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Abstract: Interactive cooperation of local best or global best solutions encourages particles to 
move towards them, hoping that better solution may present in the neighbouring positions around 
local best or global best. This encouragement does not guarantee that movements taken by the 
particles will always be suitable. Sometimes, it may mislead particles in the wrong direction 
towards the worst solution. Prior knowledge of worst solutions may predict such misguidance 
and avoid such moves. The worst solution cannot be known in prior and can be known only by 
experiencing it. This paper introduces a cognitive avoidance scheme to the particle swarm 
optimisation method. A very similar kind of mechanism is used to incorporate worst solutions 
into strategic movement of particles as utilised during incorporation of best solutions. Time 
varying approach is also extrapolated to the cognitive avoidance scheme to deal with negative 
effects. The proposed approach is tested with 25 benchmark functions of CEC 2005 special 
session on real parameter optimisation as well as with four other very popular benchmark 
functions. 
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1 Introduction 
Application domain of swarm intelligent techniques has 
grown extensively in last two decades. Several domains 
including image processing (Liu et al., 2011), sociological 
analysis (Honghao et al., 2013), power system (Rajagopalan 
and Mala, 2014; Sharma et al., 2014), fuzzy system (Khosla 
et al., 2014), signal processing (Zhang et al., 2013), process 
scheduling (Chen et al., 2014), etc. have adopted such 
techniques mainly for optimisation purpose. With diverse 
application domains most of these techniques have been 
modified to get better result. Particle swarm optimisation 
(PSO) is one such technique. Despite numerous 
modifications, some of the problems still remain with the 
approach adopted. 

PSO is a very successful algorithm of last two decades 
for solving optimisation problems, and originally proposed 
in Kennedy and Eberhart (1995), Eberhart and Kennedy 
(1995), and Eberhart et al. (1996). Main inspiration  
behind the PSO algorithm is social behaviour of swarms 
such as birds flocking, fish schooling. Similar to other 
population-based algorithms such as genetic algorithm (GA) 
(Holland, 1975; Goldberg, 1989, 1990; Srinivas and 
Patnaik, 1994), PSO also maintains a population of particles 
referred as the swarm. Individual solution is considered as 
particles in the swarm. Each particle interacts with the 
others and simultaneously learns from its own experience. 
Similar to GA, the suitability of a particle is defined by its 
ability to survive in the solution domain, i.e., fitness. As 
PSO learns from its neighbour so, particles with higher 
fitness put comparatively greater impact on swarm 
behaviour. Each particle is associated with a velocity and a 
position in the solution domain. Every particle maintains its 
best solution experienced so far, i.e., the local best (pbest) 
and best solution experienced by neighbour, i.e., the global 
best (gbest). Positions and velocities are updated in 
accordance with current pbest and gbest. 

Position, velocity, pbest and gbest vector of ith particle at 
tth iteration in d dimension can be represented respectively 
as shown below: 
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Velocity and position of ith particle in jth dimension for next 
iteration are evaluated and updated with the following two 
equations: 
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Here, R1 and R2 are uniformly distributed random numbers 
in range [0, 1]. C1 and C2 are the positive constants in range 
(0, 2], known as acceleration coefficients. C1 controls  
 

particle’s movement towards local best and C2 controls 
particle’s movement towards global best. The term C1 × R1 
× (Pij(t) – Xij(t)) is associated with particle’s cognition of its 
own best solution. The term C2 × R2 × (Gij(t) – Xij(t)) is 
associated with particle’s collaborative interaction with its 
neighbours. These two terms are related with particle’s 
acceleration (rate of change in velocity) so these are often 
known as cognitive acceleration and social acceleration 
respectively. In this paper, another component, called 
cognitive avoidance, is introduced. 

The rest of this paper is organised as follows: Section 2 
briefed variants of PSO and motive behind such variations, 
also our contribution to this paper. Section 3 describes the 
main motivation of our proposal. Section 4 illustrates our 
proposed approach in detail. Section 5 discusses 
performance of proposed approaches with benchmark 
functions. Finally, concluded in Section 6. 

2 PSO variants 
2.1 Binary PSO 
In binary PSO (Tasgetiren and Lian, 2004; Gong and Tuson, 
2007; Chuang et al., 2008), each particle represents its 
position in binary values which are 0 or 1. Decisions taken 
by each particles in the population is binary, i.e., either 
YES/TRUE = 1 or NO/FALSE = 0. The velocity vector 
equation and position vector equation are defined as: 
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where r is a uniform random number in the range [0, 1]. 

2.2 Discrete PSO 
In discrete PSO, particle’s positions (Parsopoulos and 
Vrahatis, 2002) are discrete values. The algorithm uses real 
(discrete) values velocities and positions. Discrete PSO has 
a high success rate in solving integer programming 
problems and has the ability to quickly converge towards 
the optimal solution (Shayeghi et al., 2010). 

2.3 Constricted PSO 
Velocity of particle is cannot be controlled in the standard 
version of PSO. Hence, there is a possibility that sometime 
particles may achieve very high velocity and move outside 
the search space. Kennedy et al. (2001) introduce a 
mechanism to control velocities of particles by limiting 
them to Vmax. Clerc and Kennedy (2002) introduce 
constriction parameter χ equivalent to the Vmax parameter. 
Several types of constrictions such as Type 1, Type 1′ and 
Type 1″ have been proposed in Clerc and Kennedy (2002). 
Type 1″ constriction is simplest among all other 
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constrictions. In this type of PSO, velocity is updated as 
follows: 
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=  here k ∈ [0, 1], φ = φ1 + φ2, φ > 4. 

Generally, the value of φ is considered so as φ1 = φ2 = 2.05 
and k = 1 which results χ ≈ 0.729. 

2.4 Fully informed particle swarm 
In classical PSO as well as in constricted PSO, velocity of a 
particle is influenced only by particle’s personal best and 
global best. It seems that other knowledge available to 
neighbour has remain unused. As far as social behaviour is 
concern, generally shares information of all individuals. 
Mendes (2004) has proposed fully informed particle swarm 
(FIPS) considering all information of neighbour to update 
velocity. In FIPS, velocity is updated as follows: 
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where N is the swarm size, Pk(t) is the personal best value of 
neighbour k at time t. 

2.5 Orthogonal learning PSO 
In traditional PSO learns from best values experienced 
summing linearly. Though it is very easy to build-up such 
strategy, it is not so efficient for the complex  
system. Zhan et al (2011), and Zhan and Zhang (2011) 
proposed a mechanism which utilises orthogonal learning 
strategy in the traditional PSO. The strategy incorporates 
orthogonal experimental design (OED) (MSR Group, 1975; 
Montgomery, 2000). OED is used to discover the best 
combination of a particle’s personal best position and global 
best position. Best combinations of sample position are 
generated with OED method, which allows particles to fly 
more steadily. 

2.6 Parameter tuning 
In original PSO main challenge was to choose appropriate 
parameters for efficient performance and this has been 
studied since introduction of PSO. The primary focus of 
such study is inertia weight, cognitive acceleration 
coefficient and social acceleration coefficient. These 
parameters are tuned for improving the optimal solution in 
the solution domain. Parameter tuning strategy is needed 
because the basic version of the PSO was very effective on 
some problems. Proper and fine tuning of the parameters 
shows improvement in result (Arya et al., 2014). 

Exploration of solution space means to search solution 
space far from the current position covering entire solution 
space, while exploitation means to look around the current 
position and to cover smaller area surrounding present 

location (Črepinšek et al., 2013). Initially, the values  
of the parameters of PSO algorithm were constant, which  
results in imbalanced exploration and exploitation. 
However, experimental results proved that it is better to 
initially set the parameters to a large value, in order to 
promote global exploration of the search space, and 
gradually decrease to get more refined optimal solutions. A 
large parameter value facilitates global exploration, while a 
small one tends to facilitate exploitation. A suitable value 
for the parameters usually provides balance between global 
and local exploration abilities and consequently results in a 
reduction of the number of iterations required to locate the 
optimum solution. Most prominent parameter tuning 
approaches are briefed below. 

2.6.1 PSO – time varying inertia weight (PSO-TVIW) 
A large inertia weight results a global search while a small 
inertia weight results a local search. Shi and Eberhart (1999) 
have linearly decreases weight from larger value implies 
global search ability at the beginning and local search 
ability at the end. The inertia weight changes with the 
following equation: 

( ) max
min max min

max

currentI Iω ω ω ω
I
−= + −  (7) 

where ωmin and ωmax are the minimum value and maximum 
value of weight respectively. Imax is the maximum number 
of iterations and Icurrent is the present iteration number. Shi 
and Eberhart (1999) show ωmin = 0.4 and ωmax = 0.9 shown 
better performance. 

2.6.2 PSO-random inertia weight (PSO-RANDIW) 
It cannot be predicted whether exploration is for a larger 
inertia weight value or exploitation is for a smaller inertia 
weight. It may be better at any given time for exploration or 
exploitation irrespective of smaller or larger weight. 
Eberhart and Shi (2001) proposed random inertia weight 
instead of gradually decreasing or any static value. The 
inertia weight changes randomly according to the following 
equation: 

0.5
2
rω = +  (8) 

where r is any random value in between 0.5 to 1. 

2.6.3 PSO – time varying acceleration coefficients 
(PSO-TVAC) 

With extension to PSO-TVIW, Ratnaweera et al. (2004) 
introduce linearly varying acceleration coefficients C1 and 
C2 along with ω. This additional linearity to PSO-TVIW 
became more effective to global search during beginning of 
the algorithm and to local search at the end. Parameters of 
PSO-TVAC are updated as follows: 
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where C1min is the minimum value of C1, C1max is the 
maximum value of C1, C2min is the minimum value of C2 
and C2max is the maximum value of C2. Ratnaweera et al. 
(2004) show the algorithm performs better when C1 varies 
from 2.5 to 0.5, C2 from 0.5 to 2.5 and ω from 0.9 to 0.4. 

2.7 Our contributions 
All the variants of PSO briefed above, considers either 
personal best or global best solution for making strategy on 
next move. During movement of each particle, it 
experiences both good as well as bad solution. Strategy 
made on the basis of good solution may mislead  
particles. Moreover, part of experienced knowledge  
remains unutilised and gets wasted if only one kind of 
solution is used. To meet the requirements of knowledge 
empowerment and utilisation of both kind of knowledge, we 
proposed an avoidance scheme along with the best  
solution strategy. The approach incorporates bad solutions 
experienced by the particle for making strategy on next 
move. Instead of following only good solution, the approach 
uses bad solution to discourage particles to not follow such 
solution. 

This paper has been significantly extended from 
previous work (Biswas et al., 2013), which discussed 
preliminary work and the technical aspects of the proposed 
scheme. The work introduces cognitive avoidance scheme 
to the standard PSO. Here represents latest results and 
discussed another aspect of such avoidance scheme. This 
work enhances cognitive avoidance scheme varying with 
time, discussed in coming section. Result evaluation is 
extended to 25 benchmark functions that were presented in 
CEC 2005 special session (Suganthan et al., 2005). 

3 Motivation 
Awareness of a particle’s own best position (pbest) and 
neighbour’s best position (gbest) helps particles to decide 
which direction to move and is suitable for convergence. 
Each particle tracks pbest and gbest in successive iterations. 
Strategic decision regarding movement of any particle is 
made based on these two known values. These known best 
positions attract particles towards themselves with a hope 
that neighbouring position of best solution will as good as 
or better than the best one. Indeed, sometimes it may 
happen that these attractions act as traps for particles. This 
is because solution nearby current pbest or gbest is not 
always good, as it is actually depends on the solution 
domain. Though pbest and gbest influence particle’s 
movement, actual movement is affected by two random 

values R1 and R2. However, this interference is necessary for 
the algorithm to improve overall exploration of the solution 
domain. 

Despite the fact that pbest and gbest motivate particles 
to move towards optimal solution, interference of random 
values may cause particles to move to some unfruitful 
positions. These unfruitful movements may degrade the 
algorithm’s overall performance. Any wrong movement of a 
particle may lead to divergence from optimal solution, 
which may delay convergence. Effect of such unfruitful 
movement propagated in successive iterations resulting in 
extra iterations to reach the destination or may diverted to 
completely different direction. Though such effect may 
reduce subsequent iterations, the effect of unnecessary 
movement is always there, causing extra iterations to attain 
same position. Awareness of such pitfalls may improve 
overall performance of PSO by avoiding them. 

Figure 1 Effect of cognitive avoidance in PSO 
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Table 2 Initial range and optima 

Func Range Optimal solution 

Rastrigin [–5.12, 5.12] f(x*) = 0 
Ackley [–15, 30] f(x*) = 0 
Rosenbrock [–2.048, 2.048] f(x*) = 0 
Schwefel [–500, 500] f(x*) = –n × 418.9829 
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It is impossible to assure whether the next position is good 
or bad, it can only be predicted probabilistically depending 
on previous and present situation. Tracking of pbest and 
gbest is the best predictive notion incorporated in PSO and 
which motivates each particle to make movement nearby 
them considering that the probable good solution might be 
around the pbest or gbest. With this little greedy approach 
PSO works very well but as mentioned above every solution 
around the pbest or gbest is not always good resulting in 
unbeatable consequences. To avoid such situations, very 
similar mechanism that pbest and gbest does to a particle to 
attract towards themselves can be used by making particles 
aware of such unfruitful movements. 

4 Cognitive avoidance scheme 
As the nature of solution space is unknown to the particles 
so the only possibility is to predict next good movements 
ensuring that particles are moving in the right direction. In 
PSO convergence towards the optimal solution is guided by 
two acceleration components (cognitive component and 
social component). However, it cannot be assured 100% 
that next position is better. This is only an assumption that 
solutions near pbest or gbest may be better. There is always 
a possibility of attaining bad solution due to interference of 
random parameters as described in previous section. Any 
misguidance may slow down overall convergence of 
algorithm towards the optimal solution. Therefore, it is very 

crucial to handle properly this kind of discrepancy to guide 
particles in appropriate direction to enhance efficiency and 
accuracy. Considering this issue, in this paper we have 
proposed an approach called cognitive avoidance scheme to 
avoid such situations. 

In our proposed approach, each particle maintains its 
worst value that it has attained so far along with the pbest 
and gbest. With this known worst value particles try to 
avoid further movement towards it, having the sense that 
solutions nearby the worst one may not be suitable. 
Particles’ own known worst solutions so far (pworst) pushes 
particles backward so that they can never be trapped again 
into it. This avoidance mechanism also reduces movement 
of particles towards other bad solutions around the pworst. 
This is a kind of inverse greedy approach where particles 
are distracted instead of attracting as pbest and gbest does. 
To define such avoidance scheme we have added a new 
component called cognitive avoidance component to the 
existing velocity equation of PSO. Current pworst vector of 
ith particle can be represented as Wi(t) = (wi1, wi2, wi3, …, 
wid) where, d is the dimension of particle. Velocity equation 
is redefined as follows: 
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Table 3 Comparison of PSO and PSOCA 

Objective function Dimension Measures PSO PSOCA 

Rastrigin’s function 10 Mean 6.268238 5.890155
Std. deviation 3.205177 2.725471 

20 Mean 35.679164 30.087520 
Std. deviation 11.133938 7.594830 

30 Mean 83.605148 80.671492 
Std. deviation 19.746506 6.351290 

Ackley’s function 10 Mean 0.000000 0.000000 
Std. deviation 0.000000 0.000000 

20 Mean 0.701055 0.511282 
Std. deviation 0.821616 0.790906 

30 Mean 2.379818 2.202456 
Std. deviation 0.878856 0.045834 

Rosenbrock’s function 10 Mean 0.495389 0.587538 
Std. deviation 1.304553 1.397056 

20 Mean 12.151854 9.016740 
Std. deviation 9.862681 3.645567 

30 Mean 35.199659 33.586877 
Std. deviation 23.205804 23.058436 

Schwefel’s function 10 Mean –3,726.731438 –3,733.443933 
Std. deviation 186.940914 175.685358 

20 Mean –6,312.808570 –6,388.208710 
Std. deviation 393.573309 386.027770 

30 Mean –8,259.610620 –8,280.060558 
Std. deviation 584.277113 507.231340 
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Table 4 Comparison of PSO-CATV with PSO-TVIW, PSO-TVAC and jDE part I 

F Dim Measures PSO-TVIW PSO-TVAC PSO-CATV jDE 

f1 50 Mean 3.902552 4.908112 0.000000 0.000000 
SD 12.940261 8.163804 0.000000 0.000000 

60 Mean 2.196993 8.109815 0.000000 0.000000 
SD 3.415574 16.602715 0.000000 0.000000 

70 Mean 4.089994 7.808844 0.000000 0.000000 
SD 11.795045 16.735104 0.000000 0.000000 

f2 50 Mean 130.631028 70.339226 5.745377 11.48375 
SD 41.359146 31.479238 3.555487 4.28824 

60 Mean 329.163198 162.796134 17.549255 183.68 
SD 89.857498 59.878654 10.952076 47.192 

70 Mean 641.125525 413.048155 59.965942 132.897 
SD 153.346504 153.109885 39.948230 54.55045 

f3 50 Mean 10,808,432.435 11,897,240.811 3,045,488.056 1,570,000.00 
SD 6,285,139.025 7,327,036.636 1,146,567.177 42,426.40687 

60 Mean 14,087,070.935 11,252,155.437 4,242,028.077 4,355,950 
SD 6,878,314.411 7,192,879.592 1,550,749.991 888,621.091 

70 Mean 16,878,072.985 14,521,790.405 5,933,886.299 5,425,700.00 
SD 10,255,231.182 8,592,850.856 2,364,138.274 1,423,123.108 

f4 50 Mean 3,152.656009 7,947.115621 3,566.457645 6107.6 
SD 1,128.932254 2,596.575130 13,858.383438 431.9008219 

60 Mean 6,632.142723 14,127.583262 8,029.763677 18038 
SD 1,842.963164 4,381.406693 3,078.674737 9,916.465499 

70 Mean 12,292.978720 21,543.842494 14,205.333739 25,808 
SD 3,372.047619 4,443.916660 4,162.635158 4,449.1158 

f5 50 Mean 7,995.021248 8,232.194651 7,328.712549 5722.7 
SD 1,073.176077 1,444.619689 1,167.819993 771.73634 

60 Mean 10,263.928239 10,644.165517 10,542.227027 12,593.6 
SD 1,878.519310 1,510.495959 1,925.873026 4,499.179 

70 Mean 13,694.404809 13,451.695247 11,685.651189 13,239.5 
SD 2,318.435464 2,431.814152 1,760.678965 178.89801 

f6 50 Mean 212.248266 163.344817 96.338635 297.845 
SD 253.610211 126.706071 89.031715 137.89289 

60 Mean 108.252552 122.628378 73.948984 161.995 
SD 62.138997 43.533576 35.277724 4.3345 

70 Mean 135.399165 187.695732 110.006910 173.225 
SD 60.001736 114.768624 56.843038 18.6039 

f7 50 Mean 0.995867 0.994219 0.008458 6195.3 
SD 0.004578 0.009273 0.012966 0.0000 

60 Mean 0.996477 0.999869 0.011748 7230 
SD 0.003516 0.012295 0.011688 0.0000 

70 Mean 0.998251 1.012891 0.008993 8675.8 
SD 0.002023 0.031169 0.007952 0.0000 
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Table 5 Comparison of PSO-CATV with PSO-TVIW, PSO-TVAC and jDE part II 

F Dim Measures PSO-TVIW PSO-TVAC PSO-CATV jDE 

f8 50 Mean 21.115114 21.095453 21.119545 21.1465 
SD 0.048413 0.056330 0.042264 0.031819 

60 Mean 21.163687 21.165886 21.191519 21.1965 
SD 0.043717 0.044411 0.042322 0.0261 

70 Mean 21.200285 21.198274 21.231040 21.224 
SD 0.048999 0.040314 0.048431 0.04808 

f9 50 Mean 291.899708 287.740901 186.063673 0.0000 
SD 28.896009 26.897532 209.810298 0.0000 

60 Mean 367.496346 360.830206 684.778702 0.0000 
SD 35.602923 33.208458 527.462884 0.0000 

70 Mean 430.257996 434.277740 1,236.117304 0.0000 
SD 37.392734 33.017474 455.333121 0.0000 

f10 50 Mean 508.576562 490.925751 469.395445 113.425 
SD 241.029088 66.944758 76.089387 7.035712473 

60 Mean 1,251.609138 605.504681 557.828100 134.815 
SD 619.303092 67.921327 82.476083 7.7428 

70 Mean 1,900.690573 706.790286 683.369855 188.05 
SD 573.614498 85.963727 91.500468 5.62856 

f11 50 Mean 84.356621 34.680733 33.995479 52.0355 
SD 6.656662 6.215943 5.392729 14.68024 

60 Mean 104.211198 45.519844 42.041221 60.6085 
SD 2.621380 6.917720 6.358932 20.4007 

70 Mean 122.432169 53.992128 51.324729 72.847 
SD 8.117650 7.914189 3.887204 27.08218 

f12 50 Mean 64,292.926 64,548.556 3,435,963.583 36695 
SD 29,754.286 34,908.068 4,708,418.529 37,611.00969 

60 Mean 78,812.533 87,337.496 12,242,957.869 49,456.5 
SD 33,183.514 48,051.435 5,935,467.345 1,642.60905 

70 Mean 127,746.286 123,025.408 18,825,897.822 50,784.5 
SD 53,646.227 56,343.148 5,704,889.387 26,141.0305 

f13 50 Mean 243.747263 33.841916 10.225835 11.293 
SD 951.548735 4.519735 0.02174919 0.0028284 

60 Mean 2,212.361500 42.905302 46.441168 16.467 
SD 3,131.156487 7.183050 6.974479 0.32526 

70 Mean 6,565.684216 52.922639 59.530015 20.859 
SD 3,543.521298 6.606150 8.653405 2.070408 

f14 50 Mean 21.83099 21.681058 21.757713 22.6245 
SD 0.529896 0.626972 0.444706 0.099702 

60 Mean 26.662176 26.813936 26.210791 27.3485 
SD 0.559658 0.589835 0.700757 0.089802 

70 Mean 31.400545 31.008263 31.735995 32.335 
SD 0.516103 0.875929 0.462124 0.1385 
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Fourth component in equation (12) represents cognitive 
avoidance and is considered as negative since it represents 
distraction, which is opposite to cognitive acceleration and 
social acceleration. To control the effect of this avoidance 
on a particle a cognitive avoidance coefficient C3 is used 
along with randomness R3 in range [0, 1]. Position equation 
remains unaltered as in equation (2). This new addition to 
the existing PSO is referred as PSO with cognitive 
avoidance (PSOCA). Effect of the newly added component 
is shown with an example in Figure 1. Black circle 
represents current position of a particle. Black diamond 
represents next position of the particle guided by pbest and 
gbest only. White diamond represents next position 
influenced by cognitive avoidance component. Proposed 
approach avoids movement towards worst solution and 
pushes final solution towards either pbest or gbest. In this 
case, it moves towards pbest. 

A population of particles is initialised with randomly 
generated positions and velocities. Fitness of each particle is 
evaluated with user defined objective function. At each 
generation velocity of the particle is updated with equation 
(12) and next positions of particles are evaluated with 
equation (2). At each generation a particle finds best 
position or worst position, notes down that position, and 
updates its current pbest, pworst and gbest. Generally, 
velocities of particles are controlled with predefined values. 
If any particle gains larger velocity than the predefined 
velocity, modulus of the velocity is considered for updating 
positions. We have not considered any predefined velocity 
limits for particles. Let particles move with any finite 
velocity outside the search space then that movement is 
controlled with defined limits of each dimensions. 

Although, strategically, we have overcome the problem 
of unfruitful moves, the problem of misguidance still 
remains in PSOCA. As the method incorporates 
probabilistic move by avoiding unfruitful moves, which 
may again misguide particles in some cases where optimal 
value is nearby the present pworst value. Particle may 
wrongly avoid move towards the optimal solution and may 
never reach the optimal solution. There has to be some 
mechanism so that such misinterpretation can compensated 
in successive iterations. To overcome such situation a 
varying cognitive avoidance coefficient (C3) is introduced to 
PSOCA. A very similar mechanism used for varying  
weight in PSO-TVIW is utilised here for varying C3. We 
refer this extension to PSOCA as time varying PSOCA 
(PSO-CATV). C3 is updated in each iteration as follows: 

( )3 3min 3max 3min
mIter IterC C C C

mIter
−⎛ ⎞= + − ⎜ ⎟

⎝ ⎠
 (13) 

Here, mIter is the maximum number of iterations and Iter is 
the current iteration number. It is clear from the equation 
(13) that the value of C3 gradually decreases with successive 
iterations. Hence, effect of cognitive avoidance reduces as 
iteration increases. So, even if situation arises where 
solution are nearby the pworst, particle can reach the 
optimal solution as effect of misinterpretation reduces. 

5 Experimental evaluation 
5.1 Benchmark functions and performance metrics 
For analysing results of the proposed approach, two sets of 
benchmark functions are used. First set comprises very 
popular four benchmark functions that were used for 
performance evaluation. Among these Rosenbrock’s 
function is uni-modal, where as Ackley’s, Rastrigin’s and 
Schwefel’s functions are multi-modal function. All 
functions have global optimal solution at or near the origin 
except Schwefel’s function, which have global optimal 
solution at the edges of the solution domain. Function 
definitions and their initial ranges are shown in Table 1 and 
Table 2, respectively. 

Second set comprises 25 benchmark functions that were 
presented in CEC 2005 special session. 

• Five unimodal functions 
a f1: Shifted sphere function. 
b f2: Shifted Schwefel’s problem 1.2. 
c f3: Shifted rotated high conditioned elliptic 

function. 
d f4: Shifted Schwefel’s problem 1.2 with noise in 

fitness. 
e f5: Schwefel’s problem 2.6 with global optimum 

on bounds. 

• 20 multimodal functions 
a seven basic functions 

1 f6: Shifted Rosenbrock’s function. 
2 f7: Shifted rotated Griewank function without 

bounds. 
3 f8: Shifted rotated Ackley’s function with 

global optimum on bounds. 
4 f9: Shifted Rastrigin’s function. 
5 f10: Shifted rotated Rastrigin’s function. 
6 f11: Shifted rotated Weierstrass function. 
7 f12: Schwefel’s problem 2.13. 

b two expanded functions 
1 f13: Expanded extended Griewank’s plus 

Rosenbrock’s (Ef8f2) 
2 f14: Shifted rotated expanded Scaffers F6. 

c 11 hybrid composition functions 
1 f15: Hybrid composition function 1 
2 f16: Rotated hybrid composition function 1 
3 f17: Rotated hybrid composition function 1 

with noise in fitness 
4 f18: Rotated hybrid composition function 2 
5 f19: Rotated hybrid composition function 2 

with a narrow basin for the global optimum 
6 f20: Rotated hybrid composition function 2 

with the global optimum on the bounds 
7 f21: Rotated hybrid composition function 3 
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8 f22: Rotated hybrid composition function 3 
with high condition number matrix 

9 f23: Non-continuous rotated hybrid 
composition function 3 

10 f24: Rotated hybrid composition function 4 
11 f25: Rotated hybrid composition function 4 

without bounds. 

Optima of all the functions have been displaced from the 
origin or from the previous position to ensure that optimal 
solutions can never be obtained in centre of the domain. 
This displacement mechanism has made it difficult for the 
algorithms which have central tendency. 

Since cognitive avoidance approach is added to PSO to 
improve overall performance, so proposed PSOCA is 
compared with standard PSO only. However, improved 
version of PSOCA i.e. PSO-CATV is compared with other 
two variants of PSO, PSO-TVIW and PSO-TVAC. Along 
with these two variants of PSO, we have also considered 
another state-of-the-art competitor jDE (Brest et al., 2006) 
to compare performance of PSO-CATV. This is an 
extension to the differential evolution approach. jDE can 
adapt parameters CR and F, suitable to corresponding 
situation. 

5.2 Analysis methods 
To analyse results obtained, we have considered two 
statistical approaches, value-based approach and rank-based 
approach. In value-based approach, we have evaluated two 
performance metrics mean and standard deviation. These 
metrics are evaluated for each algorithm with different 
functions from benchmark function sets in three different 
dimensions. In rank-based approach, we have adopted chess 
rating system for evolutionary algorithms (CRS4EAs) 
(Veček et al., 2014) to compare and rank PSO-CATV with 
respect to other competitor. Apart from this statistical 
approach, we also have considered graphical approach to 
visualise and compare convergence of PSO-CATV with 
other. We have noted best values obtained at each 
generation for different functions to visualise convergence 
and relative exploration or exploitation. 

5.3 Experimental setup 

5.3.1 Environment settings 
First set of benchmark functions are tested with dimensions 
10, 20 and 30 to evaluate PSOCA. Population size is 
considered for this case is 40 and maximum iteration limit 
as 1000 for each run to made comparisons more precise. 
Second set 25 functions CEC 2005 special session is 
divided in two subsets. Subset 1 includes first 14 functions 
and subset 2 includes remaining 11 hybridised functions. 
Subset 1 is considered for both statistical analysis methods 
to evaluate PSO-CATV. For both value-based method and 
CRS4EAs considered dimensions are 50, 60 and 70. As 
increase in dimensionality increases complexity of the 
problem we have considered larger population size 100 for 

this case. Also considered different maximum iteration limit 
depending on there complexity level. For dimensions 50, 60 
and 70, maximum iteration or generation limit are 
considered as 3,000, 4,000 and 5,000, respectively. For all 
statistical analysis, each function and corresponding 
considered dimension are executed over 50 trials to present 
performance metrics. CRS4EAs is utilised in two ways to 
rank algorithms. First, ranking is done by considering single 
dimension at a time and second ranking is done by 
considering all dimension at the same time. The initial 
CRS4EAs parameter settings for any new algorithm is 
considered as follows: rating R = 1,500, rating deviation  
RD = 350 and rating volatility σ = 0.06. The 99.7% 
confidence interval RI is used for analysis. This RI indicates 
that the difference between two ratings is significant if the 
difference is larger than 3 × RD. Code for CRS4EAs is 
obtained from Github (2013). 

Figure 2 Change in rating deviation (RD) after addition of one 
function 

 
(a) 

 
(b) 

Notes: For all single dimension ranking RD changes at 
similar rate as shown in (a). Change in RD for 
ranking of algorithms with all dimensions taken 
at same time is shown in (b). 

Table 6 Ranking interval (RI) of algorithms 

Algorithms Dim 50 Dim 60 Dim 70 All Dim 
PSO-CATV [1,599, 

1,608.6] 
[1,542.9, 
1,552.5] 

[1,614.6, 
1,624.2] 

[1,587.6, 
1,593] 

jDE [1,609.2, 
1,618.8] 

[1,534.7, 
1,544.3] 

[1,548.5, 
1,558.1] 

[1,566.2, 
1,571.6] 

PSO-TVAC [1,379.7, 
1,389.3] 

[1,456.3, 
1,465.9] 

[1,437.7, 
1,447.3] 

[1,426.6, 
1,432] 

PSO-TVIW [1,392.9, 
1,402.5] 

[1,447, 
1,456.6] 

[1,380.1, 
1,389.7] 

[1,408.8, 
1,414.2] 

Note: Rating deviation (RD) for all single dimension was 
reached value 1.6 and for all dimension at same 
time reached value 0.9. 
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Figure 3 Change in rank of each algorithm after addition of  
one function to the tournament (see online version  
for colours) 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Note: Change in rank for single dimension ranking with 
dimension 50, 60 and 70 are presented in (a), (b) 
and (c) respectively. (d) Shows the same for all 
dimensions taken together. 

For convergence analysis consider subset 2 of CEC 2005 
benchmark functions. As subset 2 consist of 11 functions, 
all are hybrid functions of multiple functions of subset 1. 
These functions are more complex than subset 1. So, we 
have considered these functions to visualise how first 
algorithm reaches to optimal value. We keep population size 
100 as before, but consider only one trial and observe best 
values over 1,000 generations. For all experiments 
population is initialised with uniformly distributed random 
values covering solution domain. 

5.3.2 Parameter settings 
Acceleration coefficients of PSOCA C1, C2 and newly 
added C3 kept as constant values 0.6, 1.5 and 0.4, 
respectively. However, for PSO-CATV acceleration 
coefficients C1 and C2 are kept same constant value as 
PSOCA, but the newly added C3 varied linearly from  
C3max = 2.0 to C3min = 0.25. For PSO-TIVW, the value of ω 
updated with ωmin = 0.4 and ωmax = 0.9 (Shi and Eberhart, 
1999). For PSO-TVAC, value of C1 varied from 2.5 to 0.5, 
C2 from 0.5 to 2.5 and ω from 0.9 to 0.4 (Ratnaweera et al., 
2004). jDE not required any parameter setting as its 
parameters CR and F are adapted during execution. 

5.4 Result analysis 

5.4.1 Value-based analysis 
Results of PSOCA and PSO on the first set of benchmark 
functions, performance metrics of optimal solutions over  
50 trials are presented as in Table 3. For Rastrigin’s 
function in all dimensions PSOCA performs better than 
PSO in terms of both mean and standard deviation. For 
Ackley’s function in dimensions 10 and 20 shows almost 
similar results, but in 30 PSOCA performs better than PSO. 
In dimension 10 both reaches optimal value. For 
Rosenbrock’s function in dimension 10 performance of 
PSOCA is poor. In dimension 20, PSOCA performs very 
well. In dimension 30 shows little improvement in 
performance than PSO. From these experiments, it is clear 
that introduction of cognitive avoidance to PSO not only 
improves results but also gives benefit for higher 
dimensional problems. Performance of PSOCA seems better 
with increment of dimensionality. 

Results of PSO-CATV and other competitor on first 
seven of subset 1 of CEC 2005 special session benchmark 
functions with the performance metrics of optimal solutions 
over 50 trials are presented as in Table 4. This is clear from 
the results presented in Table 4 that PSO-CATV 
outperforms over PSO-TVIW, PSO-TVAC and jDE in 
functions f1 and f2 for all dimensions. In f3, PSO-CATV 
shows better result than PSO-TVIW and PSO-TVAC, and 
shows very similar results to jDE. In f4, for all dimensions 
PSO-CATV outperforms jDE and PSO-TVAC, but fall 
behind PSO-TVIW. In f5, for dimensions 50 and 60 
performance of PSO-CATV is almost similar to both the 
competitor, but for dimension 70 PSO-CATV shows drastic 
improvement. However, for dimension 50 performance of 
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jDE is better than PSO-CATV and it gives a better result 
than jDE on dimensions 60 and 70. Again in functions f6 
and f7, PSO-CATV outperforms over PSO-TVIW and  
PSO-TVAC for all dimensions. But, in f6, jDE performs 
better than PSO-CATV. Performance of PSO-CATV again 
seems better than jDE and noted that jDE is getting stick to 
some specific values over all 50 trials. Which indicates that 
jDE might have fall into that local optima and unable to 
come out of that optima. 

Results on rest of the functions of subset 1 are presented 
in Table 5. In f8, performance of PSO-CATV shows very 
similar performance as jDE, PSO-TVIW and PSO-TVAC. 
In f9, performance of PSO-CATV is poor. In f10,  
PSO-CATV outperforms in almost all dimensions than 

PSO-TVIW and PSO-TVAC, but poorer than jDE. Again in 
f11, PSO-CATV outperforms all three competitors in 
almost all dimensions. In f12, PSO-CATV shows very poor 
performance. However, all three competitors also show poor 
result in this function, though comparatively better than 
PSO-CATV. In f13, PSO-CATV outperforms PSO-TVIW 
but, falls behind PSO-TVAC and jDE. In f14, performance 
of PSO-CATV is almost similar but comparatively better 
than all three competitors. Overall performance of  
PSO-CATV is better than all three PSO-TVIW, PSO-TVAC 
and jDE in all functions except f9 and f12. Our observation 
regarding cognitive avoidance for PSOCA remains for  
PSO-CATV as well. 

Figure 4 99.7% confidence intervals for the algorithms ratings from Table 7 

  

(a)       (b) 

  

(c)       (d) 

Notes: Here, X-axis represents ratings of algorithms’. (a), (b) and (c) presents 99.7% confidence interval corresponding to single 
dimensional ranking of dimensions 50, 60 and 70, respectively. (d) Presents the same for all dimensions taken together. 
Only in (b), i.e., for dimension 60 has overlapping interval with PSO-TVIW, PSO-TVAC and PSO-CATV, jDE. 
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Figure 5 Significance difference detected with CRS4EAs 

    
(a) (b) (c) (d) 

Notes: Two algorithms are significantly different when 99.7% confidence interval do not overlap. Significance difference detected 
with CRS4EAs for dimensions 50, 60, 70 and all at the same time is shown in (a), (b), (c) and (d), respectively. 

Figure 6 Convergence comparison of PSO-CATV with PSO-TVIW, PSO-TVAC and jDE 
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Figure 6 Convergence comparison of PSO-CATV with PSO-TVIW, PSO-TVAC and jDE (continued) 

  

  

 

 
5.4.2 Rank-based analysis 
Results obtained with CRS4EAs are presented in Table 7, 
where algorithms’ ranking corresponding to different 
dimensions are shown. Hence, we have four rankings 
corresponding to the dimensions 50, 60, 70 and all (i.e.,  
50, 60 and 70 taken same time in the tournament). An 
algorithm’s ranking R represents the power of the algorithm 
after all executed tournaments. Along with this ranking, we 
have also considered measurements like RD and rating 
interval (RI) as suggested by the Glicko-2 rating system 
with known explanations (Veček et al., 2014). We have 
noted change in ranking with addition of a function. We 
have added functions in sequence of f1, f2, … up to f14 in 
the tournament to do so. Change in ranking of algorithms 

with such incremental tournament is presented in Figure 3. 
With the change in ranking, we have also noted change in 
RD with addition of functions to the tournament. We have 
observed same change in RD for single dimensions, but 
different for all dimensions together. Change in RD for 
single and all dimensions are shown in Figure 2. At  
the end of tournament RD values for single dimension and 
all dimensions reached to 1.6 and 0.9, respectively. Table 7 
displays final ranking after the end of the tournaments. 
99.7% confidence interval [R-3 × RD, R+3 × RD] is 
considered to make sure that any possible error is minimal. 
RI for all algorithms with respect to their final RD values of 
ranking is shown in Table 6. The leaderboards for all four 
ranking are designed with the best algorithm on the top with 
a rank of 1. A graphical presentation of these results are 
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presented in Figure 5. Nodes in the graph present 
algorithms. Two nodes are connected if their RIs do not 
overlap. Two connected algorithms indicate that these two 
algorithms are significantly different. 

Table 7 Ranking of algorithms 

Algorithms Dim 50 Dim 60 Dim 70 All Dim 

PSO-CATV 1,603.8 1,547.7 1,619.4 1,590.3 
jDE 1,614.0 1,539.5 1,553.3 1,568.9 
PSO-TVAC 1,384.5 1,461.1 1,442.5 1,429.3 
PSO-TVIW 1,397.7 1,451.8 1,384.9 1,411.5 

Notes: Columns labelled with Dim 50, Dim 60 and Dim 70 
shows rankings when for ranking considered single 
dimension 50, 60 and 70, respectively. Columns 
labelled with all Dim shows rankings when all three 
dimensions are taken together for ranking. 

Rankings obtained with CRS4EAs shows clearly superiority 
over other three competitors as in Table 7. In 3 of 4 
rankings except for dimension 50 PSO-CATV shows 
highest ranks. In 50 dimension also, PSO-CATV shows 
higher ranking than PSO-TVIW and PSO-TVAC. Though 
PSO-CATV lagging behind jDE in final rank on dimension 
50, it would be clear from change in rankings with addition 
of new function (as shown in Figure 3) to the tournament 
that most of the cases PSO-CATV had higher ranking than 
jDE. But, as PSO-CATV performs badly in f12 its ranking 
degrades and it was also noted during value-based analysis. 
As mentioned in Veček et al. (2014), a skewed result can 
effect very badly in ranking of algorithms, but still with 
such skewness in results PSO-CATV managed to have 
highest ranking for other cases. Normally, addition of new 
function causes decrement in RD value (as shown in  
Figure 2), but after f12 it remains same indicating 
something odd things present in results. Again from view 
point of RI (as presented in Table 6) and ranking, it is clear 
that PSO-CATV has been the best among these competitors. 
Ranking shows superiority and RI indicates significance 
level of that superiority. As mentioned in Veček et al. 
(2014), non-overlapping interval means significant 
difference in algorithms. RI overlapping can be clearly 
visible in leaderboards presented in Figure 4. Graphical 
presentation of these results presented in Figure 5 shows 
that only in case dimension 60 have overlapping. Hence, 
rest of the ranking indicates significant difference in 
algorithms performance. 

5.4.3 Convergence analysis 
Convergence results on subset 2 of CEC 2005 special 
session benchmark functions that includes f15 to f25 
hybridised functions are displayed in Figure 6. PSO-CATV 
shows slow convergence at beginning as it should be, 
because initially PSO-CATV explores and as gradually 
decreases cognitive avoidance component it start exploiting. 
Hence, convergence of PSO-CATV is observable almost 
after 50% of generations completed. While exploration for 
all three components seems to be ends early. Though they 

exploits thereafter, best fitness value does not improves 
significantly and after a while remains constant. It is also 
notable that despite being PSO-CATV starts with slow 
convergence, but most of the cases at the end of execution 
gradually improves best fitness and results better than all 
three competitors. Though in functions f15, f20 and f21 
show exception to this observation as PSO-CATV lagging 
behind some these competitors, exploration of solution 
space is observable. PSO-CATV shows extensively very 
high convergence rate in f24 and f25, it leaves all three 
competitors far behind both in terms of best result and 
exploration. Overall performance of PSO-CATV seems to 
be better than all three competitors. 

6 Conclusions 
This paper introduces a novel mechanism to improve 
performance of PSO by avoiding particle’s unfruitful 
moves. New additional component called cognitive 
avoidance is introduced to the velocity equation of PSO. 
Cognitive avoidance coefficient controls the effect of this 
component. The approach tracks personal worst positions 
and directs particle to avoid movement towards such 
positions. The concept of linearly decreasing cognitive 
avoidance coefficient is also introduced to negotiate the 
negative effect and to maintain balance between exploration 
and exploitation. Proposed approach is evaluated with  
two sets of benchmark functions comprising total of  
29 functions. Empirical result shows performances of two 
proposed cognitive avoidance schemes PSOCA and  
PSO-CATV are better than three previous versions of PSO 
and state-of-the-art competitor jDE. Result is evaluated with 
three different approaches, value-based, rank-based and 
convergence-based. In value-based approach, PSO-CATV 
shows higher quality solutions than all competitors and is 
also ranked higher. Gradually improved convergence of  
PSO-CATV is also better than other competitors, as most of 
the cases it able to reach nearer to the optimal value. Hence, 
it is worthwhile to mention that additional cognitive 
avoidance component definitely improves PSO to certain 
extent. 
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