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Abstract. In this paper, we presented a mathematical formulation deals with the flow of
micro-polar fluid in a circular cylindrical tube of non-uniform cross-sectional area induced by
peristaltic waves of increasing amplitude. This is an intended act to model the swallowing of
various types of foods in the oesophagus which suffers from a hiatus hernia. Due to sliding
hiatus hernia, the cross-section of the lower oesophagus does not remain uniform. The impact
of bulging, which is formed by various combinations of divergence and convergence, has been
examined. The effects of dilating amplitude, a slope of the tube wall, the coupling number, and
micro-polar parameter, have been investigated.

1. Introduction
A peristaltic pump is a device for pumping fluids, generally from a region of lower to higher
pressure, by means of a contraction wave travelling along a tube-like structure. This travelling-
wave phenomenon is referred to as “peristaltis”. Peristalsis originated naturally as a means of
pumping physiological fluids from one place in the body to another and is the primary pumping
mechanism in swallowing (and indeed all the way through the alimentary canal) (cf. J. G.
Brasseur [25]). Examples include the food is moved through the digestive system, passage of
urine from the kidney to the bladder. Peristaltic transport deals with a given train of waves
moving with invariable speed on the elastic boundaries. It pumps bio-fluids against the pressure
rise. Peristaltic waves occur in the oesophagus, stomach, vas deferens, fallopian tube, intestines
and in many other parts of human body. A major industrial and clinical application of this
principle is in the design of the diabetic pump, blood pumps in heart- lung machines, roller
and finger pumps. It also has other industrial applications such as transport of corrosive fluids
and sanitary fluid transport for which contact of the fluid with the machinery components is
forbidden.

The dome-shaped muscle which separates the abdomen and chest is called diaphragm. The
oesophagus passes through an opening (the hiatus) in the diaphragm to connect to the stomach.
When elements of the abdominal cavity bulge up through the oesophageal hiatus into the part of
the thoracic cavity between the lungs is called hiatus hernia (Figure 1). One of the recognized
theories of the origin of this hiatus hernia is that intra-abdominal pressure increases above
the normal value to increase the normal gradient between intra-thoracic and intra-abdominal
pressure. Consequently, the oesophagogastric junction is pushed up into hiatus ( cf. Christensen
and Miftakhov [1]). Due to this herniation oesophagus diverges at the distal end. This model

http://creativecommons.org/licenses/by/3.0
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(a) (b)

Figure 1: Diagrams for (a) Normal oesophagus and (b) Oesophagus suffering from sliding hiatus
hernia

investigates the effect of this divergence of oesophagus on swallowing of such food stuffs which
have micropolar fluid nature.

We focus our study on sliding hiatus hernia which is very common and is defined as a significant
axial prolapsed of a portion of the stomach through the diaphragmatic oesophageal hiatus. It
is usually described as a more than 2 cm separation of the upward displaced oesophagogastric
junction and diaphragmatic impression (cf. Weyenberg[2]).

The lower oesophageal sphincter is a thickened area of the circular muscle layer of the distal
oesophagus, in humans extending over an axial length of 2-4 cm. The main function of the lower
oesophageal sphincter is to generate a high-pressure zone to save from harm the oesophagus
against reflux from caustic gastric contents. During swallowing or belching, its muscle must
relax temporarily in order to permit passage of ingested food or intra-gastric air. Swallow-
induced relaxation is part of primary peristalsis (cf. Boeckxstaens[3]).

Micro polar fluids contain micro constituents which can undergo rotation, the presence of
which can affect the hydrodynamics of the flow such that it can be distinctly non- Newtonian.
Physically, micro polar fluids may represent fluids consisting of rigid, randomly oriented (or
spherical) particles suspended in a viscous medium, where the deformation of fluid particles is
ignored (cf. Grzegorz Lukaszewicz[24]). Micro-polar fluids are the very common type of fluids
such as blood, some edible solutions, polymer solutions, colloidal solutions, drilling fluids in oil
industries, some food materials such as the solutions of roasted cereal powders consumed in
Indian sub continent (cf. Bourne[4]).

The study of the mechanism of peristalsis, in mechanical and physiological situation has been
the object of scientific research from the long time. Since the first investigation of Latham [5],
several theoretical and experimental attempts have been made to understand peristaltic action
in different situations. In the early studies of peristalsis, most of the theoretical investigations
and clinical observations took time to gain momentum ([6], [7]). These investigations are carried
out by considering fluid as Newtonian and tube or channel as having uniform cross-sectional
area. With the development of medical and physical sciences, it has been recognized that the
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bio-fluids do not behave like Newtonian fluids and fail to give a better understanding when a
peristaltic mechanism is involved in small blood vessels, intestine, transport of spermatozoa in
the cervical canal. It has now been accepted that most of the physiological fluids behave like the
non-Newtonian fluids. Peristalsis in a male reproductive system was observed experimentally
and numerically by Batra [8], Guha et al. [9], Gupta et al. [10] and Srivastava et al. [11]. Guha
et al. [9] studied the transport of the spermatic fluid in the vas deferens of monkey and reported
that the transportation during ejaculation is mainly due to contraction of the ampulla and filling
during the non-ejaculatory phase is due to peristalsis and epididymal pressure. Srivastava et al.
([11], [12]) modelled the peristaltic flow in the vas deferens by considering it a non-uniform
diverging tube and a channel. They examined a more realistic model by investigating power-law
fluid flow in a non-uniform tube and blood as a Casson fluid flowing inside small capillaries and
blood vessels. Misra and Pandey [13] modelled axisymmetric peristaltic motion of a Newtonian
viscous incompressible fluid through a flexible tube of changing cross-section, where the nonlinear
convective acceleration terms were supposed to be not negligible compared to the viscous terms.
Their reports were more ascribable than the previous reports for spermatic flow reported by
Guha et al. [9]. Eytan et al. ([14], [15]) investigated the effect of peristalsis in embryo transport
within the uterine cavity. They discussed in detail the phenomenon of trapping and how the
particle reflux impedes the embryo implantation at the fundus. Hariharan et al. [16] studied
the peristaltic transport of non-Newtonian fluid in a diverging tube with different waveforms
and concluded that square wave has the best pumping characteristics of all the wave forms and
the triangular wave has the worst characteristics.

Li and Brasseur [17] studied the transport of food bolus in the oesophagus with integral
and non-integral number of waves. Misra and Pandey [18] gave a more suitable model with
modified wall equation for oesophageal swallowing. Pandey and Chaube ([19], [20]) investigated
the peristaltic transport of Maxwell and viscoelastic fluid in a channel and a tube of varying
cross sections respectively. Kahrilas et al. [21] reported an experimental investigation of high-
pressure zone located in the lower part of the oesophagus whose length varies from a normal
oesophagus to an oesophagus which suffers from a hiatus hernia. In another experimental
investigation, Xia et al. [22] measured oesophageal wall thickness in contracted and dilated
states through CT images of adult patients without oesophageal diseases. On the basis of this,
Pandey et al. [23] concluded that in the dilated state the upper oesophagus is thicker while in
the contracted state the lower oesophagus is thicker and modelled the oesophageal swallowing
with peristaltic waves of exponentially increasing wave amplitude for a Newtonian fluid. Several
kinds of literature are available that explain the mathematics of peristalsis and its effect on the
fluid flow in a diverging tube with non-Newtonian fluid. This investigation is different from those
of previous investigations. Because, due to sliding hiatus hernia the cross-sectional area of the
oesophagus does not keep on uniform throughout its length, and consequently, it gets diverged
at the distal end. Sometime it may be diverged and then converged near the distal end. In light
of this, the purpose of the present analysis is to put forward the effect of sliding hiatus hernia
on the oesophageal swallowing with dilating peristaltic wave amplitude for non-Newtonian fluid
(micro-polar fluid).

2. Mathematical Formulation
We consider the flow of micro-polar fluid in a tube of length of l̃ caused by continuous contraction
waves that propagate on the walls of the tube (cf. Fig. 2) and are given by

H̃(x̃, ω̃, t̃) = a+ b̃x̃− φ̃ eω̃x̃ cos2
π

λ
(x̃− ct̃), (1)
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where H̃, x̃, t̃, a, b̃, φ̃, λ, ω̃ and c respectively stand for radial displacement of the wall, axial
coordinate, time, radius of the tube, constant whose magnitude depend on the length of the
tube or slope of the tube wall, amplitude of the wave, wavelength, damping parameter and wave
velocity.

The governing equations of the flow of micro-polar fluid in the absence of body forces and
body couple are given by

∂ũ

∂x̃
+

1

r̃

(
∂(r̃ṽ)

∂r̃

)
=0, (2)

ρ

(
∂ũ

∂t̃
+ ũ

∂ũ

∂x̃
+ ṽ

∂ũ

∂r̃

)
=− ∂p̃

∂x̃
+ k

1

r̃

∂(r̃W̃ )

∂r̃
+ (µ+ k)

(
∂2ũ

∂x̃2
+

1

r̃

∂

∂r̃

(
r̃
∂ũ

∂r̃

))
, (3)

ρ

(
∂ṽ

∂t̃
+ ũ

∂ṽ

∂x̃
+ ṽ

∂ṽ

∂r̃

)
=− ∂p̃

∂r̃
− k∂W̃

∂x̃
+ (µ+ k)

(
∂2ṽ

∂x̃2
+

∂

∂r̃

(
1

r̃

∂(r̃ṽ)

∂r̃

))
, (4)

ρσ̃

(
∂W̃

∂t̃
+ ũ

∂W̃

∂x̃
+ ṽ

∂W̃

∂r̃

)
=− 2kW̃ + k

(
∂ṽ

∂x̃
− ∂ũ

∂r̃

)
+ γ

(
∂2W̃

∂x̃2
+

∂

∂r̃

(
1

r̃

∂(r̃W̃ )

∂r̃

))
+ (α+ β + γ)∇̃(∇̃.W̃ ). (5)

where ũ, ṽ, W̃ , r̃, ρ, σ̃ are axial velocity, radial velocity, micro-polar vector, radial coordinate,
fluid density, micro-gyration parameter, respectively and µ, k, α, β, γ are material constants and
satisfy the following conditions:

2µ+ k ≥ 0, k ≥ 0, 3α+ β + γ ≥ 0, γ ≥| β |, (6)

For the subsequent analysis, the dependent variables are non-dimensionalized as follow.

x =
x̃

λ
, r =

r̃

a
, t =

ct̃

λ
, u =

ũ

c
, v =

ṽ

cδ
, δ =

a

λ
, W =

aW̃

c
, H =

H̃

a
, b =

b̃λ

a
,

l =
l̃

λ
, φ =

φ̃

a
, σ =

σ̃

a2
, p =

p̃a2

µcλ
, Re =

ρcaδ

µ
, Q =

Q̃

πa2c
, ω = λω̃, (7)

where δ = a
λ is wave number; Re is the Reynolds number and Q is volume flow rate.

After introducing the non dimensional parameters equations from (2)-(5) becomes as follow:

∂u

∂x
+

1

r

(
∂(rv)

∂r

)
=0,

Reδ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂r

)
=− ∂p

∂x
+

N

1−N
1

r

∂(rW )

∂r

+
1

1−N

(
δ2
∂2u

∂x2
+

1

r

∂

∂r

(
r
∂u

∂r

))
,

Reδ3
(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂r

)
=− ∂p

∂r
+

δ2

1−N

(
−N ∂W

∂x

+
∂

∂r

(
1

r

∂(rv)

∂r

)
+ δ2

∂2v

∂x2

)
,

σReδ(1−N)

N

(
∂W

∂t
+ u

∂W

∂x
+ v

∂W

∂r

)
=− 2W +

(
δ2
∂v

∂x
− ∂u

∂r

)
+

2−N
m2(

∂

∂r

(
1

r

∂(rW )

∂r

)
+ δ2

∂2W

∂x2

)
.
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Figure 2: The diagram, based on Eq. (12), represents the propagation of a progressive wave
along the walls of the tube containing fluid, which undergoes contraction and relaxation but no
expansion beyond the boundary.

Employing long wavelength and low Reynolds number approximations, the non-dimensional
equations obtained from above equations reduce to

∂u

∂x
+

1

r

(
∂(rv)

∂r

)
=0, (8)

∂p

∂x
=

1

1−N

{
N

r

∂(rW )

∂r
+

1

r

∂

∂r

(
r
∂u

∂r

)}
, (9)

∂p

∂r
=0, (10)

2W +
∂u

∂r
− 2−N

m2

∂

∂r

(
1

r

∂(rW )

∂r

)
=0. (11)

where N = k
(µ+k) is the coupling number i.e. a measure of particle coupling with its surroundings

(0 ≤ N ≤ 1),m =
√

a2k(2µ+k)
γ(µ+k) , is the micro-polar parameter and α, β do not appear in the

governing as the micro-rotation vector is solenoidal, i.e. ∇.W = 0. In the limiting case, k → 0
i.e., N → 0, the governing equations for the micro-polar fluid reduce to the governing equations
for Newtonian fluid.

H(x, ω, t) = 1 + bx− φ eωx cos2 π(x− t), (12)

The boundary conditions imposed on the governing equations are as follow

u(x, r, t)
∣∣∣
r=H

=0, v(x, r, t)
∣∣∣
r=H

=
∂H

∂t
,

v(x, r, t)
∣∣∣
r=0

=0,
∂u(x, r, t)

∂r

∣∣∣
r=0

=0, (13)

W (x, r, t)
∣∣∣
r=0

=0, W (x, r, t)
∣∣∣
r=H

=0. (14)
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3. Solution of the Problem
Integration of equation (9) once with respect to r yields

∂u

∂r
= (1−N)

r

2

∂p

∂x
−NW +

C1

r
, (15)

Further, integrating equation (11) twice with respect to r and also using equation (15), we
obtained non-homogeneous Bessel equation as:

∂2W

∂r2
+

1

r

∂W

∂r
−
(
m2 +

1

r2

)
W =

m2

2−N

{
(1−N)

r

2

∂p

∂x
+
C1

r

}
,

The general solution of above equation as follows

W = C2I1(mr) + C3K1(mr)−
1

2−N

{
(1−N)

r

2

∂p

∂x
+
C1

r

}
, (16)

where C1, C2, C3 are arbitrary functions independent of r and I1(mr),K1(mr) are respectively
the modified Bessel functions of the first and second kind of the first order.

Then applying fourth boundary condition of equation (13) and the boundary conditions (14).
Then equations (15) and (16) become

∂u

∂r
=

1−N
2−N

∂p

∂x

{
r − NH

2

I1(mr)

I1(mH)

}
, (17)

W =
1−N

2(2−N)

∂p

∂x

{
HI1(mr)

I1(mH)
− r
}
. (18)

and further integrating equation (17) and applying the no-slip condition of equation (13), the
axial velocity is found as

u =
1−N

2(2−N)

∂p

∂x

{
r2 − (1 + bx)(1 + bx− φeωx

− φeωx cos 2π(x− t))− φ2e2ωx

4
(1 + 4 cos 2π(x− t) + cos2 2π(x− t))

+
NH

m

(
I0(mH)− I0(mr)

I1(mH)

)}
, (19)

where I0(mr), I0(mH) are the modified Bessel functions of the first kind and the zeroth order.

The radial velocity is derived from equation (11), by substituting u from equation (19) and
integrating it once with respect to r . The regularity condition, given in equation (13), deter-
mines the constant term and gives the radial velocity as

v =
1−N

2(2−N)

[{
b+

φeωx

2
(2π sin 2π(x− t)− ω cos 2π(x− t)− 1)

}∂p
∂x

{
rH

− N

m

{r
2

∂

∂x

(
HI0(mH)

I1(mH)

)
−
{
b+

φeωx

2
(2π sin 2π(x− t)− ω cos 2π(x− t)− 1)

}I1(mr)
m

∂

∂x

(
1

I1(mH)

)}}

− ∂2p

∂x2

{r3
4
− rH2

2
+

NH

mI1(mH)

(
r

2
I0(mH)− I1(mH)

m

)}]
, (20)
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In order to get pressure gradient, we apply the radial velocity of the wall, given in equation (13),
on equation (20). This gives

H
∂H

∂t
=

1−N
2(2−N)

[{
b+

φeωx

2
(2π sin 2π(x− t)− ω cos 2π(x− t)− 1)

}∂p
∂x

{
H3

− NH

m

{
H

2

∂

∂x

(
HI0(mH)

I1(mH)

)
−
{
b+

φeωx

2
(2π sin 2π(x− t)− ω cos 2π(x− t)− 1)

}I1(mH)

m

∂

∂x

(
1

I1(mH)

)}}

− ∂2p

∂x2

{H4

4
+
NH2

2m2

(
2− mHI0(mH)

I1(mH)

)}]
, (21)

Integrating of which, with respect to x, yields the pressure gradient as

∂p

∂x
=

8(2−N)

1−N[
C(t) + πφ

4

∫ x
0 e

ωx{(2φeωx − 4(bx+ 1)) sin 2π(x− t) + φeωx sin 4π(x− t)} ds

H4 + 4NH2

m2

(
1− mHI0(mH)

2I1(mH)

) ]
, (22)

Again integrating it from 0 to x, the pressure difference is obtained as

p(x, t)− p(0, t) =
8(2−N)

1−N[∫ x

0

C(t) + πφ
4

∫ s
0 e

ωx{(2φeωx − 4(bx+ 1)) sin 2π(x− t) + φeωx sin 4π(x− t)} ds1
H4 + 4NH2

m2

(
1− mHI0(mH)

2I1(mH)

) ds

]
, (23)

Putting x = l in equation (23), the pressure difference between the inlet and the outlet of the
tube is obtained as

p(l, t)− p(0, t) =
8(2−N)

1−N[∫ l

0

C(t) + πφ
4

∫ x
0 e

ωx{(2φeωx − 4(bx+ 1)) sin 2π(x− t) + φeωx sin 4π(x− t)} ds

H4 + 4NH2

m2

(
1− mHI0(mH)

2I1(mH)

) ds

]
, (24)

where C(t) is a function of t which is evaluated as

C(t) =

8(2−N)
1−N ∆pl(t)−

∫ l
0

πφ
4

∫ x
0 eωx{(2φeωx−4(bx+1)) sin 2π(x−t)+φeωx sin 4π(x−t)} ds

H4+ 4NH2

m2

(
1−mHI0(mH)

2I1(mH)

) dx∫ l
0

1

H4+ 4NH2

m2

(
1−mHI0(mH)

2I1(mH)

)dx , (25)

where ∆pl(t) = p(l, t)−p(0, t) is the pressure difference between the inlet and outlet of the tube.

The volume flow rate is defined as

Q(x, t) =

∫ H

0
2ur dr,
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this yields, on performing the integration, the following expression

Q(x, t) =
N − 1

4(2−N)

∂p

∂x

{
H4 +

4NH2

m2

(
1− mHI0(mH)

2I1(mH)

)}
, (26)

The time-averaged volume flow rate is obtained by averaging the volume flow rate for one time
period. This gives

Q(x, t) =
N − 1

4(2−N)

∫ 1

0

∂p

∂x

{
H4 +

4NH2

m2

(
1− mHI0(mH)

2I1(mH)

)}
dt, (27)

The time-averaged volume flow rate can be given in terms of the flow rate in the wave frame,
and also in the laboratory frame, as

Q̃ =q + 1 + b2x2 − 2bx− (1− bx)φeωx +
3

8
φ2e2ωx,

Q̃ =Q− 4bx+ (2bx+ (1 + 2bx) cos 2π(x− t))φeωx

+
1

32
(9− 4 cos 4π(x− t)− 16 cos 2π(x− t))φ2e2ωx, (28)

This helps us express the pressure gradient in terms of the time-averaged volume flow rate. With
some manipulations equation (26) and (28) give

∂p

∂x
=

4(2−N)

N − 1

[
Q̃+ 4bx− (2bx+ (1 + 2bx) cos 2π(x− t))φeωx

H4 + 4NH2

m2

(
1− mHI0(mH)

2I1(mH)

)
−

1
32(9− 4 cos 4π(x− t)− 16 cos 2π(x− t))φ2e2ωx

H4 + 4NH2

m2

(
1− mHI0(mH)

2I1(mH)

) ]
, (29)

On integration, which yields pressure difference, in terms of the time-averaged volume flow rate,
as

p(x)− p(0) =
4(2−N)

N − 1

∫ x

0

[
Q̃+ 4bx− (2bx+ (1 + 2bx) cos 2π(x− t))φeωx

H4 + 4NH2

m2

(
1− mHI0(mH)

2I1(mH)

)
−

1
32(9− 4 cos 4π(x− t)− 16 cos 2π(x− t))φ2e2ωx

H4 + 4NH2

m2

(
1− mHI0(mH)

2I1(mH)

) ]
ds, (30)

which gives x = l for

p(l)− p(0) =
4(2−N)

N − 1

∫ l

0

[
Q̃+ 4bx− (2bx+ (1 + 2bx) cos 2π(x− t))φeωx

H4 + 4NH2

m2

(
1− mHI0(mH)

2I1(mH)

)
−

1
32(9− 4 cos 4π(x− t)− 16 cos 2π(x− t))φ2e2ωx

H4 + 4NH2

m2

(
1− mHI0(mH)

2I1(mH)

) ]
ds, (31)
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4. Result and discussions
In sequence to explore the effects of numerous parameters such as coupling number, micro-polar
parameter and dilation wave amplitude on swallowing of a micropolar fluid, we plot graphs for
local pressure along the axis. The case considered here is free pumping which is attained only by
provision zero pressure at the two ends of the oesophagus i.e. ∆pl(t) = 0, (pl(t) = p(l, t)−p(0, t)).
When a non-Newtonian fluid swallows, practically at a time only one bolus moves in the
oesophagus. Therefore, for the descriptive expression, we deal with single bolus swallowing
in the oesophagus although it can accommodate as many as three boluses at a time as per our
discussion.

The fundamental motive is the pressure distribution along the axis when a bolus travels
down the oesophagus towards the cardiac sphincter. Since the mathematical model involves
expressions that cannot be integrated by classical methods, the only way out is to go for the
numerical solution. Moreover, the values of all the non-dimensional parameters are merely
suitable assumptions to facilitate the qualitative investigation.

4.1. Effect of dilating wave amplitude ω on pressure
The effect of dilating wave amplitude ω on the flow dynamics is sketched in Fig.3. The
observation of plot at t = 0.00 to t = 2.00 (Fig. 3) show that dissimilar the case of peristaltic
wave with constant amplitude (Figs. 3(a)-3(i), corresponding to ω = 0.00 ), the variation
between the maximum and the minimum pressures becomes larger when wave-amplitude dilates
(Figs. 3(a)-3(i), corresponding to ω = 0.02 and ω = 0.04), i.e., pressure distribution for dilating
amplitude is observed to differ from that for constant amplitude. An observation of Figures 3(a)
and 3(i) reveal that pressure gradients, corresponding to ω = 0.02 and ω = 0.04 are greater in
magnitude in the lower oesophageal part than that in the upper oesophageal part and also, the
pressure rises most in the lower part of the oesophagus. It confirms the experimental observations
(Kahrilas et al.[21]) of the high-pressure zone in the lower oesophageal part.

3(a) t = 0.00 3(b) t = 0.25
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3(c) t = 0.50 3(d) t = 0.75

3(e) t = 1.00 3(f) t = 1.25

Achalasia causes inadequate lower oesophageal sphincter relaxation. As a consequence of
inadequate lower oesophageal sphincter relaxation oesophageal clearance is deferred. Therefore,
a possible treatment for patients with inadequate lower oesophageal sphincter relaxation may be
that this is overcome through drugs or operation (Spechler and Castell [26]). Our investigation
reveals that swallowing of pseudoplastic fluid requires lesser pressure in compression to that of
micropolar fluid or dilatant fluid. Hence, an outcome of the present analysis defends feeding of
micropolar fluids for patients suffering from achalasia.
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3(g) t = 1.50 3(h) t = 1.75

3(i) t = 2.00

Figure 3: ((a)-(i)Pressure dis-
tribution along axial distance at
different time instant showing
the effect of dilation parameter
ω. Other parameters are taken
as l = 3, φ = 0.7, N = 0.15,m =
1.0, b = 0.03.
Note: Notation W is taken for
dilation parameter instead of ω
in figure 3 only.

4.2. Effect of the slope of the tube wall b on pressure
The effect of the slope of the tube wall on pressure distribution is shown in Figures 4. The
pressure is measured at different time instants. We set φ = 0.7, ω = 0.001, N = 0.15,m = 1.00
and b is varied in the range 0.00 − 0.04. At t = 0.00(Fig. 4(a)) it is observed that greater the
slope of the tube wall, lower is the fall in pressure revealing a smaller requirement of pressure.
The pressure distribution curves at t = 0.25 (Fig. 4(b)) show that the pressure rise, for diverging
tube behind the bolus, is greater than that for a uniform tube (b = 0.00) but pressure fall is
lower than that for a uniform tube. The pressure distribution curve shows the similar trends at
0.50 (Fig. 4(c)) and t = 0.75 (Fig. 4(d)) as the previous. At t = 1.00 (Fig. 4(e)) and t = 2.00
(Fig. 4(i)), when bolus is situated within the diverged part of the oesophagus, pressure rises
here but is less for the diverging tube in comparison to the uniform tube. The comparison of
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4(a) t = 0.00 4(b) t = 0.25

4(c) t = 0.50 4(d) t = 0.75

plots at t = 0.00 and t = 2.00 (Fig. 4, corresponding to b = 0.002, 0.04) show that the difference
between the maximum and the minimum pressures becomes smaller when a tube is non-uniform.

In other words for the diverging tube, the upper oesophageal sphincter pressure may be larger
than that of lower oesophageal sphincter pressure. When bolus is about to enter in the stomach
the pressure rise and fall in the diverging tube are smaller than that in the uniform tube.
Therefore, the pressure required to deliver the bolus in the stomach is smaller for diverging
oesophagus than that of uniform. The interesting observation is that although tube diverges
near the end only, its impact is seen on the pressure distribution right from the beginning of the
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4(e) t = 1.00 4(f) t = 1.25

4(g) t = 1.50 4(h) t = 1.75

oesophagus.

4.3. Effect of Coupling Number N on pressure
It also admits that as the coupling effect parameter N increases, pressure gradient, as well as
pressure along the length of the oesophagus, magnifies which may be physically explained as
that internal rotation of the fluid particles increases pressure; and finally, when N → 0 , i.e., the
fluids reduce to Newtonian, the pressure is minimum. This may lead to the conclusion that the
oesophagus has to make additional efforts to swallow a micropolar fluid. A similar observation
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4(i) t = 2.00

Figure 4: ((a)-(i))Pressure dis-
tribution along axial distance at
different time instant showing
the effect of the slope of the
tube wall b. Other prameters
are taken as l = 3, φ = 0.7, ω =
0.001, N = 0.15,m = 1.0

is made for all values of t ranging from 0→ 2, i.e., throughout one time period. Temporal effects
are similar to those observed for Newtonian fluids, power-law fluids, viscoelastic fluids, visco-
plastic fluids and magnetohydrodynamic fluids (cf. [16], [20]). Figures, together with captions,
provide the details (cf. Fig. 5).

4.4. Effect of the Micropolar parameter m on pressure
We further accomplish analysis into the role of the other micropolar parameter m. It is noticed
that the pressure along the entire length of the oesophagus decreases as m increases (cf. Fig. 6).
Hence, this parameter has an opposite effect vis-à-vis coupling number N (cf. Fig. 5). Since no

5(a) t = 0.00 5(b) t = 0.25
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5(c) t = 0.50 5(d) t = 0.75

5(e) t = 1.00 5(f) t = 1.25

value of m can leads to Newtonian nature, no comparison can be made with Newtonian fluids.
In fact, the micropolar fluid has a complicated characteristic that is built up by the combined
effects of these two parameters. This may be recorded that once N = 0, m holds to disturb the
flow (cf. Eq. (23)).

5. Conclusion and physical interpretation
The objective of this analysis is to pick up the effect of dilating wave amplitude on the nature of
the non-Newtonian fluid. Which is flowing in the oesophagus. Here, the non-Newtonian nature
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5(g) t = 1.50 5(h) t = 1.75

5(i) t = 2.00

Figure 5: ((a)-(i))Pressure dis-
tribution along axial distance at
different time instant showing
the effect of coupling number N .
Other paremeters are teken as
l = 3, φ = 0.7, ω = 0.001,m =
1.0, b = 0.03

is characterized by the micropolar parameter and coupling number. All these characteristics
give it the name Micro-polar fluid. The presence of coupling number and micro-polar parameter
requires more pressure to be exerted by the oesophagus wall on the fluid swallowing inside it.
Dragging by the dilating wave amplitude increases it further. This confirms the experimental
observations (kahrilas et al. [21]) of high-pressure zone in the lower part of the oesophagus.

The micro-polar and Newtonian fluids have qualitatively identical pressure distributions, but
differences in magnitudes are very much significant. The acknowledgement is that N coupling
number and dilation parameter ω increases pressure along the entire length of the oesophagus,
while the other micro-polar parameter m and slop of the tube wall b decrease it.
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It is also noticed that the magnitude of pressure along the oesophagus increases with increasing
coupling number which reveals that swallowing of micropolar fluid is easier than that of
dilatant fluid. It is also observed that for exponentially increasing wave-amplitude, pressure
keeps increasing along the entire length of the oesophagus; and finally, towards the end of
the oesophageal flow, it is at the peak level. It is observed that the pressure distribution is
dependent on the position of the wave that propagates in the oesophagus. The local rate of
change in the pressure difference is found to be much greater when the wave originates at the
inlet and terminates at the outlet of the oesophagus than when the wave travels in the middle
(Figs. 3-6). This may be associated with the fact that the pumping action does not take place
along the entire length of the oesophagus uniformly. The rate of change is higher in the proximity

6(a) t = 0.00 6(b) t = 0.25

6(c) t = 0.50 6(d) t = 0.75
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6(e) t = 1.00 6(f) t = 1.25

6(g) t = 1.50 6(h) t = 1.75

of the inlet and the outlet. It is further concluded that the pressure difference at a given axial
position is higher for a dilatant fluid than that for a pseudoplastic fluid. The pressure-difference
corresponding to a Bingham fluid falls in between these two values. This is also achieved on the
basis of the present investigation that feeding of micropolar fluids is preferable to the patients
suffering from achalasia.
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6(i) t = 2.00

Figure 6: ((a)-(i))Pressure dis-
tribution along axial distance at
different time instant showing
the effect of Micropolar param-
eter m. Other parameters are
taken as l = 3, φ = 0.7, ω =
0.001, N = 0.50, b = 0.03
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