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Abstract. In this article, An elastostatic problem with two symmetrically located edge cracks
and a centre crack in an orthotropic elastic material under normal loadings is considered.
Two harmonic functions are considered which are expressed in terms of displacement of stress
and component of axes. The problem is reduced into a pair of simultaneous singular integral
equations of the first kind with Cauchy-type singularities, which are solved using Chebyshev
polynomials. The normalized stress intensity factors are found against ratios of cracks’ length
are computed for different particular cases for the orthotropic material Steel-Mylar and the
results are depicted through graphs.

1. Introduction
Edge crack or any type of crack occurs in railway track, aerospace, aeroplane wings etc.
and this type of failure occurs due to either the thermal load or any other type of external
load or stress. Edge crack problem analysis is much easier to study in isotropic materials
than the anisotropic materials because mathematical calculations become difficult to solve for
the anisotropic material. Nowadays, engineering structures are designed with the aid of the
composite materials. There is less probability to grow a crack in edge crack which is occurring
in the orthotropic material compared to the isotropic material which is very considerable and
useful. Every metal possesses some thermal, mechanical and chemical properties. A material is
said to be isotropic if its mechanical and thermal properties are the same in all direction. For
anisotropic materials, they are different in each and every direction. The orthotropic material
is the special case of the anisotropic material which has three mutually perpendicular planes of
symmetry and their characteristics remain unchanged along their axes. Orthotropic materials’
properties are the same whether a material is homogeneous or non-homogeneous.

The problems of edge crack is found few in numbers during the literature survey. The
problem of symmetrical edge cracks of finite length in an orthotropic infinite strip under normal
point loading is solved using Hilbert transform technique by Das et al. [1]. The problem of
an orthotropic infinite strip with double symmetrically located edge cracks bonded to another
orthotropic half plane had been solved by Das et al. [2]. The problem was solved with the aid
of Hilbert transform technique and weight function. The problem of single edge crack located
in an orthotropic infinite strip with the finite length had been solved by Das [3]. Das et al. [4]
have studied the edge crack problem in an orthotropic composite material. Gupta and Erdogan
[5] have solved the two symmetrically situated internal cracks orthogonal to the boundary by
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converting the boundary conditions in the form of two simultaneous singular integral equations,
which are solved with the aid of numerical technique. Wang et al. [6] have used the integral
transform technique to solve the edge crack and internal cracks. The three-dimensional elastic
problem in an orthotropic fracture specimen with an edge crack had been studied by Cruse and
Vanburen[7]. Know and Lee [8] have solved a centre crack in the finite length and width in
a piezoelectric body under anti-plane shear loading, using the Fourier integral equation. The
problem of a finite central crack in an infinite functionally graded piezoelectric strip under
in-plane mechanical and electrical loadings had been studied by Ueda [9]. The problem in
a unit circular elastic disc with internal edge crack which is applicable and considerable for
circular, rotating and infinite long cylinder under thermal shock had been studied by Schneider
and Danzer[10]. The problem concerned with the elastostatic axisymmetric for a long hollow
cylinder possess a ring-shaped internal and edge cracks, had been solved by Erdol and Erdogan
[11] using the standard transform technique.

In the current work, the study is concerned with the elastostatic double edge cracks problem
with a centre crack under tensile loadings in an infinite orthotropic elastic strip of width 2h.
The problem is reduced into the singular integral equations of the first kind with Cauchy-type
singularities, which are solved using Chebyshev polynomials. The expressions of the stress
intensity factors (SIFs) are found at the cracks’ tips. The variations of SIF at the central crack
tip keeping its length fixed and varying the edge crack for Steel-Mylar are found. Similarly, SIF
at the tip of the edge cracks keeping its length fixed and vary the length of the central crack
is found for the same material. The computed results are displayed graphically for different
particular cases.

Figure 1. Geometry of the Problem

2. Problem Formulation
Let us consider an elastostatic problem of an orthotropic strip of length 2h with a central crack
defined by | x |≤ b and two symmetrically situated edge cracks defined by a ≤| x |≤ h under the
normal tractions p1(x) and p2(x) respectively (Fig.1).
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The equations of equilibrium in the forms of displacements are expressed as

C11
∂2u

∂x2
+ C66

∂2u

∂y2
+ (C12 + C66)

∂2v

∂x∂y
= 0, (1)

C22
∂2v

∂y2
+ C66

∂2v

∂x2
+ (C12 + C66)

∂2u

∂x∂y
= 0, (2)

where u and v are displacements in x and y directions and Cij
,s are elastic constants of the

orthotropic material.
Here the mathematical model is considered under symmetry with respect to y-axis and here it
is sufficient to discuss the problem in the half strip 0 ≤ x ≤ h.

Thus the concerned boundary conditions are given by

σyy(x, 0) = p1(x), a ≤ x ≤ h, (3)

σyy(x, 0) = p2(x), 0 ≤ x ≤ b, (4)

σxx(h, y) = 0, 0 ≤ y <∞, (5)

σxy(h, y) = 0, 0 ≤ y <∞, (6)

σxy(x, 0) = 0, 0 ≤ x ≤ h, (7)

v(x, 0) = 0, b ≤ x ≤ a. (8)

All the components of stresses and displacements vanish at the remote distances from the cracks.

3. Solution of the Problem
The displacement fields and components of stress are represented in the form of harmonic
functions as

u =
∂φ1
∂x

+
∂φ2
∂x

, (9)

v = λ1
∂φ1
∂y

+ λ2
∂φ2
∂y

, (10)

σxx
C66

= −
[
(1 + λ1)

∂2φ1
∂y2

+ (1 + λ2)
∂2φ2
∂y2

]
, (11)

σyy
C66

= (1 + λ1)µ1
∂2φ1
∂y2

+ (1 + λ2)µ2
∂2φ2
∂y2

, (12)

σxy
C66

= (1 + λ1)
∂2φ1
∂x∂y

+ (1 + λ2)
∂2φ2
∂x∂y

, (13)

where φi(x, y) satisfy the following partial differential equation as(
∂2

∂x2
+ µi

∂2

∂y2

)
φi(x, y) = 0, i = 1, 2, (14)

where µ1 and µ2 are the positive real roots of the above equation

C11C66µ
2 + (C12

2 + 2C12C66 + C11C22)µ+ C22C66 = 0. (15)

and

λi =
C11µi − C66

C66 + C12
, i = 1, 2 (16)
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The harmonic functions for an orthotropic elastic strip are given by

φ1(x, y) =
2

π

∫ ∞
0

A1(s)[e
−√µ1sx + e

√
µ1sx] cos sy ds+

2

π

∫ ∞
0

B1(s)e
− sy√

µ1 cos sx ds, (17)

φ2(x, y) =
2

π

∫ ∞
0

A2(s)[e
−√µ2sx + e

√
µ2sx] cos sy ds+

2

π

∫ ∞
0

B2(s)e
− sy√

µ2 cos sx ds, (18)

where Ai(s) and Bi(s) (i = 1, 2) are undetermined arbitrary functions.
Applying the Boundary condition (7), we get

B2(s) = −
√
µ2√
µ1

(1 + λ1)

(1 + λ2)
B1(s), (19)

Applying the Boundary condition (8), we get∫ ∞
0

B1(s) s cos sx ds = 0, b ≤ x ≤ a (20)

The Boundary conditions (5) and (6) with the aid of equation (19) give rise to∫ ∞
0
{A1(s)(a1(sh)) +A2(s)(a2(sh))}(s2) cos dy ds =

(1 + λ1)√
µ1

∫ ∞
0
{ 1
√
µ1
e
− sy√

µ1

− 1
√
µ2
e
− sy√

µ2 }B1(s)(s
2) cos sh ds, 0 ≤ y <∞, (21)

∫ ∞
0
{A1(s)(b1(sh)) +A2(s)(b2(sh))}(s2) sin sy ds+

(1 + λ1)√
µ1

∫ ∞
0
{e−

sy√
µ1

− e−
sy√
µ2 }B1(s)(s

2) sin sh ds = 0, 0 ≤ y <∞, (22)

where

a1(sh) =(1 + λ1)[e
√
µ1sh + e−

√
µ1sh],

b1(sh) =− (1 + λ1)
√
µ1[e

√
µ1sh − e−

√
µ1sh],

a2(sh) =(1 + λ2)[e
√
µ2sh + e−

√
µ2sh],

b2(sh) =− (1 + λ2)
√
µ2[e

√
µ2sh − e−

√
µ2sh].

Now from equations (21) and (22), A1(s) and A2(s) are calculated in terms of B1(s) as

A1(s) =

[
e
− sh√

µ1 (a2(sh) + b2(sh)√
µ1

)− e−
sh√
µ2 (a2(sh) + b2(sh)√

µ2
)

a1(sh)b2(sh)− a2(sh)b1(sh)

]
(1 + λ1)√

µ1
B1(s), (23)

A2(s) =

[
−e−

sh√
µ1 ( b1(sh)√

µ1
+ a1(sh)) + e

− sh√
µ2 ( b1(sh)√

µ2
+ a1(sh))

a1(sh)b2(sh)− a2(sh)b1(sh)

]
(1 + λ1)√

µ1
B1(s), (24)

Setting,

B1(s) =
1

s2

∫ h

a
f1(t

2) sin st dt+
1

s2

∫ b

0
f2(t

2) sin st dt, (25)



International Conference on Mathematical Modelling in Physical Sciences

IOP Conf. Series: Journal of Physics: Conf. Series 1141 (2018) 012109

IOP Publishing

doi:10.1088/1742-6596/1141/1/012109

5

the equation (20) is satisfied if ∫ h

a
f1(t

2) dt+

∫ b

0
f2(t

2) dt = 0. (26)

The boundary conditions (3) and (4) with the aid of equation (25) yield the following singular
integral equations as∫ h

a
g1(t

2)

(
2t

t2 − x2

)
dt+

∫ b

0
g2(t

2)

(
2t

t2 − x2

)
dt+

∫ h

a
[k(x, t)− k(x,−t)] dt

+

∫ b

0
[k(x, t)− k(x,−t)] dt =

π

C66
p1(x), a ≤ x ≤ h, (27)

∫ h

a
g1(t

2)

(
2t

t2 − x2

)
dt+

∫ b

0
g2(t

2)

(
2t

t2 − x2

)
dt+

∫ h

a
[k(x, t)− k(x,−t)] dt

+

∫ b

0
[k(x, t)− k(x,−t)] dt =

π

C66
p2(x), 0 ≤ x ≤ b. (28)

where

g1(t
2) =(

√
µ1 −

√
µ2)

(1 + λ1)√
µ1

f1(t
2),

g2(t
2) =(

√
µ1 −

√
µ2)

(1 + λ1)√
µ1

f2(t
2). (29)

k(x, t) =

∫ ∞
0

[
−µ1a1(sx)b2(sh) + µ2a2(sx)b1(sh)

a1(sh)b2(sh)− a2(sh)b1(sh)

1

(
√
µ1 −

√
µ2)

(
e
− sh√

µ1

√
µ1
− e

− sh√
µ2

√
µ2

)

+
−µ1a1(sx)a2(sh) + µ2a2(sx)a1(sh)

a1(sh)b2(sh)− a2(sh)b1(sh)

1

(
√
µ1 −

√
µ2)

(e
− sh√

µ1 − e−
sh√
µ2 )

]
sin st ds, (30)

The singular integral equations (27) and (28) finally reduce to the following equations for the
case of large h as∫ h

a
g1(t

2)

(
2t

t2 − x2

)
dt+

∫ b

0
g2(t

2)

(
2t

t2 − x2

)
dt+ β

∫ h

a
t g1(t

2) dt

+ β

∫ b

0
t g2(t

2) dt =
π

C66
p1(x), a ≤ x ≤ h, (31)

∫ h

a
g1(t

2)

(
2t

t2 − x2

)
dt+

∫ b

0
g2(t

2)

(
2t

t2 − x2

)
dt+ β

∫ h

a
t g1(t

2) dt

+ β

∫ b

0
t g2(t

2) dt =
π

C66
p2(x), 0 ≤ x ≤ b, (32)

where

β =
2µ1β11

(µ1 + 1)2
+

2µ1β12
(
√
µ1
√
µ2 + 1)2

+
2µ2β21

(
√
µ1
√
µ2 + 1)2

+
2µ2β22

(µ2 + 1)2
,
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with

β11 = −
(
√
µ1 +

√
µ2)

(
√
µ1 −

√
µ2)2
√
µ1, β12 =

2µ2
(
√
µ1 −

√
µ2)2

,

β21 =
2
√
µ1

(
√
µ1 −

√
µ2)2

, β22 = −
(
√
µ1 +

√
µ2)

(
√
µ1 −

√
µ2)2
√
µ2.

Putting x2 = X and t2 = T , the above equations (31) and (32) become∫ h2

a2

g1(T )

T −X
dT +

∫ b2

0

g2(T )

T −X
dT +

β

2

∫ h2

a2
g1(T ) dT

+
β

2

∫ b2

0
g2(T ) dT =

π

C66
p1(
√
X), a2 ≤ X ≤ h2, (33)

∫ h2

a2

g1(T )

T −X
dT +

∫ b2

0

g2(T )

T −X
dT +

β

2

∫ h2

a2
g1(T ) dT

+
β

2

∫ b2

0
g2(T ) dT =

π

C66
p2(
√
X), 0 ≤ X ≤ b2. (34)

To normalize the above equations (33) and (34), let us make the following substitutions as

T ∗ =
2T − (a2 + h2)

(h2 − a2)
, X∗ =

2X − (a2 + h2)

(h2 − a2)
, T ∗∗ =

2T − b2

b2
, X∗∗ =

2X − b2

b2
.

Defining

g1(T ) = g1(T
∗), g2(T ) = g2(T

∗∗), p1(
√
X) = p1(

√
X∗), p2(

√
X) = p2(

√
X∗∗),

the equations (33) and (34) reduce to∫ 1

−1

g1(T
∗)

(T ∗ −X∗)
dT ∗ +

∫ 1

−1

g2(T
∗∗)

(T ∗∗ −X∗∗)
dT ∗∗ +

β(h2 − a2)
4

∫ 1

−1
g1(T

∗) dT ∗

+
(β b2

4

) ∫ 1

−1
g2(T

∗∗) dT ∗∗ =
π

C66
p1(
√
X∗),−1 ≤ X∗ ≤ 1, (35)

∫ 1

−1

g1(T
∗)

(T ∗ −X∗)
dT ∗ +

∫ 1

−1

g2(T
∗∗)

(T ∗∗ −X∗∗)
dT ∗∗ +

β(h2 − a2)
4

∫ 1

−1
g1(T

∗) dT ∗

+
(β b2

4

) ∫ 1

−1
g2(T

∗∗) dT ∗∗ =
π

C66
p2(
√
X∗∗),−1 ≤ X∗∗ ≤ 1. (36)

with ∫ 1

−1
g1(T

∗) dT ∗ +

∫ 1

−1
g2(T

∗∗) dT ∗∗ = 0 (37)

Now expressing the unknown functions in terms of Chebyshev polynomials of the first kind as

g1(T
∗) =

1√
(1− T ∗2)

∞∑
n=0

AnT2n+1(T
∗), (38)

g2(T
∗∗) =

1√
(1− T ∗∗2)

∞∑
n=0

BnT2n+1(T
∗∗). (39)
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using the result ∫ 1

−1
T2j+1(z

∗)(1− z∗2)−
1
2

dz∗

(z∗ − y∗)
=

{
0, j = 0,

π U2j(y
∗), j > 0,

(40)

and the orthogonality relation∫ 1

−1
Un(y∗)Um(y∗)(1− y∗2)

1
2dy∗ =

{
0, n 6= m,
π
2 , n = m,

(41)

the equations (35) and (36) become

Am
(π2

2

)
+ π

∞∑
n=0

Bn

∫ 1

−1
U2n(X∗∗)U2m(X∗)

√
1−X∗2dX∗+

+
β(h2 − a2)

4

(∫ 1

−1

1√
1− T ∗2

∞∑
n=0

AnT2n+1(T
∗)dT ∗

)(∫ 1

−1
U2n(X∗)

√
1−X∗2dX∗

)

+
β b2

4

(∫ 1

−1

1√
1− T ∗∗2

∞∑
n=0

BnT2n+1(T
∗∗)dT ∗∗

)(∫ 1

−1
U2n(X∗)

√
1−X∗2dX∗

)
=

π

C66
P1m, (42)

π

∞∑
n=0

An

∫ 1

−1
U2n(X∗)U2m(X∗∗)

√
1−X∗∗2dX∗∗ +Bm

(π2
2

)
+
β(h2 − a2)

4

(∫ 1

−1

1√
1− T ∗2

∞∑
n=0

AnT2n+1(T
∗)dT ∗

)(∫ 1

−1
U2n(X∗∗)

√
1−X∗∗2dX∗∗

)

+
β b2

4

(∫ 1

−1

1√
1− T ∗∗2

∞∑
n=0

BnT2n+1(T
∗∗)dT ∗∗

)(∫ 1

−1
U2n(X∗∗)

√
1−X∗∗2dX∗∗

)
=

π

C66
P2m. (43)

where

P1m =

∫ 1

−1
p1(
√
X∗)U2m

√
1−X∗2dX∗, (44)

P2m =

∫ 1

−1
p2(
√
X∗∗)U2m

√
1−X∗∗2dX∗∗. (45)

The Stress intensity factors at the edge crack tip x = a and the central crack tip x = b are
calculated as

KIa = lim
x→a−

√
(a2 − x2)σyy(x, 0) =

√
h2 − a2

2
C66

[ ∞∑
n=0

An

]

KIb = lim
x→b+

√
(x2 − b2)σyy(x, 0) = − b√

2
C66

[ ∞∑
n=0

Bn

]
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Table 1. Elastic Constants
C11 C12 C22 C66

1010 Pa 1010 Pa 1010 Pa 1010 Pa
18.70 1.30 2.92 0.62

4. Results and discussion
In this section we have considered orthotropic material as Steel-Mylar composite material whose
elastic constants are given in table 1(Das et al. [1]).

The computed normalized SIFs KIa and KIb at the cracks’ tips x = a and x = b are found for
the above considered material are displayed through Fig.2 and Fig.3 respectively as and when
p1(
√
X∗) = p2(

√
X∗∗) = p and h = 4.0 unit. In Fig.2, it is seen that the SIF KIa increases

when the edge crack position is kept fixed at a = 3.0 unit and varying the central crack length
as b = 2.50(0.05)2.95. That is as the central crack approaches to the edge crack, the SIF KIa

increases.

Again if the central crack length is kept fixed at b = 2.8 and varying the edge crack location
3.8(0.1)3.1, it is seen that the SIF KIb increases (Fig.3). In this case also KIb increases when
the edge crack location will be approaching close to the central crack tip.

Figure 2. SIF at the point a- versus b/a

5. Conclusion
In the present article, the author has made an endeavour to find the SIFs at the cracks’ tips
when the orthotropic material consists of one central crack and two edge cracks. The important
feature of the article is the graphical presentations of the increasing tendency of SIFs when the
position of one crack approaches to another one.

Acknowledgement
The author is grateful to the Ministry of Human Resource Development, Government of India,
New Delhi for their financial support towards this study under the SRF schemes.



International Conference on Mathematical Modelling in Physical Sciences

IOP Conf. Series: Journal of Physics: Conf. Series 1141 (2018) 012109

IOP Publishing

doi:10.1088/1742-6596/1141/1/012109

9

Figure 3. SIF at the point b+ versus b/a
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