration etc.
The use of the simulation models, in the each iteration of optimization model, increases
the computational load extensively. Therefore, different researchers (Rogers and Dowla
1992; Johnson and Rogers 1995; Coppola et al. 2003; ASCE 2000; Singh et al. 2004;
Nikolos et al. 2008; Christelis and Mantoglou 2016) used Artificial Neural Network
(ANN) models as approximators of computationally expensive numerical models. They
applied ANN and optimization algorithm to solve different hydrological management
problems and found this combination to be more fast and robust. Arndt et al. (2005)
approximated the results of Finite Element Method (FEM) based simulation model using
predictions by ANN model. Results show that the value of the objective function at the
simulation based optimal solution was only 1% better than the optimal solution obtained
by the ANN. Nikolos et al. (2008) coupled ANN and differential evolution algorithm for
substituting the FEM for water resource management problems. The study also
concluded that the ANN can be used as a good approximation model to reduce the
computational burden with optimal values close to simulation model. Christelis and
Mantoglou (2016) applied the radial basis functions (RBF) as an approximator model
to emulate the scalar response of a multivariate function. Results show that 96% of
computational time was reduced by combined RBF and evolutionary annealing-simplex
algorithm for the solution of pumping optimization.

Lots of work was also carried out for the optimal design of Water Distribution System
(WDS). Wu and Simpson (2002) presented the application of fast messy Genetic Algorithm
(GA) for the design of WDS. Nicklow (2010) concluded that GA is flexible and powerful
technique to solve complex WDS network. Bieupoude et al. (2012) worked for the optimal
design of water distribution network. The geometric and multi-scale optimization was used to
analytically optimize T-shaped network architectures under the constraint related to water
quality. The output of the study helped in the determination of an optimal geometry of the
network that minimizes the head losses. Somaida et al. (2013) developed an analytical solution
for determining the optimum pumping rate in a piping network supplied from the pumping
wells. The gradient technique was used and examined on a predetermined optimal water
distribution system.

To the best knowledge of the authors, the development of a new well-field system by the
application of machine learning technique along with piping network model was not addressed
by the researchers. Moreover, very few researchers have worked on the application of coupled
groundwater and piping network models (Adams and Parkin 2002; Tsai et al. 2009). Mainly,
the models were applied for the aquifer modelling in a karstic region and optimal scheduling
and the design of the established piping networks. Tsai et al., (2009) developed a wells
management model by integrating a water distribution system model (EPANET) and a
groundwater model (MODFLOW) under an optimization framework. The management model
considered multiple objectives which were solved by a parallel genetic algorithm (PGA) and
were found to be effective. In the study, already established piping layout model was
considered for the analysis. To the best knowledge of the authors, Bagged Decision Trees
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(BDT) has not been used as an approximator of simulation model in the field of water
resources.

The present research work is performed for the development of a new well-field system
without considering any pre-defined layout of piping network, discharge and location of the
wells which makes this work quite distinctive. Also the comparison of ANN and BDT models
in the groundwater management problems is not addressed so far. In this regard, applicability
of Particle Swarm Optimization (PSO) based ANN-PSO & BDT-PSO models were examined
to minimize the pumping cost of the wells, where the ANN & BDT models were developed to
approximate the Analytic Element Method (AEM) based groundwater simulation model. Both
ANN & BDT models were trained and tested through dataset generated by AEM model.
Piping layout network model was incorporated to design the optimal piping network. These
coupled models were applied to find the optimal piping network by minimizing the pumping
cost for the given water demand & maximum discharge limit of the wells. The results of ANN-
PSO & BDT-PSO models were compared with AEM-PSO models. The study shows that
combination of ANN & BDT models with piping layout design model is the efficient way for
the design of new well-field system and can be applied on other areas.

2 Methodology

The present study incorporates the strength of both machine learning techniques and
optimization algorithm to solve the well-field management problem. AEM based ground-
water flow model was developed in the first stage and was used to generate the
groundwater head for the training and testing of ANN & BDT models. The co-ordinate
and discharge of the wells were taken as inputs and the groundwater head at the
periphery of the well was taken as output for the development of ANN & BDT models.
The random discharge & co-ordinate of the wells were generated by random number
generator. Further, developed ANN & BDT models are integrated with PSO and used as
a proxy simulator to AEM-PSO models. Kruskal’s algorithm based model was developed
and coupled with ANN-PSO & BDT-PSO model to apply Minimum Spanning Tree
(MST) method for generating the optimal piping layout network. The coupled models
were applied for identifying the optimal layout of piping network, with minimum total
length, in each iteration of the optimization model. Whereas, the hydraulic design of
piping network was also checked in the each iteration by computing head losses at each
segment of piping network and checking the continuity of flow in the network. A penalty
function method was used to handle the constraints in the optimization function. The
major steps involved in the above procedure are explained in the following sections.

3 Objective Function and Constraints

The objective function was to minimize the pumping and the piping network cost. The
pumping cost consists of the cost of well installation, pump cost and electricity cost for the
pumping. In this study, all the wells were considered to be of the same depth and diameter.
Therefore the cost of each well was taken constant and the total cost was calculated by
multiplying the installation cost of one well by number of wells. Detail description about the
function is given below.
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Piping Cost: In this study, the piping length was computed by MSTalgorithm which creates
the network by joining all the nodal points and also gives the minimum length of that network.
The piping cost is defined as

Minf 1 ¼ ∑
i¼1

Np

AdLi ð1Þ

where Li = pipe length for ith segment, Ad = total cost for the development of per meter pipe
network of specific diameter d and Np = total number of pipe segments. Ad consist of the cost
of earthwork, pipes, connectors and platforms.

Pumping Cost is a major factor that influences the cost of WFS. The pumping cost is
influenced by quantity of the water to be pumped Q, pumping head H along with specific
weight of the water γ, efficiency η of pump and energy RE (Sharma and Swamee 2006; Moradi
et al. 2003). Total cost of pumping consists of the cost of pump units and the electricity cost
(Swamee and Sharma 1990; Swamee 1996) which can be defined as,

Minf 2 ¼ ∑
i¼1

Nw

kp
γQiHi

η
þ 8:76REγQiH

nrT
η

ð2Þ

where,

rT ¼ 1þ rð ÞT−1
r 1þ rð ÞT ð2aÞ

γ = 9810 N/m3; η = 85%; RE = 0.085 euros/kwh; r = the rate of interest in Beuros per euros per
year^ (euros/euros/year) and taken as 6%, T = 25 project life, Nw = total number of wells, Hn =
total required head at each well location/node to lift the water at storage tank and kp = pump
cost on the basis of required pump power. As the same pump unit was adopted for each well,
therefore a constant value was adopted in the function. The well construction & installation
cost was taken as 4000 Euros per well. The location of storage tank was taken as X = 687,000
and Y = 218,000.

Therefore final objective functions is defined as

Minf 12 ¼ w1 f 1 þ w2 f 2ð Þ þ β1P1 þ β2P2 þ ::::::::þ βnPnð Þ ð3Þ
where Pn = penalty term which varies linearly with the magnitude of constraint violation and.

βn =weighting factor which is selected on the basis of constraints within the range of 103 to
107. n is the number of constraints in the problem. Following constraints were taken in the
model,

Qi;min < Qi < Qi;max ð4aÞ

∑
i¼1

Nw

Qi > Qtotal ð4bÞ
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hi > hi;min ð4cÞ

xi;yi
� �

≠Ari ð4dÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xi−x j
� �2 þ yi−y j

� �2
r

≥Sw;min ð4eÞ

Hydraulic design constraints to maintain the flow in piping network are defined below.
Law of conservation of mass at each node: total input will be equal to total output at

junction

Qout ¼ ∑
i¼1

Ns

Qi ð4fÞ

Conservation of energy at each node:

hdi−hf i ¼ Hn ð4gÞ
where head of ith inlet pipe at junction node – head loss in ith inlet pipe = head at junction node.
Qi is the potential discharge from ith well. i = 1, 2.......Nw. Qi,min and Qi,max are the minimum
and maximum discharge limit for ith well, hi,min =minimum allowable head of groundwater at
ith well, Sw,min =minimum distance between any pair of wells; xj and yj are co-ordinates of
remaining well i.e. i ≠ j. where hi is the water head at the ith well and i = 1, 2…., Nw. hdi is the
head at particular well node and hfi is the head loss in the pipe connecting well node i to next
well node.

The study area consists of two rivers Allier and Dore, where Dore river is an important
tributary of Allier River. Dore river catchment is situated in the eastern part of the Massif-
Central in France. The study area lies between 45054’N to 460 N latitude and 3025′E to 3029′
10″E longitude. The developed model was applied on the part of the basin to identify the
optimal location and discharge of the wells by satisfying the above said constraints. Depending
on the rate of clay deposits, the hydraulic conductivity in the study area varies from 1 × 10−3 to
3 × 10−3 m/s. For the development of groundwater model, the rivers of the study area were
represented by 39 head line-sink elements. Discharge wells were represented by well elements.
A total of 12 piezometric measurements were available in the study area which were used for
calibration of the model. The water level in the rivers was under observation at 11 different
locations and were used to develop the AEMmodel (Gaur et al. 2011). Whereas, the constraint
4a was defined to insure the maximum and minimum discharge limit of the single well which
was taken as 120 m3/h to 280 m3/h. The constraint 4b was taken to insure the minimum water
discharge from all the wells and was fixed on the basis of minimum water demand of the area
and taken as 980 m3/h. The constraint 4c was taken to limit the drawdown of the groundwater
i.e. 253 m. The constraint 4d was taken to keep the wells in specified zone for the development
of well-field. The constraint 4e was taken to insure the minimum distance between the wells.
To provide the protective zone around the wells a minimum distance of 300 m between any
two wells was defined for protective zones. The constraint 4f & 4 g were taken as hydraulic
constraints to maintain the continuity of flow and conservation of energy in the piping network
(Tsai et al. 2009).
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3.1 Model Development

AEM is a computational method based upon the superposition of analytical expression to
represent the two dimensional vector fields. Ground water flow model was developed in
MATLAB 7.0 (Strack 1989; Gaur et al. 2011; Math Works Inc 2001). The ANN and BDT
models were developed and trained for a defined area which had the highest probability for
occurrence of wells. This specific area was selected as potential alluvium aquifer between the
two rivers and considering the output of AEM-PSO model (Gaur et al. 2011). 2000 sets of
random discharge and location of wells were generated for the training and testing of both the
models and AEM model was used to compute the groundwater head on the basis of this data.
Total 21 input variables were used for the training and testing of ANN and BDT models which
consists of co-ordinates (x, y) and the discharge (Q) of all the seven wells and corresponding
groundwater head. Total seven ANNmodels were developed where each model gave the value
of one selected well out of the seven wells. Therefore, all seven models were capable to give
the head on the periphery of all the seven wells. Finally, to minimize the cost of all seven wells,
PSO was combined with ANN and BDT models.

Architecture of ANN model was finalized on the basis of trial-and-error procedure (Atiya
and Ji 1997; Morshed and Kaluarachchi 1998). The ANN model was trained using the back-
propagation with Levenberg-Marquardt (L-M) technique and the sigmoid transfer functions
‘tansig’, log-sigmoid ‘logsig’ and linear ‘purelin’were chosen for transfer functions of both the
hidden layer and the output layer. The decision trees are also popularly used for various
machine learning applications. The individual decision trees are highly sensitive to noise in its
training dataset. The trees that grow very deep may learn a highly irregular pattern lead to low
bias, but very high variance. The output from multiple trees can be taken instead of output
from just a single tree. Although training multiple trees from same dataset could give strongly
correlated trees or may even give the same tree. Bagging Technique was used to avoid this
problem. Bagging or Bootstrap aggregating (Breiman 1994) is a machine learning technique
used to improve accuracy and stability of machine learning algorithms. In order to improve the
accuracy of decision trees, it combines results from different trees trained using randomly
generated dataset. Thus, the trees get de-correlated. Given a training dataset of samples N,
bagging generates M new datasets of size S, by taking samples from dataset uniformly with
replacement. Further, M decision trees are trained for these new M datasets. Output is
decided on the basis of average of all the trees. This concept of sample bagging can be
extended on the features rather than selecting all the features at the same time only a fraction of
features can be selected to further avoid correlation.

The efficiency & accuracy of the models were increased by two modifications. In this
regard, the velocity term of PSO models were modified to deal with the wells coordinate. The
decimal number values generated by the velocity term generally increase the iteration of PSO
models exceptionally. To handle this, restrictions were applied on velocity term for integer
number and ‘units position’ rounded up to 5 or 10 accordingly. This implies that from each
previous location, new search location will be at least 5 m away. The number of iterations got
reduced by 11% due to this modification. It was observed that the modified model converged
in less than 1000 iterations whereas more than 1000 iterations were required to converge the
model without this modification. In the second modification, additional input features were
introduced in the ANN and BDT models which consisted of the distances of the concerning
well, for which model was developed, from the remaining wells. These inputs helped to
account the impact on the groundwater head due to distances between the wells. Significant
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improvements were observed as the NRMSE value was found to be lower than the previous
case. It was also observed that with the increase in the number of input features from 21 to 27,
the number of neurons in the hidden layer required for the ANN model reduced notably which
was found 36 for 27 input features. The similar trends were observed in case of BDT model.
The number of trees required for the model decreased with the increase in the number of input
features. For BDT model with 27 parameters, optimum number of trees was found out to be
39.

In the present study, the performance of both ANN-PSO and BDT-PSO models were
measured on the basis of coefficient of correlation (R) and Normalized Root Mean Squared
Error (NRMSE). Figure 1 shows the plot between NRMSE and number of neurons for the
well-1. Figure 2 shows plot between NRMSE and number of trees. The optimum number of
trees in BDT model was found 39 through training of model up to 50 trees. In this model,
fraction of data used by each tree (considering replacement) from the data present in the
training set was also varied.

4 Model Application

Three scenarios were considered to find out the optimal cost of WFS. In the first two scenarios,
the model was run by considering single diameters of all pipes in the piping network and an
optimal cost was obtained for those diameters of pipes. The piping diameters were taken as
200 mm and 250 mm in the first two scenarios respectively. In the third scenario, diameter of
the pipes, in the network system, was also considered as one of the decision variables. As the
diameter with a continuous value is not practically feasible, discrete values were taken in the
optimization process i.e. 200 and 250 mm.

Fig. 1 Shows plot of NRMSE v/s Number of Neurons
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A spanning tree of a network connects all the vertices of that network together (wells in this
case), and MST is a spanning tree with minimum possible total weight, where the weights are
measured as the distances between the edges/wells. In every iteration of ANN-PSO & BDT-
PSOmodels, the piping network model first developed the five optimal piping network layouts
through minimum spanning tree method. Once the piping network layouts were finalized on
the basis of total minimum lengths, total discharge at each junction node from all input pipe
segments and discharge of well at that node was considered as total discharge of that node.
Once the network layout was finalized, the hydraulic design model was applied to calculate the
total discharge through connected pipes, at each junction node. A single well was considered at
each node of piping network layout. The discharge value at node, which has only one output
pipe segment and no input pipe segment, was assigned to the discharge value corresponding to
the discharge of that well only. Whereas, discharge at junction nodes, which had one or more
input pipes, was computed by hydraulic design model. Once all the discharge values were
known at each single & multi pipe nodes, the hydraulic design model computed the head
losses in each pipe segment on the basis of the discharge value and the length of the
corresponding pipe segment. The model started adjusting the head losses by adding it in the
head ‘Hn’ at each well. At the same time, the hydraulic design model also adjusted the final
value of ‘Hn’ at wells in such a way that all connected pipes started having same head at nodes
i.e. junctions. This helped to satisfy the constraints 4 f. The model started the adjustment from
the storage tank and moved along the network till it reached the starting point(s) of the
network. The corresponding, pumping and pump cost was computed on the basis of final
BHn^ computed by the piping network model. Total 21 decision variables were taken for S-1 &
S-2 which accounted the discharge and co-ordinates of the wells. Whereas, 28 decision
variables were taken for S-3 by accounting the discharge, co-ordinates of the wells and
diameter of the pipes. In the optimization process, a population of PSO particles was initialized
with random values of decision variables i.e. X & Y co-ordinates, discharge of wells and

Fig. 2 Shows plot of NRMSE v/s Number of Trees
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diameter of pipes, in the problem space. In each iteration of the PSO optimisation, the pumping
cost was calculated by using groundwater head values. The coupled ANN & BDT model
computed the head values at given locations and discharges of wells for each PSO particle at
each iteration. Meanwhile, the layout of the piping network model also identified the optimal
layout in each iteration of PSO model & the hydraulic design model was used for computing
head values at junctions of piping network. Finally, the PSO model converged to search the
optimal location and discharge of wells along with optimal layout and diameters of piping
network.

The coefficient of correlation (R) and NRMSE were used to measure the performance of the
developed ANN and BDT models. It was observed that coefficient of correlation for both the
ANN model and BDT model increased as the number of pumping patterns increase, however,
after a certain limit the accuracy remained almost constant. Total 1400 pumping patterns were
found suitable. The integration of these developed models was done with PSOmodel to further
determine the optimal pumping cost for the considered problem. The PSO models were
converged if their objective function value did not change for 50 iterations. Maximum 1000
iterations were used in the model but it was converged after 791. Total of fifteen runs were
done and the value that came out to be minimum was considered as the optimal solution. The
optimal cost by AEM-PSO, ANN-PSO and BDT-PSO models is shown in Fig. 3.

The total minimum cost of the system by AEM-PSO model was found 1,378,758 euros
1,438,732 euros and 1,607,746 euros for the scenario S-3, S-2 & S-1 which shows that S-3 is
the most economical in comparison to other scenarios. Optimal values were selected from
fifteen runs of model where values vary within the range of 0.18% to 0.26%. The results show
that the total cost in ANN-PSO model is increased by 1.26%, 1.08% & 1.48% in S-3, S-2 &
S-1. The total cost in BDT-PSO is increased by 8.69%, 7.90%& 8.74% in S-3, S-2 & S-1 with
comparison to AEM-PSO. As the total cost of the system in S-3 was found to be minimum in
comparison to other two scenarios which shows that ANN-PSO model is capable to handle the
diameter of pipes as a decision variable along with discharges and location of wells. In S-3, 4
pipe segments with 250 mm diameter and 2 pipe segments with 200 mm diameters were found
optimal (Figure 4). Figures 5 and 6 show the graph for the cost of piping & pumping in all the
three scenarios. Table 1 shows the discharge and co-ordinates of optimal wells in all three
scenarios. The results show that piping cost & pumping cost increases in S-1 with comparison

Fig. 3 Optimal cost by AEM-PSO, ANN-PSO and BDT-PSO Models
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to S-3. Whereas in S-2, piping cost increases & pumping cost decreases with comparison to S-
3 in all 6, 7 & 8 set of the wells. The results of S-1 and S-2 show that piping diameter
influences the total cost of the system where increasing the diameter of pipes becomes cause of
the increased piping cost and the decreased pumping cost. Therefore, expenses on piping
network increases due to increased diameter but at same time it reduces the head losses in
pipes which helps to reduce the pump power to transport the water at storage tank. As the
diameter of the pipes depends on the discharge in the pipes, the optimal diameter for pipe with
single wells can be different from the pipes with accumulated discharge of different pipes.

To understand the importance of piping layout model, model was run and piping cost was
computed without optimizing piping layout. In this run, each well was directly connected to
the storage tank. The results show that optimal cost of WFS system is high in this condition.
The total cost in this run is increased by 4.21% in comparison to the cost in S-3, which is
58,045 Euros higher. On the other side, this price is lower in comparison to S-1which shows
that piping layout model is effective when optimal selection of diameter is also incorporated to
compute the total cost. It is also found that decreasing the diameter of pipe becomes cause of

Fig. 4 Map of optimal location of wells and piping network in Scenario-3
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increased head losses and corresponding higher pumping cost, which highly dominates the
piping cost of the system. The results also show that application of piping network model is
effective and capable to reduce the cost of system & found the realistic network. The major
advantage of the ANN-PSO model that was found is that it reduces the computational time.
Where the AEM-PSO model approximately takes 6–7 h for 1000 iterations of model conver-
gence, ANN-PSO model takes only 4–5 min and BDT-PSO takes 10–12 min (when run in
intel core i7 processor) for the same number of iterations.

5 Summary and Conclusions

In this study, the AEM based simulation model was approximated to ANN & BDT models.
Further these models were coupled with PSO algorithm to minimize the pumping cost of the
wells. The optimal cost by ANN-PSO models was found more close to AEM-PSO models
within the limit of 1.48% to 0.9% in S-1 & S-2. The cost by BDT-PSO model was found
within the range of 7.9% to 8.7% of the cost obtained from AEM-PSO models. The result
obtained from ANN-PSO models was found close to the result of AEM-PSO model with the

Fig. 5 Optimal piping cost by AEM-PSO, ANN-PSO and BDT-PSO Models

Fig. 6 Optimal pumping cost by AEM-PSO, ANN-PSO and BDT-PSO Models
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error of less than 2%. Whereas, BDT-PSO model was found to be more inferior in comparison
of AEM-PSO model with error of less than10%.

Even though the cost in the case of the BDT-PSO models is quite low but it is not in
accordance with the AEM-PSO models as it fails to account interference. Study concluded that
number of iterations and computation time for the convergence of BDT-PSO model is more in
comparison of ANN-PSO model. Developed ANN model was successful in accounting well
interference and also required lesser data for training. The study concludes that use of piping
network model is very important to identify realistic and cost effective piping network. The
diameter of the pipe is found to be a very influencing parameter and can vary the location and
arrangement of the wells significantly. The use of coupled models increases the computational
time significantly, further which can be reduced by parallel processing.
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