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 

Abstract: Image noise refers to the specks of false colors or 

artifacts that diminish the visual quality of the captured image. It 

has become our daily experience that with affordable 

smart-phone cameras we can capture high clarity photos in a 

brightly illuminated scene. But using the same camera in a poorly 

lit environment with high ISO settings results in images that are 

noisy with irrelevant specks of colors. Noise removal and contrast 

enhancement in images have been extensively studied by 

researchers over the past few decades. But most of these 

techniques fail to perform satisfactorily if the images are captured 

in an extremely dark environment. In recent years, computer 

vision researchers have started developing neural network-based 

algorithms to perform automated de-noising of images captured 

in a low-light environment. Although these methods are 

reasonably successful in providing the desired de-noised image, 

the transformation operation tends to distort the structure of the 

image contents to a certain extent. We propose an improved 

algorithm for image enhancement and de-noising using the 

camera’s raw image data by employing a deep U-Net generator. 

The network is trained in an end-to-end manner on a large 

training set with suitable loss functions. To preserve the image 

content structures at a higher resolution compared to the existing 

approaches, we make use of an edge loss term in addition to PSNR 

loss and structural similarity loss during the training phase. 

Qualitative and quantitative results in terms of PSNR and SSIM 

values emphasize the effectiveness of our approach. 

 
Keywords: Image Noise, PSNR, ISO, Illumination, Network 

based Algorithms.  

I. INTRODUCTION 

In the past, the quality of digital photographs was mostly 

dependent on the availability of high-end camera sensors and 

optics. Thus, for capturing good quality digital photographs, 

it was mandatory to use cameras with sophisticated hardware 

which was cost-intensive. With the gradual advancement of 

digital photography technology, nowadays we no longer rely 

on cameras with high-end hard-ware support to capture good 

photographs. Rather, we are more interested in procuring 

cameras with good soft-ware features, since these are capable 

of providing good quality photographs within an affordable 

price range. 

This is also evident from the fact that Google’s Pixel phone, 

which consists of only a 12.3-megapixel camera, is capable of 
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producing high-quality images of even a fast-moving object. 

The quality of these images is comparable with that of 

snapshots captured by a high-end digital single-lens reflex 

camera (DSLR). The HDR+ burst photography technology is 

the reason behind the outstanding performance of Google’s 

Pixel camera [1]. It takes as input a sequence of images 

captured in rapid succession to generate a de-blurred and 

enhanced image. Apart from this, a number of de-noising 

techniques have been developed that work on a single noisy 

image, e.g., (i) threshold-based de-noising in wavelet domain 

[2, 3], (ii) Bayesian denoising in wavelet domain [4], (iii) 

directional transformation based denoising [5], (iv) non-local 

means [6, 7, 8], etc. Block Matching 3D (BM3D) [9] is one of 

the state-of-the-art denoising algorithms developed for 

removing additive white Gaussian noise from images. 

However, each of the above methods has its own limitation in 

the sense that it is successful in eliminating only specific types 

of noise. Since, in a real environment, the noise distribution is 

not known, the above algorithms fail to perform satisfactorily 

always. 

Deep neural networks are popular for their strong 

generalization ability in learning the underlying function if an 

adequate number of input-output patterns are available, and 

these networks have been extensively used in the recent past 

to perform a number of image-to-image translation tasks. In 

the present work, we consider a data set of ground truth 

images is available that consists of (a) noisy images captured 

in extreme low-light conditions and (b) corresponding 

denoised images. We first extract important color channels 

from the raw sensor data and next employ an end-to-end 

neural network that is trained with three different loss 

functions to learn the mapping from noisy to denoised images: 

(i) the PSNR loss that minimizes the differences between the 

pixel intensities of the two images, (ii) the SSIM loss that 

minimizes the differences between the luminance, contrast 

and structure between the generated de-noised image and the 

ground truth denoised image, and (iii) the Edge loss that 

preserves the edges and other high frequency components 

present in the ground truth denoised image. The trained model 

is made available at https://github.com, which readers can 

access by clicking here. 

Our model does not take into account any prior information 

regarding the type and distribution of noise, and hence can be 

deployed to perform image denoising in any real-world 

environment. The ground truth data used for training our 

model has been captured in extreme low-light conditions, and 

hence the trained network attains the capability to denoise 

images captured in dark. Neural network-based prediction is 

also much more time-efficient than traditional image 

processing-based approaches 

like BM3D, and the software 

developed out of this work can 

be easily integrated with 
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smart-phone cameras to improve the quality of captured 

images in a cost-effective manner. Experimental results show 

that the proposed approach also outperforms the 

state-of-the-art denoising algorithms when deployed for 

recovering images captured in extreme low-light and noisy 

environments. 

II. RELATED WORK 

The present problem can be viewed as a combination of two 

important subproblems of image processing: (i) image 

contrast enhancement, and (ii) denoising in a low-light 

environment. In this section, we review the existing literature 

pertaining to each of the above sub-problems. Traditional 

contrast enhancement techniques such as histogram 

equalization, power-law transformation, log-transformation, 

etc., are used to improve the contrast of low-light images [10]. 

While power-law and log-transformation techniques require 

manual selection of transformation parameters based on the 

intensity distribution of the image, histogram equalization 

automatically spreads out the most frequently occurring 

intensity values to improve the overall contrast. Other similar 

image processing-based contrast enhancement methods 

include brightness preserving bi-histogram equalization 

(BBHE), and quantized bi-histogram equalization (QBHE) 

[11], dark channel inverse [12, 13], wavelet transform based 

enhancement [14], Retinex model-based enhancement [15], 

and low-light image enhancement by illumination map 

estimation [16]. The above-mentioned techniques are suitable 

for improving the contrast of an image by applying an 

intensity transformation operation on every pixel. However, 

these are not effective enough in solving the problem 

considered in this work, i.e., de-noising images captured in a 

low-light environment. Hence, we have provided only the 

relevant citations without discussing the above methods in 

further depth. 

Existing work on image de-noising can be categorized as 

either non-neural network-based [9, 17, 18, 19, 20, 21], or 

neural network-based [22, 23, 24]. Among these, the neural 

network-based methods have gained more popularity due to 

their high generalization power and robust performance 

against various types of noise, including natural noise. Before 

discussing the recent neural network-based de-noising 

techniques, we briefly highlight some widely used primitive 

non-neural based approaches to image de-noising. One such 

algorithm is the block-matching and 3D filtering (BM3D) 

algorithm [9], which is till-date regarded as one of the most 

popular algorithms for image de-noising due to its capability 

to effectively eliminate additive white Gaussian noise and 

speckle noise from images. The algorithm works by finding 

groups of similar patches of the same size in the image and 

stacks each group together to construct a 3D cylinder. A linear 

transform followed by Wiener filtering is next applied on each 

fragment group followed by inversion of the linear transform 

to filter out the noise. Finally, the image is transformed back 

to its two-dimensional form. One drawback of this approach 

is that it is unable to perform blind denoising, i.e., the noise 

level in the image must be mentioned while performing the 

algorithm. Moreover, it is not successful in handling real 

noise. The work in [17] describes an adaptive total variation 

model based on a new orientation information metric for 

image de-noising. Other popular non-neural network-based 

approaches include denoising via wavelet-domain processing 

[18], sparse coding [19], nuclear norm minimization [20], and 

K-SVD algorithm [21], etc. 

In recent years, several neural network-based image 

de-noising and enhancement algorithms have been proposed. 

For example, in [22] Zhang et al. proposed a deep network 

(abbreviated as DnCNN), which is a residual learning-based 

convolutional neural network for de-noising images corrupted 

at different noise levels. This network is capable of handling 

additive white Gaussian noise more effectively than any other 

non-neural network-based approaches, but it performs poorly 

in de-noising images degraded with real noise. In other words, 

DnCNN cannot de-noise images effectively if the noise 

distribution is unknown. Moreover, this network is unable to 

improve the image contrast, and hence cannot be potentially 

used for low-light image enhancement. A stacked sparse 

denoising auto-encoder (abbreviated as LLNet) for image 

enhancement has been proposed by Lore et al. in [23] which 

has been shown to work well in de-noising low-light 

gray-scale images. However, we observe that the performance 

of this method reduces drastically if multi-channel images are 

given as input, and hence it is not suitable enough for practical 

application. 

Inspired by the classical BM3D denoising technique [9] 

described earlier, in [25] Yang et al. proposed a 

learning-based technique termed as BM3D-Net that maps the 

entire computational pipeline of the BM3D approach into the 

convolutional neural network architecture. BM3D-Net has 

been seen to achieve better performance in image de-noising 

as compared to the traditional BM3D method. This approach 

works satisfactorily on gray-scale or depth-images, corrupted 

with Gaussian noise. But its applicability in removing real 

noise has not been tested yet. The method described in [24] 

has an objective similar to our work, i.e., it also attempts to 

enhance and remove noise from images captured in a 

low-light environment. The authors use a U-Net generator for 

de-noising and enhancing an input noisy image, but the 

training of the network is accomplished by considering the 

mean squared error (MSE) metric as the only loss function. 

Results given in [24] show that this technique is able to 

perform satisfactorily for scene images corrupted with natural 

noise. However, due to the use of a very simplistic loss 

function, the application of the algorithm on images with 

high-frequency components (such as edges and textures) 

causes a loss in structural information along with de-noising. 

The present work can be considered as an extension of the 

approach given in [24], in which we improve the network 

training phase by employing more appropriate loss functions 

to perform de-noising, contrast enhancement, and retain 

structural information simultaneously. The rest of the paper is 

organized as follows. In Section 4, we explain the steps of our 

algorithm in detail with the help of a block diagram, Section 5 

presents the experimental studies conducted by our team 

along with the results obtained. Finally, Section 6 concludes 

the paper with insights into possible future directions of work. 
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III. PROPOSED APPROACH 

A block diagram of the proposed approach is shown in Figure 

1. 

 

Figure 1: A block diagram of the proposed approach 

 With reference to the figure, the first step is to unpack the 

one-dimensional sensor data into four-dimensional BGGR 

color space based on the Bayer Color Filter Array (CFA) [26]. 

For Bayer arrays, we pack the input into four channels (two 

green, one blue, and one red) and accordingly reduce the 

dimension of channels by a factor of two, following which we 

subtract the black level. Next, the data is scaled by the desired 

amplification ratio (we have used x100 and x300) to enhance 

the brightness of the image. This packed and amplified data is 

finally passed through a deep network to perform de-noising 

in an end-to-end manner, as discussed next. 

 A U-Net architecture has been used as the denoising 

network in the present study. U-Net is a type of auto-encoder 

network with skip connections from the encoding layers to the 

decoding layers. These skip connections help in preserving 

the content of the input image at a higher resolution than the 

traditional auto-encoders. The proposed approach is 

completely supervised, and it involves training the network by 

adjusting its weights in multiple epochs using Adam 

optimizer. The dual objective of image enhancement and 

de-noising is met by considering three different loss 

functions, namely (a) the PSNR Loss, (b) the MS-SSIM Loss 

and (c) the Edge Loss (refer to Figure 1). The PSNR and the 

MS-SSIM losses optimize the structural, luminance, color 

and contrast related features of the generated image with 

respect to the ground truth thereby helping in effective 

de-noising. On the other hand, the Edge Loss helps in image 

enhancement by retaining the high-frequency components of 

the image such as edges and textures. The computation of the 

individual loss functions is discussed in detail next. 

PSNR Loss 

The peak signal-to-noise ratio metric between two images has 

been extensively used in several studies in the past to measure 

the reconstruction quality of an image [27]. This value also 

reveals the amount of noise present in a target image with 

respect to a reference image. Higher the value of the metric, 

lesser is the amount of noise present in the target image. 

Considering the network generated de-noised image at each 

epoch as the target, and the corresponding ground truth 

denoised image as the reference, the peak signal-to-noise ratio 

metric (PSNR) is computed as per (1): 

 

         (1) 

where MAX represents the maximum value of any pixel in the 

image, and MSE denotes the mean squared error between the 

output and the corresponding ground truth image. Since our 

ultimate objective is to tune the network parameters to match 

the generated image with the ground truth denoised image, we 

will try to increase the value of PSNR in successive epochs. 

(1) can be re-written as: 

PSNR = 20log10(MAX) − 10log10(MSE)                          (2) 

Since the value of MAX for both the generated and 

ground-truth denoised images will be comparable, increasing 

the value of PSNR can be said to be equivalent to decreasing 

the value of MSE. The network is trained in multiple epochs 

by considering the value of MSE as the PSNR loss (denoted 

by LPSNR). Mathematically, 

                             (3)  (3) 

where X and Y respectively denote the generated and 

ground-truth denoised images, while X(p) and Y(p) represent 

the intensities at a particular pixel p corresponding to the two 

images X and Y, and N denotes the total number of pixels in 

the image. 

MS-SSIM Loss 

The above loss term alone is not sufficient to retain the 

luminance, contrast and structural similarity of the denoised 

image with respect to the input image. Hence, a second loss 

term is considered which is termed as the MS-SSIM Loss. It 

takes into account the structural and contrast related aspects 

of an image properly in order to generate an aesthetically 

pleasing de-noised version of the input noisy image. 

Pixel-wise computation of the SSIM value [28] between the 

generated image and the ground-truth denoised image is done 

according to (4), by considering windows x and y of the same 

size around each pixel. For a particular pixel p, SSIM(p) is 

defined as: 

 

                 (4) 

where C1 and C2 are stabilization parameters, µx and σx 

respectively represent the average and variance of pixel 

intensities in the patch x, whereas σxy denotes the covariance 

between x and y. The notations µy and σy can also be defined 

similarly. We have set the value of both C1 and C2 to 0.03L, 

where L represents the maximum possible intensity level in an 

image (i.e., for an 8-bit image, L=255). Once the SSIM value 

for each pixel is obtained following (4), the SSIM Loss 

(LMS−SSIM) is computed as follows: 

 

       (5) 

In the present work, we have used the Multi-scale SSIM 

(MS-SSIM) [29] which typically computes SSIM at multiple 

scales through a process of sub-sampling, and is highly 

effective in finding a similarity index between any two given 

images [29, 30, 31]. 
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Edge Loss 

Both the generated de-noised image and the ground truth 

denoised image are in sRGB space. We propose a new loss 

metric called the Edge loss in order to preserve minute 

artifacts in the image. First, we compute a Canny edge map 

from each of the two images. and then compare these edge 

maps by means of L2 loss. If Xe and Ye respectively denote 

the edge maps corresponding to images X and Y , then the 

resulting Edge loss function LEdge is computed pixel-wise as 

follows: 

 , (6) 

where p denotes a particular pixel location. 

Consider at each epoch during training, M image pairs are 

used, and the average of these M errors is used to adjust the 

weights before the successive epoch. If L
m

PSNR, L
m

MS−SSIM, and 

L
m

Edge respectively represent the PSNR loss, MS-SSIM loss 

and Edge loss for image m at a particular epoch, and Lavg 

denotes the average instantaneous error that is to be 

back-propagated, then 

 ,

 (7) 

where α, β, and γ are user-defined constants. Training of the 

deep U-Net generator is carried out for a maximum of 4000 

epochs, or till the value of Lavg in two consecutive epochs does 

not undergo significant variation. 

IV. EXPERIMENTAL RESULTS 

 The proposed algorithm has been implemented on a system 

having 64 GB RAM, one i9-18 core processor, along with 

three GPUs: one Titan Xp with 12 GB RAM, 12 GB 

frame-buffer memory and 256 MB BAR1 memory and two 

GeForce GTX 1080 Ti with 11 GB RAM, 11 GB 

frame-buffer memory and 256 MB of BAR1 memory. For the 

evaluation of our algorithm, we use the See in the Dark (SID) 

data set [24]. This data consists of 5094 raw short-exposure 

images, each with a corresponding long-exposure image. The 

short-exposure images were captured under different shutter 

speeds, so a single long-exposure will be ground truth for 

several short-exposure images. The number of distinct long 

exposure images is 424. The data set consists of images for 

both indoor and outdoor scenes. The indoor images appear to 

be darker than that of the outdoor images. Figure 2(a) shows 

five sample noisy images from the SID data set, while Figure 

2(b) shows the corresponding de-noised versions. In the 

original data set, the noisy images are very dark since they are 

captured in an extreme low-light environment. But for ease of 

visualization, here we show the noisy images by amplifying 

their intensity by a factor 300. 

 

 
Figure 2: Sample images from the SID data set: (a) noisy 

input and (b) ground truth. 

 Training of the U-Net generator is done by considering 

raw-sensor data of short exposure images as input and the 

corresponding long-exposure image in the sRGB space as the 

desired output. This network considers the 

512×512-dimensional image as input. Since, the dimensions 

of the images present in the SID data is significantly high, at 

each epoch during training, we randomly crop a 512x512 

patch from each image in the gallery set and apply random 

flipping and rotation for data augmentation. During the 

deployment scenario, each test image is resized to the same 

dimensions before passing through the trained network. The 

value of the learning rate used in training the generator is 

initially set to 10
−4

, which is then gradually reduced to 10
−5 

after completion of 2000 epochs. 

 In the first experiment, we study the effect of using 

different combinations of the loss terms, LPSNR, LMS−SSIM, and 

LEdge (refer to Section 4) in generating the final denoised 

image. Quantitative results are shown in Table 1 for different 

combinations of the loss terms by means of PSNR and SSIM 

values, computed by using (1) and (5), respectively. The test 

set for these experiments consists of 100 raw short-exposure 

images. It can be seen from the table that aggregation 

 

 

Te                        Terms in Loss Function PSNR       SSIM                       

                              LMS−SSIM, LPSNR, LEdge                         32.11                                    0.8537 

                   LMS−SSIM, LPSNR                          31.95                                      0.8533 

                   LMS−SSIM, LEdge                          30.78                          0.8524 

                    LPSNR, LEdge                          31.83                          0.8474 

Table 1: PSNR and SSIM values obtained for different 

combinations of the loss terms 

of all the three-loss terms provides the best denoising 

performance in terms of PSNR and SSIM. We also observed 

that the best results were obtained on assigning equal weight 

to all loss terms (i.e., by assigning α=β=γ=1). Giving more 

weight to LMS−SSIM and LPSNR fails to preserve the artifacts 

present in an image properly. On the other hand, imposing a 

higher weight on LEdge fails to preserve contrast and color at a 

sufficiently high resolution. 

 We next present a comparative performance analysis of our 

proposed approach with some other popular image 

enhancement and de-noising techniques, namely, [9, 23, 24]. 

In Figure 3, we show the denoised images provided by our 

approach and each of the above techniques on a sample set of 

six noisy images from the SID data. In this figure, the   first 

column (i.e., column a) shows 

the ground-truth denoised 

image, the second column (i.e., 

column (b)) shows the results 
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obtained by applying our proposed approach, while the third, 

fourth and fifth columns (i.e., columns (c), (d) and (e)), 

respectively represent the denoised images obtained by 

applying [24], [9], and [23], respectively. It can be visually 

seen from the figure that LLNet has the worst performance 

among the compared methods. This is due to the fact that this 

network is specifically designed for contrast enhancement in 

images and so it is ineffective in eliminating noise from 

images. Since a scaled-down version of each of the images 

has been presented in the figure, it is difficult to visually judge 

which among our proposed approach, [24], and [9] is 

performing the best. For the purpose of critical examination, 

we crop out certain portions (shown by blue rectangles) from 

each image in Figure 3, and present them in Figure 4 by 

zooming into these images. These blue rectangles consist of 

some high-frequency information, e.g., textual regions, fine 

textures, etc. It can be clearly observed from the zoomed-in 

versions of the images that in terms of preserving 

high-frequency details, such as text and texture, the proposed 

approach performs the best among all the techniques used in 

the comparative study. Also, from visual observation, it 

appears that the de-noising quality of our approach is 

comparable with the work of [24] only. It outperforms each of 

the other de-noising approaches to a considerable extent. 

 
Figure 3: Comparative analysis: (a) ground truth, 

denoised images obtained by applying (b) proposed 

approach, (c) [24], (d) [9], (e) [23] 

 

De-noising 

Approach 

PSNR SSIM Response Time 

(secs) 

Proposed 

approach 

32.11 0.8537 0.18 

[24] 31.69 0.8458 0.18 

[9] 19.14 0.6041 21.12 

[23] 10.97 0.2567 26.47 

 

Table 2: Quantitative performance analysis of the 

proposed work and the other compared denoising 

approaches 

Finally, we present a quantitative comparative performance 

analysis of our approach with each of the compared methods 

by means of average PSNR and average SSIM values between 

the generated and the ground-truth denoised images. Results 

are shown in Table 2 along with the corresponding average 

response times. The analysis was carried out on a randomly 

selected sample of 100 test images from the SID data. As 

expected, it can be seen from the table that here also our 

approach outperforms each of the other denoising techniques 

in terms of both PSNR and SSIM values. The method that 

performs closest to our approach is the work in [24], which 

also exploits the generalization capability of deep neural 

networks to generate de-noised images with high PSNR and 

SSIM values. However, as also shown in Figure 4, due to the 

absence of the edge-preserving loss term during the training 

of the network, it is unable to retain high-frequency details in 

an image as good as our approach. The average response 

times for both the proposed approach and that of [24] are 0.18 

seconds, which is significantly less when compared with the 

other methods used in the study. We have also studied the 

de-noising capability of the BM3D-Net [25] algorithm using 

the implementation given in [32]. The obtained results were 

highly noisy and even worse than the output of [23]. Hence, 

we have not presented its results in the paper. Based on the 

above set of experiments, it can be concluded that the 

proposed work performs the best in recovering images 

captured in an extreme low-light environment and corrupted 

with natural noise. 

 

 
Figure 4: Zoomed-in versions of the cropped regions 

corresponding to: (a) ground truth, (b) proposed 

approach, (c) [24], (d) [9], (e) [23] of Figure 3 

V. CONCLUSION 

In this paper, we present an effective approach for de-noising 

and enhancement of low-light images using a deep neural 

network. With the inclusion of an edge loss term during the 

network training phase, we could successfully preserve 

detailed edge and texture related details in the denoised 

images that existing de-noising approaches failed to achieve. 

Although the use of the other loss terms is also important in 

generating de-noised images of high quality, the use of edge 

maps to preserve fine edges in an image is a novel 

contribution of this work, which has definitely improved the 

visual quality of the denoised images. The proposed work 

substantially improves the state-of-the-art research on image 

de-noising and enhancement which is evident from the high 

PSNR and SSIM values of our approach obtained during 

experimentation. In this work, we have worked on low-light 

image enhancement and 

de-noising.  
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But the same approach can also be extended to perform 

de-noising in videos, which may be studied in the future. 
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