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ON STEADY INCOMPRESSIBLE

THREE-DIMENSIONAL HYDROMAGNETIC FLOWS

G. PRASAD AND T. SINGH

Abstract. In this paper certain theorems of theoretical interest have been estab-

lished with the help of the geometrical properties of Faraday's surface (which is

spanned by the flow and field lines). These theorems shed light on the behaviour of

steady incompressible hydromagnetic flows. The complex-lamellar acceleration and

simple geodesic motion admitted by such flows have also been studied.

1. Introduction. In recent years, several works have been devoted to the study of

geometrical aspects of hydromagnetic flows. Suryanarayan [1] has shown that

Bernoulli's surfaces exist in the case of steady incompressible hydromagnetic flows

when the magnetic field is in a fixed direction. This condition on the magnetic field

leads directly to the conclusion that the Lorentz force is conservative. But this is not

true in general. Wasserman [2] has shown that Faraday's equation for hydromag-

netic systems with steady magnetic field ensures the existence of surfaces containing

the now and field lines. This result is interesting in the sense that the hydromagnetic

flows with steady magnetic field do not admit the existence of surfaces, in general,

except the surface spanned by the flow and field lines (which we call Faraday's

surface for convenience). Thus it seems that the Faraday's surface plays a key role in

the investigation of the geometrical aspects of such flows.

Purushotam and others [3-7] have also tried to study the geometrical properties of

hydromagnetic flows without giving due importance to the existence of Faraday's

surfaces.

The present investigation of geometrical properties of hydromagnetic flows begins

with the consideration of Faraday's surfaces. We study some geometrical properties

of this surface employing the techniques developed by Marris and Passman [8]. For

simplicity, we consider incompressible infinitely conducting hydromagnetic system

endowed with steady magnetic field and thereby establish some theorems on

geometrical aspects of hydromagnetic flows. We also examine the possibility of

complex lamellar acceleration and simple geodesic motion admitted by such flows.

2. Basic equations and geometric results. The basic equations governing steady

incompressible hydromagnetic flows in the limit of infinite conductivity are [2]

(2.1) V-w = 0,
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80 G. PRASAD AND T. SINGH

(2.2) p(u-v)u + Vp = JXh,

(2.3) curl(uX/f) = 0,

(2.4) V • h = 0,

where Ü is the velocity vector, p is the pressure, p the density, J the current vector

and « = nl/2H, where p is the magnetic permeability and H is the magnetic field

vector.

We define a coordinate system on a sub-region R of three dimensional Euclidean

space £3 as a set of ordered triples x" (a = 1,2,3) such that there exists a one-one

correspondence between the number x" of the set and the points of R. Following

Marris and Passman [8] we introduce the self-reciprocal basis consisting of orthogo-

nal unit vectors t(x"), ñ(xa), b(x") defining the tangent, principal normal and

binormal to the given space curve through a point xa of £3. The results due to

Marris and Passman [8] are

(2.5) curl/*=ß,f"+ k,b,

(2.6) curl « = - (div b)t + ßn« + 6nlb,

(2.7) curl b = (Ä:, + div n)t - 6hln + öft6,

where kt denotes the curvature of the space curve whose tangent is t. The invariants

0, (= /*• curl t), ß„ (= ñ ■ curl ñ) and íih (= b ■ curl b) are, respectively, the

abnormalities of the vector-lines of /, «, and b ■ 0„, (= « • gradr • «) and 6hl

( = b • grad t ■ b) are the normal deformations of the vector tube of t in the

directions of « and b respectively. The commutation formulae [8] are

(2.8) 82„F - 82hF = ß,o,F - div¿5nF + (*, + divñ)8hF,

(2.9) 82„F - 82,F = Q„8nF ~ <?ft,«ftF,

(2.10) 82,F - 82„F = k,8,F + 0nl8aF + Qb8h^

where F is a scalar point function. The symbols 5,, 8n, 8h are used to denote the

components / • grad, « • grad, b ■ grad, respectively. An expression such as 82nF

denotes b • grad (« • grad F).

3. Faraday's surfaces in hydromagnetic flows. In this section we begin with the

discussion of the geometrical properties of Faraday's surface. Let u = u(xa)t(xa) be

the velocity vector field for steady hydromagnetic motion, where u is the velocity

magnitude and /* the unit vector tangential to the flow line. The unit vector n points

along the principal normal to the flow line and b is its unit binormal. We can define

the magnetic field « in terms of the flow line triad as

(3.1) h = h,t + h„ñ + hhb,

where «,, «„ and hh denote, respectively, the tangential, principal normal and

binormal components of magnetic field «. From (2.3), (3.1) and (2.5)-(2.7) we

obtain

(3.2) 8„(uh„) + 8h(uh„) + uh„diwb + uh„(k, + div«) = 0,
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(3.3) 8t(uh„) + uhn6h, + uhßn = 0,

(3.4) uhßh-8,(uhh)-uhh6nl = 0.

We now state the following result:

Theorem (3.1). The flow lines are geodesies on Faraday's surfaces if the principal

normal component of magnetic field vanishes.

Proof. Since Faraday's surfaces are spanned by the flow and field lines, the

vanishing of the principal normal component of magnetic field implies that the field

lines are normal to the principal normals of the flow lines. Thus the principal

normals of the flow lines are normal to the Faraday's surfaces and hence the flow

lines are geodesies.

Theorem (3.2). For steady incompressible hydromagnetic flows with vanishing h„,

the family of Faraday's surfaces form a family of developables iff 8,(hh) is constant

along the flow lines.

Proof. Since «„ = 0, it follows from (3.2) and (3.4) that

(3.5) diwb = -8„(In uhh),

and

(3.6) enl = -8,(lnuhh).

By Theorem (3.1), the flow lines are geodesies on Faraday's surface. Since b is

orthogonal to « and lies in the tangent plane to Faraday's surface, the vector-lines of

b will be orthogonal to geodesic flow lines. Hence the vector-lines of b are parallel

curves on Faraday's surface. According to Marris [9] the /-lines and ¿-lines form an

allowable coordinate system on a small region of Faraday's surface. In this coordi-

nate system the first fundamental form of Faraday's surface is given by

(3.7) do2 = dt2 + g(t,b)db2,

where the metric element g(t,b) is related to the Gaussian curvature G of Faraday's

surface by the relation [9]

(3-8) g =_-£-«?(, 1/2),

with

(3.9) 8,(lng^2) = eht.

From (2.1), we obtain

(3.10) s,(inu) + enl + ehl = o.

It follows from (3.6) and (3.10) that

(3.11) ehl = 8,(lnhh).

From (3.9) and (3.11), we have

(3.12) gl/2=f(b)hb.
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where / is an arbitrary function of b. By a change of scale in the fc-direction we can

reduce (3.12) to

(3.13) g,/2 = h„.

The substitution of (3.13) into (3.8) yields

(3.14) G=-(l/hh)8?(hh).

This shows that the Gaussian curvature of Faraday's surfaces vanishes iff 8,(hh) is

constant along the flow lines.

4. Noncirculation preserving hydromagnetic flows with complex-lamellar accelera-

tion. This section is devoted to the discussion of the noncirculation preserving

hydromagnetic motion with complex-lamellar acceleration. It is easy to write (2.2) in

the form

(4.1) pa + Vp = JXh,

where a is the acceleration vector given by

(4.2) a = 8,(2-u2)t + ktu2h = a,t + a„n.

Operating curl on both sides of (4.1), we get

(4.3) p curl a = curl( JXh).

Since the Lorentz force (J Xh) is nonconservative, curl(7 X«) cannot vanish. This

means that there is no possibility of circulation preserving hydromagnetic motion

(except the case of force-free motion). But this does not eliminate the possibility of

hydromagnetic motion with complex-lamellar acceleration. As we know that the

motion is said to be endowed with complex-lamellar acceleration iff the acceleration

vector satisfies the condition [9]

(4.4) a = £gradrj,

where £ and tj are scalar point functions. It can be easily shown from (4.3) and (4.4)

that curl(JXÍt) =t= 0. From (4.4) we have

(4.5) a-curl a = 0.

From (4.3) and (4.5)

(4.6) a-curl(/xA) = 0.

This may be regarded as a necessary and sufficient condition for the hydromagnetic

flows admitting complex-lamellar acceleration.

On assuming that the principal normal component of the magnetic field vanishes,

we may rewrite (3.1) as

(4.7) h = h,t + h„b.

From (2.5), (2.7) and (4.7), we obtain

(4.8) J = J,t + J„ñ+Jhb,

where

(4.9) / = A,B, + 8„(h„) + hh(k, + div«),
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(4.10) Jn = 8h(hl)-8l(hh)-hh0„„

(4.11) Jb = h A + h ,k, - 8a(h,).

It follows from (2.5)-(2.7), (3.5), (3.6), (3.11), (4.7) and (4.8) that

curl{JXh) = [hhJfi, - 8h(h,Jh - hhJ„) + (h,Jh - h„J,)8h(ln uhh)

-8n(htJn)-h,Jn(kt + div n)]t

(4-12) +[8h(hhJ„) + 8,(hlJn) + htJn8l(^hh)]ñ

+ [hhJnk, - h,Jßh - 8„(hhJn) -(h,Jh - hhJ,)8t(lnuhh)\b,

where the condition ß„ = 0 is invoked. We now establish the following theorem.

Theorem (4.1). A steady incompressible rotational noncirculation preserving hydro-

magnetic motion for which «„ = 8h(p) = 0 and none of a,, k,, h, vanishes is endowed

with complex-lamellar acceleration iff one of the following holds:

(i)8h(lnuhh) = 0,

(ii) 0, = (aB/fll)ifc[ln(fl|I/iiÄ6)].

Proof. From (4.1), (4.2), (4.7) and (4.8), we have

(4.13) pal + 8,p = hhJn,

(4.14) S„p = -«,/„,

(4.15) Pk,u2 + 8np = h,Jh - hhJt.

From (4.14), since 8hp = 0 and h, ¥> 0, it follows that J„ = 0. Then from (4.2), (4.6)

and (4.12), we get

(4.16) a,(J,hh-h,Jh)8h(lnuhh)=0.

From (4.15) and (4.16),

(4.17) {pk,u2 + 8nP)8h(lnuhh) = 0.

This leads to

(4.18a) 8h(lnuhh) = 0,

or

(4.18b) pA:,M2 + S„p = 0.

Equation (4.18a) is the first required condition. Differentiating (4.18b) along b, we

get

(4.19) p[(Shk,)u2 + 2uk,8hu] + 82nP = 0.

The use of (2.8) for p reduces (4.19) to

(4.20) p[(8hk,)u2 + 2uk,8hu] + Ü,8,p - divb8„p = 0.

It follows from (3.5), (4.2), (4.13), (4.18b), (4.20) and the condition J„ = 0 that

(4.21) il,= (an/a,)8h[ln(an/uhh)].

This is the second condition stated in the theorem.
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Theorem (4.2). A steady incompressible rotational noncirculation preserving hydro-

magnetic motion is endowed with complex-lamellar acceleration iff\(l/uhb\an/at) +

xp] is constant along b-lines on Faraday's surface, where dxp/db = -Q,/u.

The proof of this theorem is omitted because it follows easily from the results of

Marris [9].

5. Noncirculation preserving hydromagnetic flows with simple geodesic motion. In

this section we begin with the definition of simple geodesic motion. According to

Marris [9], a steady, rotational, nonrectilinear, nonplane motion whose stream-line

geometry satisfies the condition

(5.1) ß„ = «,       curlñ = 0,

is called a goedesic motion. A geodesic motion obeying the condition

(5.2) wn = 0*»ri.w = 0

is called simple geodesic motion. In order to discuss simple geodesic hydromagnetic

motion we first establish the following result.

Theorem (5.1). For a steady incompressible noncirculation preserving hypermagnetic

flow with «„ = 0 = di\(hhb), there exists a family of Lamb surfaces.

Proof. Since «„ = 0, (3.2) reduces to

(5.3) 8„(uhh) + uhhdi\b = 0.

The expression for vorticity is [8]

(5.4) w = w,f + <o„« + uhb,

where

(5.5) a, = Q,u,   un = 8„u,   uh = (k,u-8„u).

The use of (5.5) in (5.3) gives

(5.6) h„<t>n + udiv{hhb) = 0.

Since di\(hhb) = 0, (5.6) reduces to un = 0. This together with (5.4) leads to

(5.7) u Xu — uuhn.

It follows from (5.7) that

(5.8) (uXu) ■ curl(wXu) = (uuh)2Q„.

Since «„ = 0 (or fl„ = 0), (5.8) becomes the necessary and sufficient condition for

the existence of a family of Lamb surfaces. This completes the proof of the theorem.

Remark. Since the normal to the Faraday's surface coincides with that of the

Lamb surface, the levels of these two surfaces coincide. Thus the Lamb surface and

Faraday's surface are the same in this case.

Corollary (5.1). A steady incompressible hydromagnetic flow admits a simple

geodesic motion if the flow is such that hn = 0 = div(«ft¿>).
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Proof. Since the vanishing of «„ and di\(hhb) implies the vanishing of ß„ and w„

respectively, it follows from (5.1) and (5.2) that the hydromagnetic flows admit

simple geodesic motion. Further from (3.13) and (5.4),

curl( to Xu) = u

(5.9)

+

—8t(uh2hu,) -2k,u„

—8,(u2hhuh) - Qbu„

t + T-St(hhuun)n
"h

6,

where the condition ß„ = 0 has been used. We now establish the following two

theorems for simple geodesic hydromagnetic motion.

Theorem (5.2). A steady incompressible noncirculation preserving hydromagnetic

flow has simple geodesic motion iff there exists a potential function £(i, b) such that

hthbJn--J¿    and   hhJn~Yt

on the Faraday's surface.

Proof. For simple geodesic motion, it follows from (5.2) and (5.9) that

(5.10) ñ ■ curl(w Xm) = 0.

From (4.3), (4.12) and (5.10), we obtain

(5.11) 8h(hhJn) + 8,(h,Jn) + «,7„S,(ln hb) = 0.

This may also be written as

(5.12) ¿(*M)+¿(V.) = 0,

where

By the theorem of vector potential there must exist a function £(r, b) such that

(5.13) ^thbJn~ -"3¿i       hhJn~Yt-

This proves the statement.

Theorem (5.3). A simple geodesic hydromagnetic motion, for which 8,(u) ¥= 0,

admits complex-lamellar acceleration iff (uh2hut) is constant along the flow lines on the

Faraday's surface.

The proof of this theorem follows from (4.5), (5.2), (5.9) and (5.10).
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