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In this paper, we have introduced a generalized n-dimensional differential transform method to pro-
pose a user friendly algorithm to obtain the closed form analytic solution for n-dimensional fractional
heat- and wave-like equations. Three examples are given to establish the simplicity of the algorithm.
In Example 5.3, we show that ten terms of the series representing the solution, even in fractional
order, give a very accurate solution.
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2. Introduction

The idea of fractional-order derivatives initially
arose from a letter by Leibnitz to L’Hospital in 1695.
Fractional calculus has gained considerable popularity
and importance during the past three decades, mainly
due to its applications in numerous fields of science
and engineering. One of the main advantages of using
fractional-order differential equations in mathematical
modelling is their non-local property. It is a well known
fact that the integer-order differential operator is a local
operator whereas the fractional-order differential oper-
ator is non-local in the sense that the next state of the
system depends not only upon its current state but also
upon all of its proceeding states.

In the last decade, many authors have made notable
contributions to both theory and application of frac-
tional differential equations in areas as diverse as fi-
nance [1 – 3], physics [4 – 7], control theory [8], and
hydrology [9 – 13].

In this paper, we consider the following n-
dimensional fractional heat- and wave-like equations
which are the generalized form of the model in [14]:

∂ α u
∂ tα

= f1(x1,x2, . . . ,xn−1)
∂ 2u

∂x2
1

+ f2(x1,x2, . . . ,xn−1)
∂ 2u

∂x2
2

+ . . . (1)

+ fn−1(x1,x2, . . . ,xn−1)
∂ 2u

∂x2
n−1

+g(x1,x2, . . . ,xn−1, t),

0 < xi < ai, i = 1,2, . . . ,(n−1), 0 < α ≤ 2, t > 0,

subject to the initial conditions

u(x1,x2, . . . ,xn−1,0) = Ψ(x1,x2, . . . ,xn−1),
ut(x1,x2, . . . ,xn−1,0) = η(x1,x2, . . . ,xn−1),

(2)

where α is a parameter describing the fractional
derivative. Fractional heat-like and wave-like equa-
tions are obtained from (1) by restricting the parameter
α in (0,1] and (1,2], respectively. The fractional wave-
like equation can be used to describe different models
in anomalous diffusive and sub diffusive systems, de-
scription of fractional random walk, unification of dif-
fusion and wave propagation phenomenon [15 – 18].

Several authors [14, 19, 20] applied the Adomian
decomposition method (ADM), the variational it-
eration method (VIM), and the homotopy analysis
method (HAM) successfully to solve two- and three-
dimensional fractional heat- and wave-like equations.

In 1986, a new powerful numerical technique named
differential transform method (DTM), was developed
by Zhao [21], to solve various scientific and engi-
neering problems. Originally, he developed DTM to
solve the electric circuit problems. DTM is based on
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the Taylor series expansion which constructs analyti-
cal solutions in the form of a polynomial. The tradi-
tional higher-order Taylor series method requires sym-
bolic computations, but the DTM does not require
high symbolic computations. However, the solution is
obtained by DTM in the form of polynomial series
through an iterative procedure. Various applications
of DTM are given in [22 – 26]. Recently Kurnaz et
al. [27] have applied DTM for solving partial differen-
tial equations. Arikoglu and Ozkol [28] developed the
fractional differential transform method which is based
on the classical differential transform method, on frac-
tional power series, and on Caputo fractional deriva-
tives. Odibat and Momani proposed the one- and two-
dimensional generalized differential transform method
(GDTM) to solve various ordinary/partial differential
equations of integer and fractional order [29 – 31].

In this paper, we extend the two-dimensional
GDTM [29 – 31] to n-dimensions and apply it to solve
n-dimensional fractional heat- and wave-like equa-
tions. The accuracy and applicability of the above
method is established by means of several examples.

3. Fractional Calculus

We give some basic definitions and properties of
fractional calculus [32 – 35] that are prerequisite for
further development.

Definition 2.1. A real function f (x),x > 0, is said to
be in a space Cµ ,µ ∈ R if there exists a real number
p(< µ)such that f (x) = xp f1(x)where f1(x)∈C[0,∞),
and is said to be in the space Cµ

m if f (m) ∈Cµ ,m ∈ N.

Definition 2.2. The Riemann–Liouville fractional inte-
gral operator of order α ≥ 0 of a function f ∈Cµ ,µ ≥
−1 is defined as

Jα
a f (x) =

1
Γ (α)

x∫
a

(x− t)α−1 f (t)dt,

α > 0, x > 0.

(3)

For α,β > 0, a ≥ 0, and γ ≥ −1, the operator Jα
a has

the following properties:

1. Jα
a (x−a)γ =

Γ (1+ γ)
Γ (1+ γ +α)

(x−a)γ+α ,

2. Jα
a Jβ

a f (x) = Jα+β
a f (x),

3. Jα
a Jβ

a f (x) = Jβ
a Jα

a f (x).

(4)

Definition 2.3. The fractional derivative of order α of
a function f (x) in the Caputo sense is defined as

Dα
a f (x) = Jm−α

a Dα
a f (x)

=
1

Γ (m−α)

x∫
a

(x− t)m−α−1 f m(t)dt (5)

for m−1 < α ≤ m, m ∈ N, x > a, f ∈Cm
−1.

The following properties of the operator Dα
a are well

known:

Dα
a (x−a)γ =


Γ (1+ γ)

Γ (1+ γ−α)
(x−a)γ−α , forα ≤ γ

0, forα > γ,
(6)

Dα
a Jα

a f (x) = f (x), (7)

Jα
a Dα

a f (x) = f (x)−
m−1

∑
k=0

f (k)(a)
(x−a)k

k!
, x > 0. (8)

The following theorem involving generalized Taylor’s
formula is needed for the further development of the
theory.

Theorem 3.1. If u(x,y) = f (x)g(y), f (x) = xλ g(x),
λ >−1, and g(x) has the generalized power series ex-
pansion g(x) = ∑

∞
n=0 an · (x− x0)nα with the radius of

convergence R > 0, then for 0 < α ≤ 1, x ∈ (0,R),

Dγ
x0

Dβ
x0

f (x) = Dγ+β
x0

f (x), (9)

when either of the two conditions hold:

(a) β < λ +1 and γ is arbitrary or
(b) β ≥ λ + 1, γ is arbitrary, and an = 0 for n =

0,1, . . . ,m−1,where m−1 < β ≤ m.

Proof is given in [31].

4. Generalized n-Dimensional Differential
Transform Method

We have used the following symbolic notations for
convenience:

(i) (x1,x2, . . . ,xn)≡ (x)n,
(ii) α1,α2, . . . ,αn ≡ (α)n,
(iii) (∗,x2, . . . ,xn)≡ (∗, x̄n).

The generalized n-dimensional differential transform
of a function u(x)n is defined as
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U(α)n(k)n =
1

n
∏
i=1

Γ (αiki +1)

[(
n

∏
i=1

(Dαi
x̃i

)ki

)
u(x)n

]
(x̃)n

.

(10)

The inversion of (10) is given by

u(x)n =
∞

∑
k1,k2,...,kn=0

[
U(α)n(k)n

n

∏
i=1

(xi− x̃i)kiαi

]
. (11)

For α = 1,∀i the generalized n-dimensional differen-
tial transform reduces to the classical n-dimensional
differential transform. For the special case when u(x)n

can be split as

u(x)n =
n

∏
i=1

fi(xi),

then u(x)n =
n

∏
i=1

[
∞

∑
ki=0

Fαi(ki) · (xi− x̃i)kiαi

]
,

(12)

where Fαi(ki) are the generalized one-dimensional dif-
ferential transforms of fi(xi),1≤ i≤ n. From (11) and
(12) we deduce that U(α)n(k)n = ∏

n
i=1 Fαi(ki).

Now we give some theorems outlining the different
properties of u(x)n and U(α)n(k)n. These theorems are
the n-dimensional generalisations of the corresponding
theorems of [29 – 31].

Theorem 4.1. If u(x)n = v(x)n ± w(x)n, then
U(α)n(k)n = V(α)n(k)n±W(α)n(k)n.

Theorem 4.2. If u(x)n = cv(x)n, then U(α)n(k)n =
cV(α)n(k)n, where c is a scalar.

Theorem 4.3. For u(x)n = v(x)n ·w(x)n,
U(α)n(k)n = ∑

k1
a1=0 ∑

k2
a2=0 . . .∑

kn
an=0 V(α)n(a1,kn−an)

·W(α)n(k1−a1,an).

Proof. The theorem is proved by using induction on n.
The assertion follows trivially for n = 1, as

Uα1(k1) =
k1

∑
a1=0

Vα1(k1−a1)Wα1(a1). (13)

Assuming the theorem holds for n = m,

U(α)m(k)m =
k1

∑
a1=0

k2

∑
a2=0

. . .
km

∑
am=0

V(α)m(a1,km−am)W(α)m(k1−a1,am).

(14)

The inverse of above follows from (11) and is given as

u(x)m =
∞

∑
k1=k2=...km=0

k1

∑
a1=0

k2

∑
a2=0

. . .
km

∑
am=0

[
V(α)m(a1,km−am)

·W(α)m(k1−a1,am)
m

∏
i=1

(xi− x̃i)kiαi

]
u(x)m =

[
∞

∑
k1=k2=...km=0

V(α)m(k)m

m

∏
i=1

(xi− x̃i)kiαi

]

·

[
∞

∑
k1=k2=...kn=0

W(α)m(k)m

m

∏
i=1

(xi− x̃i)kiαi

]
,

(15)

since u(x)n = v(x)n ·w(x)n. Replacing m by m+1, we
obtain

u(x)m+1 =[
∞

∑
k1=k2=...km+1=0

V(α)m+1
(k)m+1

m+1

∏
i=1

(xi− x̃i)kiαi

]

·

[
∞

∑
k1=k2=...km+1=0

W(α)m+1
(k)m+1

m+1

∏
i=1

(xi− x̃i)kiαi

]
.

(16)

Let V 1
(α)m

(k)m =[
∞

∑
km+1=0

V(α)m+1
(k)m+1(xm+1− x̃m+1)km+1αm+1

]
(17)

and W 1
(α)m

(k)m =[
∞

∑
km+1=0

W(α)m+1
(k)m+1(xm+1− x̃m+1)km+1αm+1

]
.

(18)

Using (14) – (18), we have

u(x)m+1 =
∞

∑
k1=k2=...km=0

k1

∑
a1=0

k2

∑
a2=0

. . .
km

∑
am=0

[
V 1

(α)m
(a1,km−am)

·W 1
(α)m

(k1−a1,am)
m

∏
i=1

(xi− x̃i)kiαi

]
=

∞

∑
k1=k2=...km=0

k1

∑
a1=0

k2

∑
a2=0

. . .
km

∑
am=0

∞

∑
km+1=0

[
V(α)m+1

· (a1,km−am,km+1)(xm+1− x̃m+1)km+1αm+1
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·
∞

∑
km+1=0

W(α)m+1
(k1−a1,am,km+1)

· (xm+1− x̃m+1)km+1αm+1

] m

∏
i=1

(xi− x̃i)kiαi . (19)

Using (14) in (19), we have

u(x)m+1 =
∞

∑
k1=k2=...km+1=0

k1

∑
a1=0

k2

∑
a2=0

. . .
km+1

∑
am+1=0

[
V(α)m+1

· (a1,km+1−am+1)W(α)m+1
(k1−a1,am+1)

·
m+1

∏
i=1

(xi− x̃i)kiαi

]
. (20)

Substituting (13) into (20), the validity of the theorem
holds for n = m + 1, thus proving the theorem by in-
duction.

From now onwards 0 < αi ≤ 1, and i = 1,2, . . . ,n.

Theorem 4.4. For u(x)n = Dαi
x̃i

v(x)n,U(α)n(k)n =
Γ (αi(ki+1)+1)

Γ (αiki+1) V(α)n(k1,k2, . . . ,ki−1,ki +1,ki+1, . . .kn).

Proof. From (10) we have

U(α)n(k)n =
1

n
∏
i=1

Γ (αiki +1)

[(
n

∏
i=1

(Dαi
x̃i

)ki

)
u(x)n

]
(x̃)n

=
Γ (αi(ki +1)+1)

Γ (αi(ki +1)+1)
n
∏
i=1

Γ (αiki +1)

·

[(
n

∏
i=1

(Dαi
x̃i

)ki

)
Dαi

x̃i
v(x)n

]
(x̃)n

=
Γ (αi(ki +1)+1)

Γ (αiki +1)
·V(α)n(k1,k2, . . . ,ki−1,ki +1,ki+1, . . .kn).

Theorem 4.5. If u(x)n = Dα1
x̃1

Dα2
x̃2

. . .Dαn
x̃n

v(x)n, then

U(α)n(k)n =

n
∏
j=1

Γ (α j(k j +1)+1)

n
∏
j=1

Γ (α jk j +1)

·V(α)n(k1 +1,k2 +1, . . . ,kn +1).

Proof. From (10) we have

U(α)n(k)n =
1

n
∏
i=1

Γ (αiki +1)

[(
n

∏
i=1

(Dαi
x̃i

)ki

)
u(x)n

]
(x̃)n

=

n
∏
j=1

Γ (α j(k j +1)+1)

n
∏
j=1

Γ (α j(k j +1)+1)
n
∏
i=1

Γ (αiki +1)

·

[(
n

∏
i=1

(Dαi
x̃i

)ki

)
Dα1

x̃1
Dα2

x̃2
. . .Dαn

x̃n
v(x)n

]
(x̃)n

=

n
∏
j=1

Γ (α j(k j +1)+1)

n
∏
j=1

Γ (α jk j +1)

·V(α)n(k1 +1,k2 +1, . . . ,kn +1).

Theorem 4.6. If u(x)n = ∏
n
i=1 (xi− x̃i)miαi , then

U(α)n(k)n = ∏
n
i=1 δ (ki−mi).

Proof. From (11) we have

u(x)n =
n

∏
i=1

(xi− x̃i)miαi ,

=
∞

∑
k1=0

∞

∑
k2=0

. . .
∞

∑
kn=0

(
n

∏
i=1

(δ (ki−mi)(xi− x̃i)kiαi)

)
.

So, applying the inverse differential transform (10), we
get U(α)n(k)n = ∏

n
i=1 δ (ki−mi).

Theorem 4.7. Let u(x)n = ∏
n
i=1 fi(xi), fi(xi) =

xλ
i hi(xi), λ >−1,hi(xi) has the generalized Taylor se-

ries expansion hi(xi) = ∑
∞
n=0 an(xi− x̃i)nαi , and either

of the two conditions hold:

(a) β < λ +1 and γ is arbitrary or
(b) β ≥ λ + 1, γ is arbitrary, and an = 0 for n =

0,1, . . . ,m−1, where m−1 < β ≤ m.

Then the generalized n-dimensional differential
transform (10) becomes

U(α)n(k)n =
1

n
∏
j=1

Γ (α jk j +1)

·




n

∏
j = 1
j 6= i

(Dα j
x̃ j

)k j

(Dαiki
x̃i

)u(x)n


(x̃)n

.

Proof. The proof follows immediately from the fact
that Dγ1

x̃i
Dγ2

x̃i
fi(xi) = Dγ1+γ2

x̃i
fi(xi) under the conditions

given in Theorem 3.1.
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In Theorems 4.8 – 4.10, the functions fi(xi) satisfy
the conditions given in Theorem 3.1.

Theorem 4.8. Let u(x)n = Dγ

x̃i
v(x)n,m − 1 < γ ≤

m,v(x)n = ∏
n
i=1 fi(xi), then

U(α)n(k)n =
Γ (αiki + γ +1)

Γ (αiki +1)
·V(α)n(k1,k2, . . . ,ki−1,ki + γ/αi,ki+1, . . .kn).

Proof. From (10) we have

U(α)n(k)n =
1

n
∏
i=1

Γ (αiki +1)

[(
n

∏
i=1

(Dαi
x̃i

)ki

)
u(x)n

]
(x̃)n

=
Γ (αiki + γ +1)

Γ (αiki + γ +1)
n
∏
i=1

Γ (αiki +1)

·

[(
n

∏
i=1

(Dαi
x̃i

)ki

)
Dγ

x̃i
v(x)n

]
(x̃)n

=
Γ (αiki + γ +1)

Γ (αiki +1)
·V(α)n(k1,k2, . . . ,ki−1,ki + γ/αi,ki+1, . . .kn).

Theorem 4.9. If u(x)n = ∏
n
i=1 fi(xi), then U(α)n(k)n =

1
∏

n
i=1 Γ (αiki+1)

[(
∏

n
i=1 Dαiki

x̃i

)
u(x)n

]
(x̃)n

.

Theorem 4.10. Let u(x)n = Dγ1
x̃1

Dγ2
x̃2

. . .Dγn
x̃n

v(x)n,mi−
1 < γi ≤ mi,v(x)n = ∏

n
i=1 fi(xi), then

U(α)n(k)n =

n
∏
i=1

Γ (αiki + γi +1)

n
∏
i=1

Γ (αiki +1)

·
[
V(α)n(k1 + γ1/α1,k2 + γ2/α2, . . . ,kn + γn/αn)

]
.

Proof. From (10) we have

U(α)n(k)n =
1

n
∏
i=1

Γ (αiki +1)

[(
n

∏
i=1

(Dαi
x̃i

)ki

)
u(x)n

]
(x̃)n

=

n
∏
i=1

Γ (αiki + γi +1)

n
∏
i=1

Γ (αiki + γi +1)
n
∏
i=1

Γ (αiki +1)

·

[(
n

∏
i=1

(Dαi
x̃i

)ki

)
Dγ1

x̃1
Dγ2

x̃2
. . .Dγn

x̃n
v(x)n

]
(x̃)n

=

n
∏
i=1

Γ (αiki + γi +1)

n
∏
i=1

Γ (αiki +1)
[V(α)n(k1 + γ1/α1,k2

+ γ2/α2, . . . ,kn + γn/αn)].

5. Numerical Examples

Let x = (x1,x2, . . . ,xn) ∈ Rn−1, α̃ = (α1,α2, . . . ,
αn−1) ∈ (0,1]n−1 and k = (k1,k2, . . . ,kn) ∈ Nn−1

0 ,
where Nn−1

0 = N∪{0}. We use the following standard
notations: xα1k1

1 ,xα2k2
2 , . . . ,xαn−1kn−1

n−1 = xα̃k. In the fol-
lowing examples u(x, t) denotes the exact solution of
the problem under consideration and is given as

u(x, t) =
∞

∑
k1=0

∞

∑
k2=0

. . .
∞

∑
kn−1=0

∞

∑
h=0

U(α)n−1,β (k,h)xα̃ kthβ .

(21)

Further, we define the error by

Eα
m = |u(x, t)− ũm(x, t)| , (22)

where ũm(x, t) is the approximate solution containing
m terms obtained by truncating the solution series (21).

Example 5.1. Consider the following n-dimensional
heat-like equation:

∂ α u
∂ tα

= γ

n−1

∑
i=1

∂ 2u

∂x2
i

, 0 < xi < ci,

i = 1,2, . . . ,(n−1), 0 < α ≤ 1, t > 0,

(23)

subject to the initial condition

u(x,0) =
n−1

∏
i=1

sinxi , (24)

having u(x, t) = e−(n−1)γt
∏

n−1
i=1 sinxi as the exact solu-

tion for α = 1.
Taking α1 = 1, α2 = 1, . . . ,αn−1 = 1, β = α, and ap-

plying the generalized n-dimensional transform to both
sides of (23) and (24), we get

Γ (α(h+1)+1)
Γ (αh+1)

U1,1,...,1,α(k,h+1) =

γ[(k1 +1)(k1 +2)U1,1,...,1,α(k1 +2,k2, . . . ,kn−1,h)
+(k2 +1)(k2 +2)U1,1,...,1,α(k1,k2 +2,k3, . . . ,kn−1,h)
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+ . . .+(kn−1 +1)(kn−1 +2)U1,1,...,1,α

· (k1,k2, . . . ,kn−2,kn−1 +2,h)] (25)

and

U1,1,...,1,α(k,0) =
(−1)(k1+k2+...+kn−1−(n−1))/2

k1!k2! . . .kn!
, (26)

respectively.
Substituting h = 0,1,2,3, . . . in the recurrence rela-

tion (25) and using (26), we obtain the different com-
ponents of U1,1,...,1,α(k,h) as follows:

U1,1,...,1,α(k,h) =
(−(n−1)γ)h

Γ (αh+1)

· (−1)(k1+k2+...+kn−1−(n−1))/2

k1!k2! . . .kn!
.

The solution u(x, t) of (23) is given as

u(x, t) =
∞

∑
k1=0

∞

∑
k2=0

. . .
∞

∑
kn−1=0

∞

∑
h=0

U1,1,...,1,α(k,h)xkthα

= Eα(−(n−1)γ tα)
n−1

∏
i=1

sinxi, (27)

where Eα(z) is the Mittag–Leffler function defined by
Eα(z) = ∑

∞
n=0

zn

Γ (αn+1) ,α > 0,z ∈C.
For α = 1, the solution (27) of the fractional-order

partial differential equation (PDE) reduces to the exact
solution of the integer-order PDE

u(x, t) =
n−1

∏
i=1

sinxi

∞

∑
h=0

(−(n−1)γ t)h

h!

= e−(n−1)γ t
n−1

∏
i=1

sinxi.

Taking n = 3,c1 = c2 = 2π, and γ = 1 in (23) and
(27), we obtain the analytical solution of ∂ α u

∂ tα = ∂ 2u
∂x2

1
+

∂ 2u
∂x2

2
, 0 < x1,x2 < 2π , 0 < α ≤ 1, t > 0, as u(x, t) =

sinx1 sinx2Eα(−2tα), [14, 19].
Similarly, Example 1 in [27] follows as a special

case of our general solution (27) by substituting n = 4
and α = 1.

Example 5.2. Next, we apply our algorithm to the fol-
lowing n-dimensional heat-like equation:

∂ α u
∂ tα

=
n−1

∏
i=1

x4
i +

1
12(n−1)

n−1

∑
i=1

[
x2

i
∂ 2u

∂x2
i

]
, (28)

0 < xi < 1, i = 1,2, . . . ,(n−1), 0 < α ≤ 1, t > 0,

subject to the initial condition

u(x,0) = 0 , (29)

having u(x, t) = ∏
n−1
i=1 x4

i (et − 1) as the exact solution
for α = 1.

Taking α1 = 1, α2 = 1, . . . ,αn−1 = 1, β = α , and ap-
plying the generalized n-dimensional transform to both
sides of (28) and (29), we obtain

Γ (α(h+1)+1)
Γ (αh+1)

U1,1,...,1,α(k,h+1) =

n−1

∏
i=1

δ (ki−4)δ (h)

+
1

12(n−1)

k1

∑
a1=0

k2

∑
a2=0

. . .
kn−1

∑
an−1=0

h

∑
b=0

[{
(k1−a1 +1)

· (k1−a1 +2)δ (a1−2)
n−1

∏
j=2

δ (k j−a j)δ (h−b)

·U1,1,...,1,α(k1−a1 +2,a2,a3, . . . ,an−1,b)
}

+
{

(a2 +1)(a2 +2)δ (a1)δ (k2−a2−2)

·
n−1

∏
j=3

δ (k j−a j)δ (h−b)U1,1,...,1,α

· (k1−a1,a2 +2,a3, . . . ,an−1,b)
}

+
{

(a3 +1)(a3 +2)δ (a1)δ (k3−a3−2)

·
n−1

∏
j = 2
j 6= 3

δ (k j−a j)δ (h−b)U1,1,...,1,α

· (k1−a1,a2,a3 +2,a4, . . . ,an−1,b)
}

+ . . .

+
{

(an−1 +1)(an−1 +2)δ (a1)δ (kn−1−an−1−2)

·
n−2

∏
j=2

δ (k j−a j)δ (h−b)U1,1,...,1,α

· (k1−a1,a2,a3, . . . ,an−2,an−1 +2,b)
}]

(30)

and U1,1,...,1,α(k,0) = 0, respectively. (31)

Substituting h = 0,1,2,3, . . . in the recurrence rela-
tion (30) and using (31), the different components of
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U1,1,...,1,α(k,h) are obtained as

U1,1,...,1,α(k,h) =


1

Γ (αh+1)
, k1 = k2 = . . .

= kn−1 = 4

0, otherwise.

Thus the solution u(x, t) of (28) is given by

u(x, t) =
∞

∑
k1=0

∞

∑
k2=0

. . .
∞

∑
kn−1=0

∞

∑
h=0

U1,1,...,1,α(k,h)xkthα

= (Eα( tα)−1)
n−1

∏
i=1

x4
i . (32)

For α = 1, the solution (32) reduces to

u(x, t) = x4

(
∞

∑
h=0

1
Γ (h+1)

th−1

)
= (et −1)

n−1

∏
i=1

x4
i ,

which is the solution of the integer-order PDE.
The differential equation (28) and its solution (32)

become

∂ α u
∂ tα

= x4
1x4

2x4
3 +

1
36

[
x2

1
∂ 2u

∂x2
1

+ x2
2

∂ 2u

∂x2
2

+ x2
3

∂ 2u

∂x2
3

]
,

0 < x1,x2,x3 < 1, 0 < α ≤ 1, t > 0,

and u(x1,x2,x3, t) = x4
1x4

2x4
3(Eα(tα)− 1), respectively,

for n = 4, which is the same as the solution obtained
by other methods [14, 19].

Example 5.3. Now, we consider the following n-
dimensional wave-like equation with initial conditions:

∂ α u
∂ tα

=
n−1

∑
i=1

x2
i +

1
2

n−1

∑
i=1

[
x2

i
∂ 2u

∂x2
i

]
, (33)

0 < xi < 1, i = 1,2, . . . ,(n−1), 1 < α ≤ 2, t > 0,

u(x,0) = 0, ut(x,0) =
n−2

∑
i=1

x2
i − x2

n−1, (34)

having u(x, t) =
(
∑

n−2
i=1 x2

i

)
(et −1)+ x2

n−1(e−t −1) as
the exact solution for α = 2.

We solve (33) for various values of α.
(a) α = 2
Taking αi = 1,1 ≤ i ≤ n− 1, β = 1, applying the

generalized n-dimensional transform to both sides of

(33) – (34), and using theorem (17), we get

Γ (h+3)
Γ (h+1)

U1,1,...,1,1(k,h+2) =

n−1

∑
i=1

 δ (ki−2)
n−1

∏
j = 1
j 6= i

δ (k j)δ (h)


+
1
2

k1

∑
a1=0

k2

∑
a2=0

. . .
kn−1

∑
an−1=0

h

∑
b=0

[{
(k1−a1 +1)

· (k1−a1 +2)δ (a1−2)
n−1

∏
j=2

δ (k j−a j)δ (h−b)

·U1,1,...,1,1(k1−a1 +2,a2,a3, . . . ,an−1,b)
}

+
{

(a2 +1)(a2 +2)δ (a1)δ (k2−a2−2)

·
n−1

∏
j=3

δ (k j−a j)δ (h−b)U1,1,...,1,1

· (k1−a1,a2 +2,a3, . . . ,an−1,b)
}

+
{

(a3 +1)(a3 +2)δ (a1)δ (k3−a3−2)

·
n−1

∏
j = 2
j 6= 3

δ (k j−a j)δ (h−b)U1,1,...,1,1

· (k1−a1,a2,a3 +2,a4, . . . ,an−1,b)
}

+ . . .

+
{

(an−1 +1)(an−1 +2)δ (a1)δ (kn−1−an−1−2)

·
n−2

∏
j=2

δ (k j−a j)δ (h−b)U1,1,...,1,1

· (k1−a1,a2,a3, . . . ,an−2,an−1 +2,b)
}]

, (35)

U1,1,...,1,1(k,0) = 0, (36)

U1,1,...,1,1(k,1) = V1(k,1)+V2(k,1)+ . . .+Vn−1(k,1),

where

Vj(k,1) =

{
1, k j = 2, ki = 0, i 6= j

0, otherwise,

1≤ i≤ n−1,
1≤ j ≤ n−2,

Vn−1(k,1)=
{
−1, k1 = k2 = . . . = kn−2 = 0,kn−1 = 2,
0, otherwise.
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Substituting h = 0,1,2,3, . . . in the recurrence relation
(35) and using (36), we get different components of
U1,1,...,1,1(k,h) as follows:

U1,1,...,1,1(k,h) = V1(k,h)+V2(k,h)+ . . .+Vn−1(k,h),

where

Vj(k,h) =


1
h!

, k j = 2, ki = 0, i 6= j

0, otherwise,

1≤ i≤ n−1,
1≤ j ≤ n−2,

Vn−1(k,h) =

(−1)h

h!
,

k1 = k2 = . . . = kn−2 = 0,
kn−1 = 2,

0, otherwise.

Hence the solution of (33) is given by

u(x, t) =
∞

∑
k1=0

∞

∑
k2=0

. . .
∞

∑
kn−1=0

∞

∑
h=0

U1,1,...,1,1(k,h) (37)

· xkth =

(
n−2

∑
i=1

x2
i

)
(et −1)+ x2

n−1(e−t −1),

which is the exact solution.
(b) α = 1.5
Taking αi = 1,1≤ i≤ n−1, β = 0.5, and following

the same procedure as in case (a), the different compo-
nents of U1,1,...,1,0.5(k,h) can be computed as follows:

For h = 3n+1,n ∈ N∪{0}, we have
U1,1,...,1,0.5(k,h) = 0.

For h = 3n + 2,n ∈ N ∪ {0},U1,1,...,1,0.5(k,h) =
V1(k,h)+V2(k,h)+. . .+Vn−1(k,h), where

Vj(k,h) =


1

Γ ( h
2 +1)

, k j = 2, ki = 0, i 6= j

0, otherwise,

1≤ i≤ n−1,
1≤ j ≤ n−2,

Vn−1(k,h) =

−
1

Γ ( h
2 +1)

,
k1 = k2 = . . . = kn−2 = 0,
kn−1 = 2,

0, otherwise.

For h = 3n+3,n∈N∪{0}, we have U1,1,...,1,0.5(k,h) =
V1(k,h)+V2(k,h)+ . . .+Vn−1(k,h), where

Vj(k,h) =


1

Γ ( h
2 +1)

, k j = 2, ki = 0, i 6= j,

0, otherwise.

1≤ i≤ n−1,
1≤ j ≤ n−2,

Hence the solution of (33) is given by

u(x, t) =
∞

∑
k1=0

∞

∑
k2=0

. . .
∞

∑
kn−1=0

∞

∑
h=0

U1,1,...,1,0.5(k,h)xkt0.5h

= (x2
1 + x2

2 + . . .+ x2
n−1)

(
∞

∑
h=0

1

Γ ( 3h
2 + 5

2 )
t(3h/2)+3/2

)
+(x2

1 + x2
2 + . . .+ x2

n−2− x2
n−1)

·

(
∞

∑
h=0

1

Γ ( 3h
2 +2)

t(3h/2)+1

)
= (x2

1 + x2
2 + . . .+ x2

n−1)t
3/2E3/2,5/2(t

3/2)

+(x2
1 + x2

2 + . . .+ x2
n−2− x2

n−1) t E3/2,2(t
3/2), (38)

where Eα,β (z) is the two parameter Mittag–Leffler
function defined by Eα,β (z) = ∑

∞
n=0

zn

Γ (αn+β ) .
(c) α = 1.5
Taking αi = 1,1≤ i≤ n−1,β = 0.25, and following

the same procedure as in case (a), the different compo-
nents of U1,1,...,1,0.25(k,h) can be computed as follows:

U1,1,...,1,0.25(k,0) = 0.

For h = 5n+1,5n+2,5n+3,n ∈ N∪{0}, we have
U1,1,...,1,0.25(k,h) = 0.

For h = 5n+4, n ∈ N∪{0}, we have
U1,1,...,1,0.25(k,h) = V1(k,h) + V2(k,h) + . . . +
Vn−1(k,h), where

Vj(k,h) =


1

Γ ( h
2 +1)

, k j = 2, ki = 0, i 6= j

0, otherwise,

1≤ i≤ n−1,
1≤ j ≤ n−2,

Vn−1(k,h) =

−
1

Γ ( h
2 +1)

,
k1 = k2 = . . . = kn−2 =0,
kn−1 = 2,

0, otherwise.

For h = 5n+5, n ∈ N∪{0}, we have
U1,1,...,1,0.25(k,h) = V1(k,h) + V2(k,h) + . . . +
Vn−1(k,h), where

Vj(k,h) =


1

Γ ( h
2 +1)

, k j = 2, ki = 0, i 6= j,

0, otherwise.

1≤ i≤ n−1,
1≤ j ≤ n−2,
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Fig. 1 (colour online). Error E1.25
10 at n = 4, α = 1.25.

Fig. 2 (colour online). Error E1.5
10 at n = 4, α = 1.5.

Fig. 3 (colour online). Error E2
10 at n = 4, α = 2.

Hence the solution of (33) is given by

u(x, t)=
∞

∑
k1=0

∞

∑
k2=0

. . .
∞

∑
kn−1=0

∞

∑
h=0

U1,1,...,1,0.25(k,h)xkt0.25h

= (x2
1 + x2

2 + . . .+ x2
n−1)

(
∞

∑
h=0

1

Γ ( 5h
4 + 9

4 )
t(5h/4)+5/4

)

+(x2
1 + x2

2 + . . .+ x2
n−2− x2

n−1)

·

(
∞

∑
h=0

1

Γ ( 5h
4 +2)

t(5h/4)+1

)

= (x2
1 + x2

2 + . . .+ x2
n−1)t

5/4E5/4,9/4(t
5/4)

+(x2
1 + x2

2 + . . .+ x2
n−2− x2

n−1) t E5/4,2(t
5/4). (39)

Taking n = 4, the differential equation (33) reduces to

∂ α u
∂ tα

= x2
1 + x2

2 + x2
3 +

1
2

[
x2

1
∂ 2u

∂x2
1

+ x2
2

∂ 2u

∂x2
2

+ x2
3

∂ 2u

∂x2
3

]
,

0 < x1,x2,x3 < 1, 1 < α ≤ 2, t > 0, (40)

and its closed form solutions at various values of α

becomes

u(x1,x2,x3, t) = x2
1(et −1)+ x2

2(et −1)+ x2
3(e−t −1),

(α = 2)

u(x1,x2,x3, t) = (x2
1 + x2

2 + x2
3)t

3/2E3/2,5/2(t
3/2)

+(x2
1 + x2

2− x2
3)t E3/2,2(t

3/2), (α = 1.5)

u(x1,x2,x3, t) = (x2
1 + x2

2 + x2
3)t

5/4E5/4,9/4(t
5/4)

+(x2
1 + x2

2− x2
3) t E5/4,2(t

5/4), (α = 1.25)

which are the same as the solutions obtained by other
methods [14, 19].

Though the solution series in each example con-
verges to the exact closed form analytic solution of the
problem, we show that only few terms of the solution
series (21) are required to give a quite accurate solu-
tion. Let Eα

m denote the absolute error between the exact
solution and the first m contributing terms of the solu-
tion series (21) as defined in (22). Figures 1, 2, and 3,
associated with Example 5.3, show that the errors are
appreciably small for m = 10 and α = 1.25,1.5, and 2,
respectively. The error is monotonically decreasing as
α → 2.

Brought to you by | Indian Institute of Technology (Banaras Hindu University), Varanasi
Authenticated

Download Date | 11/5/19 7:26 AM



590 V. K. Baranwal et al. · Analytic Solution of Fractional-Order Heat- and Wave-Like Equations

6. Conclusion

We have extended the theory of one and two-
dimensional generalized differential transform method
to n-dimensions to propose a user friendly algo-
rithm to obtain closed form analytic solutions for n-
dimensional fractional heat- and wave-like equations.
Though the solution series in each example converges
to the exact closed form analytic solution of the prob-
lem, we show that only few terms of the solution series
(21) are required to give quite accurate solution. In Ex-
ample 5.3, we show that ten terms of the series repre-

sentation of the solution, even in fractional order, gives
a very accurate solution.
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