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 In this paper, variational iteration method is used to solve a moving boundary 
problem arising during melting or freezing of a semi infinite region when 
physical properties (thermal conductivity and specific heat) of the two regions 
are temperature dependent. The result is compared with result obtained by exact 
method (when thermal conductivity and specific heat in two regions are tempera-
ture independent) and semi analytical method (when thermal conductivity and 
specific heat are temperature dependent) and are in good agreement. We obtain 
the solution in the form of continuous functions. The method performs extremely 
well in terms of efficiency and simplicity and effective for solving the moving 
boundary problems. 
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Introduction 

Moving boundary problems involving heat phenomena (melting or freezing) occur 

in numerous important areas of science, engineering, and industry [1-3] and have been of 

special interest due to its non-linearity and unknown position of moving interface [4-7]. The 

exact solution of these problems is limited which are well documented in the literature [8, 9]. 

During a melting or freezing process, the special situations which arise are temperature 

dependent thermal conductivity and specific heat of materials in two regions. The resulting 

moving boundary problem can not be solved exactly. Thus, semi analytical [10-12], and 

numerical methods [13, 14] have been used to solve them. Semi analytical method such as 

heat balance integral method [15, 16], variable space grid method [17], Galerkin
,
s method 

[18],  non-integral  method  [19, 20],  regular  perturbation  method  [21, 22], and strained co-

-ordinate method [23] exist in the literature. Most of these methods have difficulty in 

accommodating time dependent applied surface condition, choice of a suitable approximate 

profile for the transfer potentials of heat and their applicability is restricted to short times. 



Singh, J., et al.: Variational Method to Solve Moving Boundary Problem… 
230  THERMAL SCIENCE, Year 2011, Vol. 15, No. 2, pp. S229-S239 
 

He [24, 25] first proposed the variational iteration method (VIM) to solve non-linear 

differential and integral equations. This method was successfully applied to solve initial 

spherical growth during equiaxed solidification by Yao [26], reliable treatment of heat equa-

tion with Ill-defined initial data by Chun [27]. In 2009, Cao et al. [28] solved the non-linear 

Ill-posed operator equations by homotopy perturbation technique. Recently, He et al. [29] dis-

cussed new algorithm of the VIM. This method is applicable wide range of non-linear 

problem. Many authors [30-34] applied this method in various different problems of non-li-

near differential and integral equations. Slota [35] used this method in direct and inverse one-

phase Stefan problem. 

To the best of author knowledge solution of the two phase moving boundary 

problem with temperature dependent thermal conductivity and specific heat have not been 

solved yet using the VIM. In this paper, the proposed method is used to obtain a semi analyti-

cal solution to a two phase moving boundary problem when thermal conductivity and specific 

heat of the two regions are temperature dependent. 

Formulation of the problem 

A semi-infinite medium consisting of a solid/melt is initially at a temperature Ti 

which is slightly below/above the melting/freezing temperature of the solid/melt, Tm/Tf. At 

time t = 0, the surface x = 0 is subjected to a temperature T0. As a result, melting/freezing 

starts at the surface x = 0 and the liquid solid/solid liquid interface x = s(t) moves in the 

positive x-direction. Temperature in the two phases is unknown. Hence the problem is a two 

phase problem. In given problem, we take the freezing process only. The dynamics of 

freezing can be described by the following equations. The basic equation for phase 1 and 

phase 2 are, respectively: 

 1 1
1 1 1 1 1[ ( )] ( ) , 0 ( ), 0

T T
c T k T x s t t

t x x


   
       

 (1) 

 

 
2 2 2

2 2 2 1 2 2 2 2 2

d
[ ( )] ( ) ( ) ( ) , ( ), 0

d

T T Ts
c T c T k T x s t t

t t x x x
  

    
         

 (2) 

 
The associated initial and boundary conditions are: 
 

 1( 0) iT x, = T  (3) 
 

 1 0(0, )T t T  (4) 
 

The condition of temperature continuity and the Stefan condition on the moving 

interface: 

 1 2 f[ ( ), ] [ ( ), ]T s t t T s t t T   (5) 
 

and interface equation: 
 

 
1 2

1 1 2 2 1

d
( ) ( ) at ( )

d

T T s
k T k T H x s t

x x t


 
  

 
 (6) 

As x   the material is at initial temperature i. e.: 
 

 s(0) = 0 (7) 
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 2lim ( , ) i
x

T x t T


  (8) 
 
Introducing the dimensionless variable and similarity criteria: 
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and using transformation: 

 

 
012

x
y

a t
  (11) 

 
the system of eqs. (1) to (8) reduces to the following non-dimensional form: 

 

 1 1
1 1 1 1

d dd
( ) 2 ( ) 0

d d d
g yf

y y y

 
 

 
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 
 (12) 
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12

d dd 1
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d d d
a g y f

y y y

 
  


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 (13) 

 

 1(0) 0   (14) 
 

 1 2 f( ) ( )       (15) 

 Interface equation is: 
 

 1 2 f 2
12

1 f

d ( ) d 2
at

d ( ) d Ste

g
k y

y g y

   



    (16) 

 

 2lim ( ) 1
y

y


  (17) 

 The thermal conductivity and specific heat in two regions varies with temperature 

and is assumed to be: 
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Variational iteration method 

To clarify the basic ideas of He’s VIM, we consider the differential equation: 
 

 ( )Lu Nu g t   (19) 
 

where L and N are linear and non-linear operators, respectively, and g(t) is the source of 

inhomogeneous term. A correction functional for eq. (19) can be written as: 
 

 1
0

( ) ( ) [ ( ) ( ) ( )]d , 0
t

n n n nu t u t Lu Nu g n           (20) 

 
where l is a general Lagrange multiplier, which can be identified optimally via the variational 

theory. The subscript n indicate the n
th
 approximation and nu~ is a restricted variation, which 

means 0~ nu . Therefore, we first determine the Lagrange multiplier l that will be identified 

optimally via integration by parts. The successive approximations un+1(t), n ³ 0 of the solution 

u(t) will be readily obtained upon using the Lagrange multiplier obtained and by using 

selective function u0(t). 
Consequently, the exact solution may be obtained by using: 
 

 ( ) lim ( )n
n

u t u t



 

(21) 

Solution of the problem 

In order to simplify the solution of the problem we have to consider two cases: 

Case 1: When thermal conductivity and specific heat varies exponentially i. e. 
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We construct a correction functional, for eq. (12) restrict as follows: 
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 



  
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 (23) 

taking variation both sides and using: 

 1, 0n   (24) 
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To find the optimal value of l(x) we integrate the equation by parts and obtain 

stationary condition (expanding exponential series and restrict all q1,n(x):  

 ( ) 0, 1 ( ) 0, ( ) 0
y y y  

     
  

      (26) 
 
The Lagrangian multiplier can identified as solving above equation: 
 

 ( ) y     (27) 
 
Putting this value in eq (23), as a result, we obtain the iterative formula: 
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(28) 

 
Taking the initial approximation according to initial and boundary condition: 
 

 f
1,0( )y y





  (29) 

 
using the variation iteration formula (28) we have: 
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and so on. 

Similarly we can find q2(y) for differential eq. (13), now we construct correctional 

functional: 
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(31) 

 
Its stationary condition (expanding exponential series and restrict all q2,n(x)):  

 12( ) 0, 1 ( ) 0, ( ) 0
y y y

a
  

     
  
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The Langrangian multiplier obtained: 
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1
( ) ( )y

a
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The following iteration formula becomes: 
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Now we start with initial approximation q2,0(y) = 1 + (qf –1)e

(l–y) 
and we get the first 

approximation: 
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(35) 

 
Similarly, we find other approximation. After getting expression of q1,n and q2,n we 

have: 

 1 1,( ) lim ( )n
n

y y 


  (36) 
 

 2 2,( ) lim ( )n
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  (37) 
 
Next we consider, 

 

Case 2: When thermal conductivity and specific heat varies linearly with temperature [36]: 
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Now we construct a correction functional, for eq. (12) restrict as: 
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Taking variation both sides and using 1, 0:n   
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Its stationary condition can be obtained as: 
 

 ( ) 0, 1 ( ) 0, ( ) 0
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     
  
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The Lagrangian multiplier can identified as solving eq. (41): 
 

 ( ) y     (42) 
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Putting this value in eq. (39), as a result, we obtain: 
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Taking the initial approximation: 
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Using the variational correctional eq. (43) we have: 
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and so on. 
For differential eq. (13) we construct correctional functional: 
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Its stationary condition:  
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The Langrangian multiplier obtained: 
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The following iteration eq. (47) becomes: 
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Now we start with initial approximation: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(51) 

We get the first approximation, in this expression k = (1/r12) – 1, and so on. 

In same manner we find the other approximation. After find out the expression of 

q1,n and q2,n we have: 

 1 1,( ) lim ( )n
n

y y 


  (52) 
 

 2 2,( ) lim ( )n
n

y y 


  (53) 

Numerical computation and discussion 

Substituting, θ1(y) and θ2(y) for both cases in the interface eq. (16), we obtain a 

transcendental equation in the term of a1, a2, b1, b2, and the Stefan number (Ste). The 

computation has been made and the results are presented in five figures. On the figures 

presented in this study, only the parameters whose values different from the reference values 

are indicated. 
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In fig. 1, the dimensionless phase change location is plotted as a function of Ste. It 
has been observed that the result obtained by the VIM is exactly the same as that obtained by 
exact method. The dimensionless temperature θ1 and θ2 as a function of space co-ordinate are 
shown in fig. 2. 

 
In fig. 3, the dimensionless phase change 

location is plotted as a function of Stefan 
number, when thermal conductivity and spe-
cific heat in two regions varies linearly with 
temperature. It has been observed that as a1 
and a2 increase, dimensionless phase change 
location decreases. This result

 
is same as that 

obtained by Oliver et al. [36]. 
It is clear from fig. 4. that as b1 and b2 

increases, dimensionless phase change loca-
tion decreases. It is clear from figs. 3 and 4 
that at higher values of heat of fusion (low 
values of Ste), the variation in thermal con-
ductivity are important, but the effect of va-
riable specific heat diminssishes. On fig. 5 
the dimensionless

 
phase change location is plotted as a function of Stefan number, when 

thermal conductivity and specific heat in two regions varies exponentially with temperature 

 
Figure 1. Graph between exact solution of linear 

equation and VIM; a1 = a2 = 0, b1 = b2 = 0, 
qf = 0.5, r12 = 1.0, a12 = 1.0 

 
Figure 2. Dimensionless temperature distribution 

of phase 1 and phase 2 (Case 2); a1 = a2 = 1.0, 
b1 = b2 = 1.0, qf = 0.5, r12 = 1.0, a12 = 1.0, l = 0.13 

 

 
Figure 3. Dimensionless phase change location 
vs. Stefan number (Case 2);  b1 = b2 = 1.0,  

qf = 0.5, r12 = 1.0, a12 = 1.0 
 

 
Figure 4. Dimensionless phase change location vs. 
Stefan number (Case 2);  a1 = a2 = 1.0, 

qf = 0.5, r12 = 1.0, a12 = 1.0 

 
Figure 5. Dimensionless phase change location vs. 

Stefan number (Case 1); b1 = b2 = 1.0, qf = 0.5, 
r12 = 1.0, a12 = 1.0 
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(Case 1). It has been observed that as a1 and a2 increases, dimensionless phase change loca-
tion decreases. 

Conclusions 

The variational iteration method is very powerful in finding the solution of moving 

boundary problem in freezing process. Sharing its application to moving boundary problem of 

temperature dependent thermal conductivity and specific heat of two regions, we may 

conclude that this method will be very much useful for solving moving and other many 

physical problems. The advantage of this method consists in obtaining the interface position 

and temperature distribution in the form of continuous function, instead of discrete form. 

Moreover, no linearization is needed and it avoids the accuracy of finding the temperature 

distribution by the numerical techniques. 

Nomenclature 

a –  thermal diffusivity, [m2s–1] 
c –  specific heat, [kJkg–1K–1] 
H –  latent heat of fusion, [kJkg–1] 
k –  thermal conductivity, [Wm–1K–1] 
s(t) –  moving interface, [m] 
Ste –  Stefan number, [–] 

T –  temperature, [°C] 
t –  time, [s] 
x –  spatial co-ordinates, [m] 
y –  dimensionless co-ordinates, [–] 

Greek symbols 

a –  specific heat coefficient 
b –  thermal conductivity coefficient, [–] 

 

q –  dimensionless temperature, [–] 
l –  dimensionless phase change front, [–] 
r –  density, [kgm–3] 

Subscripts 

1, 2 –  phase 1 and 2, respectively 
i –  initial 
f –  freezing 
m –  melting 
0 –  at the surface, x = 0 

Acronym 

VIM –  variational iteration method 
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