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Abstract  

Hydrocarbon-Selective catalytic reduction (HC-SCR) is one of the potential methods to remove NOx emissions from 

diesel engine, lean burn petrol engines and natural gas engines exhaust. Ag/Al2O3 is a good catalyst for HC-SCR of 

NOx under lean-burn conditions. Further, addition of small amount of H2 is effective for enhancing HC-SCR activ-

ity. This effect is unique to silver and to specific Ag/support combinations, namely, Ag/γ-Al2O3. Various HC reduc-

tants, such as: octane, decane, dodecane and propane, have been reported in the literatures. Only a single study on 

LPG as a reductant over Cu-ZSM catalyst was reported. There was no work reported on H2 assisted LPG over 

Ag/Al2O3 catalyst. Thus, this gap in the literature is filled with the present investigation of NO reduction over 2 

wt.% Ag/Al2O3 catalyst using LPG reductant. The fresh and used catalyst was characterized by various techniques 

like low temperature N2-adsorption, XRD, XPS and SEM. There was practically no change in the characteristics of 

the fresh and used catalyst. Two different reductants of CO and LPG were compared for SCR of NO over the cata-

lyst without and with H2-assisted. The experiments were performed in a fixed bed tubular flow reactor under the 

following conditions: 100mg catalyst; 0.13% NO, 2.5% LPG/CO, 1% H2, 10% O2, rest Ar; total flow rate 60 mL/min; 

temperature ambient 400 oC and pressure 1 atm. Around 100% conversion of NO was achieved using LPG reduc-

tant. Light off temperature of NO reduction significantly reduced by H2assisted LPG reductant. The maximum 

conversion of NO with CO was limited to 35.15% at temperature of 224 oC and above. Whereas, 97.79 % NO con-

version was achieved at 365 oC with LPG reductant. While, the maximum conversions with H2-LPG and H2-CO re-

ductants were 100 and 99.46% at 117 and 220 oC, respectively. Therefore, H2-LPG-SCR of NOx over 2 wt.% 

Ag/Al2O3 catalyst system can be used to get 100% reduction at low temperature. Copyright © 2018 BCREC Group. 
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1. Introduction 

Selective catalytic reduction (SCR) is a po-

tential method to remove NOx under excess oxy-

gen conditions such as diesel engine exhausts 

and lean burn engines. The two main aspects of 

SCR are reducing agent and NOx reduction 

catalyst. Urea and ammonia are most exten-

sively used reductants. However, urea-SCR 

technology has serious drawbacks, such as an 

additional urea tank to be refilled periodically, 

heated to avoid freezing of the urea solution 

(urea-SCR) [1], and formation of high molecular 

weight products. Ergo, now a day hydrocarbons 

(HC) like those typically present in fuel mix-

tures are used as a reductant, such as: octane, 

decane, dodecane and propane [2-4], etc. Among 

the catalyst for NOx reduction most extensively 

researched HC-SCR of NOx catalysts are 

Ag/Al2O3. It is amongst the most active and se-

 *  Corresponding Author.  

E-mail: sysjzx@126.com (Z.X. Ji), 

Telp: +86-536-8785613, Fax: +86-536-8785613 

Received: 24th June 2017; Revised: 6th October 2017; Accepted: 10th November 2017;  

Available online: 11st June 2018; Published regularly: 1st August 2018 



 

Bulletin of Chemical Reaction Engineering & Catalysis, 13 (2), 2018, 228 

Copyright © 2018, BCREC, ISSN 1978-2993 

lective catalyst in both laboratory and full-scale 

tests [5,6]. It has become clear that Ag/Al2O3 

catalysts have several key advantages over 

other potential diesel-SCR catalysts, i.e. Cu-

ZSM5 and Pt/Al2O3. Such advantages include 

low activity for SO2 oxidation, relatively high 

thermal and hydrothermal durability 

(compared to Cu-ZSM5) and high selectivity to 

N2 (contrasting Pt-based catalysts which form 

considerable quantities of N2O) [7,8]. Further, 

addition of minute amount of H2 to the reduc-

tant leads to a significant increase in NOx re-

duction efficiency in presence of Ag/Al2O3 cata-

lyst. This effect is unique to silver and to spe-

cific Ag/support combinations, namely Ag/γ-

Al2O3 and Ag/MFI [2,9]. 

The role of each silver site in Ag/Al2O3 cata-

lyst is much discussed topic leading to several 

articles [10-13], it is generally accepted that 

metallic silver has an oxidizing function and is 

thus responsible for activation of HC and NOx. 

Small silver clusters and oxidized silver have 

been proposed to activate the NOx reduction ac-

tivity by partially oxidizing the reductant and 

promoting surface nitrate formation. Shimizu 

and Satsuma have summarized various silver 

states as active sites in their review and refer-

ences therein [14]. The proportion of small sil-

ver clusters and metallic silver depends much 

on the silver loading and preparation tech-

nique. With impregnation methods, high silver 

loading tends to produce more metallic silver 

while low silver loading gives a higher propor-

tion of small clusters of silver [15]. Sol-gel 

methods produce catalysts containing small sil-

ver clusters and oxidized silver which are more 

finely distributed in the alumina matrix 

[16,17]. 

One of the most challenging part in HC-SCR 

over Ag/Al2O3 catalysts is to understand the re-

action mechanism of NOx reduction, which is 

particularly complicated by the nature of hy-

drocarbons used that contribute to the forma-

tion of a number of intermediates (both specta-

tors and active intermediates) during reaction. 

Several literature reports have addressed 

mechanistic aspects of NOx reduction over 

Ag/Al2O3 [18-21]. Generally, the first step of 

HC-SCR is activation of NO and HC by O2. NO 

and O2 form NOx surface species (nitrates and 

nitrites). Strongly adsorbed nitrate is known to 

self-inhibit the NOx reduction at low tempera-

ture [22,23]. For activation of HC, the O2 par-

tially oxidizes the HC to form oxygenated HC 

surface components. Although the formation of 

oxygenated HC is generally agreed to occur, 

however, the structure and role of oxygenated 

HC surface compounds remains a subject of de-

bate in the literature [24].  

Addition of hydrogen promotes the following 

reactions over Ag/Al2O3: (1) oxidation of NO to 

nitrate; (2) oxidation of NO to NO2; (3) partial 

oxidation of C3H8 to acetone; and (4)  oxidation 

of acetone with NO+O2 mixture [19,25-27]. 

Some research groups believed that the cata-

lytic activity was promoted by the reductive ac-

tivation of O2 with H2 and the production of 

moderately agglomerated Agδ+n clusters on the 

catalyst surface [28]. Wichterlova and co-

workers [29] proposed that hydrogen itself par-

ticipates directly in the reaction mechanism. 

Similarly, Breen and co-workers [29] also in-

vestigated that “hydrogen effect” is due to a 

chemical effect and not the result of a change 

in the structure of the active site. Shibata et al. 

[30] claim that the rate of NOx reduction in the 

SCR reaction is directly dependent on the rate 

of partial oxidation of the hydrocarbon to sur-

face acetate and that hydrogen has a remark-

able effect in promoting this oxidation reaction. 

Wang et al. [31] studied SCR of NOx over 

various trace noble metals (Pt, Au, or Pd) co-

impregnated with Ag/Al2O3 catalysts and found 

that addition of small quantity of Pd to 

Ag/Al2O3 enhances NOx reduction efficiency. 

D'Agostino et al. [32] have studied the SCR of 

NOx in the presence of various reducing 

agents, namely toluene, n-octane and ethanol, 

over Ag/Al2O3 prepared by standard wet im-

pregnation. In this paper they described a sim-

ple approach to characterizing the interaction 

energy of water and reducing agent so as to aid 

the selection of reducing agent and catalyst to 

be used in SCR conversions and found that re-

ducing agents with weaker strength of surface 

interaction relative to water, such as hydrocar-

bons, show poorer activity compared to reduc-

ing agents with stronger strength of interac-

tion, such as ethanol. Yu et al. [33] reported 

that NOx reduction by hydrocarbons containing 

two- or three-carbon atoms was clearly pro-

moted by H2 at low temperatures, while this 

promotion effect of H2 did not occur during the 

CH4-SCR over Ag/Al2O3.  

Therefore, in the present study LPG consist-

ing ~72% C3H8 was used as a reductant. The 

potential use of LPG as reducing agent in the 

SCR of NOx is a better alternative to the other 

reductants as it leads to a strong decrease in 

the Gibbs free energy values of NO reduction to 

N2 than other reductants [34]. Several advan-

tageous features of LPG such as economical, 

portable, gaseous nature and readily available 

around the globe make it possible choice of lean 

de-NOx reductant over gasoline and diesel or 

other HC reductants. However, there is very 
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limited literature is available for the use of liq-

uefied petroleum gas (LPG) as a reductant [35]. 

Keeping in view the advantages of LPG and 

that fact that there is very limited literature 

available for the use of LPG as a reductant in 

SCR of NOx, the present investigation was un-

dertaken to evaluate LPG-SCR of lean NOx 

over Ag/Al2O3 catalyst. To create a better un-

derstanding of the effect of reductants as well 

as H2 addition to the reductant, CO and LPG 

with and without H2was also investigated over 

the Ag/Al2O3 catalysts.  

 

2. Materials and Method  

2.1 Catalyst preparation 

The Ag/Al2O3 catalyst containing 2 wt.% Ag 

was prepared by wet-impregnation of commer-

cial γ-Al2O3 (Alfa Aesar, surface area 255    

m2.g-1) with an aqueous solution of AgNO3 [36]. 

The precursor solution of the catalyst was dried 

overnight at 110 °C and calcined at 500 °C for 1 

h. 

 

2.2 Catalyst characterization 

The 2 wt.% Ag/Al2O3 catalyst was character-

ized before and after the activity measure-

ments by following techniques: 

 

2.2.1 Textural characterization 

BET surface area of the catalysts was meas-

ured by low temperature nitrogen adsorption at 

-196 oC using a Micromeritics ASAP 2020 ana-

lyzer. Samples were degassed at 300 oC under 

vacuum prior to the measurement. The calcula-

tion was performed using the adsorption data 

in the relative pressure (p/po) range from 0.05 

to 0.30, and the total volumes were determined 

from the amounts adsorbed at relative pres-

sure, p/po = 0.99. The pore size distribution was 

calculated based on the desorption curve of the 

isotherm using the Barrett-Joyner-Halenda 

(BJH) algorithm. The average pore diameter 

was defined as the position of the maximum in 

the pore-size distribution curve. 

 

2.2.2 X-ray diffraction (XRD) 

XRD measurements were conducted using a 

Rigaku Miniex DMAX-B diffractometer with a 

Cu-Kα radiation source, operated at 40 kV and 

100 mA. Patterns were recorded in the θ range 

from 20o to 90o at 4 o/minute. The diffraction 

patterns have been indexed by comparison 

with the JCPDF files. 

 

2.2.3 X-Ray Photoelectron Spectroscopy (XPS)  

XPS was performed on an Amicus scanning 

Auger microprobe using Mg-Kα X-ray source 

(hc = 1253.6 eV) at a base pressure of 3×10-8 

mbar operated at 120 W. The binding energies 

were calibrated using C 1s peak of contami-

nant carbon (BE = 284.6 eV) as standard, and 

quoted with a precision of ±0.2 eV. The col-

lected data were analyzed using a nonlinear 

Shirley-type background. Atomic concentra-

tions were evaluated by normalizing peak ar-

eas to the Scofield sensitivity factors. 

 

2.2.4 Scanning Electron Microscopy (SEM) 

Scanning electron micrographs (SEM) were 

recorded on Zeiss EVO 18 scanning electron 

microscope (SEM) instrument. An accelerating 

voltage of 15 kV and magnification of 1000X 

was applied.  

 

2.3 Catalyst activity measurement 

SCR of NO experiments were performed in 

a tubular reactor mounted in a split open tube 

furnace under the following conditions: 100 mg 

catalyst; gas composition consisting of 1250 

ppm NO, 2.5% LPG/CO, 1% H2, 10% O2, rest 

Ar; total gas flow rate 60 mL/min; temperature 

from ambient to 400 oC and pressure 1 atm. 

The experimental setup used for the catalytic 

activity measurement is shown in Figure 1. It 

can be divided into following sections: feeding 

system consisting of gas cylinders and digital 

Figure 1. Experimental setup for SCR of NO 

over Ag/Al2O3 catalysts: 1. NO cylinder, 2. Air 

cylinder, 3. Ar cylinder, 4. Reductant (H2, LPG, 

CO) cylinder, 5. Digital gas flow meter, 6. Digi-

tal gas flow meter, 7. Hg safety device, 8. Mois-

ture trap, 9. Reactor, 10. Split open furnace, 11. 

Condenser, 12. Microprocessor temperature 

controller, 13. Thermocouple, 14. Thermowell, 

15. Chemiluminescence NO/ NOx analyzer, 16. 

Gas chromatograph  
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flow meters, tubular fixed bed reactor in split 

open furnace.  
The compositions of inlet and outlet gases 

were measured with the help of an online gas 

chromatograph (Nucon, series-5765) and NO 

analyzer (Eco Physics CLD 62 chemilumines-

cence NO/NOx). The CO, CO2, and N2 concen-

trations were measured by GC equipped with 

porapack Q-column/molecular sieve 5-A, 

methanizer, and FID/TCD detector. The tem-

perature of the catalyst bed was measured us-

ing a K-type thermocouple. The measurement 

was done at steady state condition. The percent 

conversion of NO and CO was calculated by 

Equations 1 and 2, respectively.  

 

 

      (1) 

 

 

     (2) 

 

 

where, [NOinlet] and [NOoutlet] are concentrations 

of NO at the inlet and outlet of the reactor, re-

spectively. Similarly, [COinlet] and [COoutlet] are 

concentrations of CO at the inlet and outlet of 

the reactor, respectively. 

3. Results and Discussion 

3.1 Catalyst characterization 

3.1.1 Textural properties 

The typical isotherms of fresh and used 

Ag/Al2O3 catalyst is shown in Figure 2 and tex-

tural properties are shown Table 1. It is of type 

IV isotherms according to IUPAC classification 

1984, exhibit mesoporous pore size. In Ag/Al2O3 

catalyst hysteresis loops occur at low relative 

pressures (~0.6) suggesting that catalyst con-

tains cylindrical pores.  

 

3.1.2 X-ray diffraction (XRD) 

XRD pattern of Ag-Al2O3 composite are 

shown in Figure 3. In XRD patterns of the 

catalyst much significant, sharper and broad 

peak of Al2O3 was observed at 2θ = 67.18o and 

46.22o. The Ag phase was observed at 2θ = 

37.2o which correspond to the (111) lattice 

planes of metallic Ag, this might because that 

Ag species on the Ag-Al2O3 was crystalline 

phase (JCPDS 04-0783). Significant peak at 2θ 

= 32.4o indicates presence of Ag2O (111) phases 

in the sample (JCPDS 41-1104). The crystallite 

size of the catalyst was 1.0154 Å determined 

using Debye-Scherrer equation (Equation 3). 

100 x
]NO[

]NO[]NO[
(%)NO

inlet

outletinlet
Conversion




100 x
]CO[

]CO[]CO[
(%)CO

inlet

outletinlet
Conversion




Figure 2. Nitrogen adsorption-desorption isotherms on Ag/Al2O3: (a) Fresh, (b) Used catalyst  

Table 1. Textural characterization of Ag/Al2O3 

catalyst 

Catalyst 
Surface area  

(m2/g) 

Pore volume  

(cm3/g) 

Avg. pore 

diameter  

(Å) 

Ag/Al2O3 

(Fresh) 

93.13 0.151 64.80 

Ag/Al2O3 

(Used) 

90.14 0.139 60.19 

Figure 3. XRD pattern of 2% Ag/Al2O3 
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 d = 0.89 λ/β cos θ           (3) 

 

where, d is the mean crystallite diameter (Å), λ 

is the X-ray wave length (1.54056 Å), β is the 

full width half maximum (FWHM) and θ is the 

Bragg-angle.  

 

3.1.3 X-Ray Photoelectron Spectroscopy (XPS) 

The Ag valence state of the supported Ag 

was characterized by high-resolution XPS, with 

the results shown in Figure 4 and summarized 

in Table 2. As can be seen in figure, the peaks 

of the Ag 3d5/2 binding energy for sample ap-

peared at around 368.8-370.3 eV. This suggests 

that there are two different states of metallic 

silver on the surface, where the difference in 

binding energy between the two states can be 

explained by the difference of the charge effect. 

As reported by Hammond et al. [37] Ag is un-

usual in that its core-level photoemissions shift 

to lower binding energy with increasing oxida-

tion state. The binding energy of Ag 3d5/2 in Ag-

Al2O3, is 368.0, which are consistent with the 

binding energies of Ag 3d5/2 in Ag2O, according 

to the literature values of 367.9 eV [37]. In ad-

dition, a shoulder at 368.5 eV for Ag/Al2O3 

might be attributed to Ag0 (Ag 3d5/2 = 368.4 eV) 

on the surface. Binding energy of Al 2p3/2 in Ag-

Al2O3 appeared at 77.6 eV which might be 

binding energy of Al2O3.  

 
3.1.4 Scanning Electron Microscopy (SEM) 

The SEM micrographs of fresh and used 

Ag/Al2O3 catalysts is presented in Figure 5. 

The results are shown in the figure at magnifi-

cation of 500 X. Agglomerates of γ-Al2O3 parti-

cles can be observed in SEM image of amor-

phous γ-Al2O3 in accordance with its pore vol-

ume (0.151 cm3/g). At lower magnification the 

pictures reveal that Al2O3 clusters are almost 

regular spherical shape with diameters of 50-

150 μm. The black shades surrounding the 

grey particles represent the fine inter-particles 

pores. At higher magnification intra-particles 

pores can be clearly visualized in the micro-

graph. Fine white and grey crystals clearly in-

dicated that the silver was present in the me-

tallic and oxide form respectively on Al2O3 sur-

face at higher magnification. It is clear that sil-

ver was present in dispersed sate. Thus, SEM 

results are also in good agreement with that of 

the XRD findings. There was no noticeable 

change in the characteristics of the fresh and 

used 2 wt.% Ag/Al2O3 catalyst under the condi-

tions studied in the present investigation.  

Figure 4. XPS spectra of Ag/Al2O3 elements  

Table 2. Binding energy of Ag/Al2O3 elements  

Catalyst Components Binding energy (eV) 

Ag/Al2O3 Ag 3d5/2 371.9 

377.2 

  Al 3d5/2 77 

  O 1s 535 
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3.2 Catalyst activity measurement 

3.2.1 Effect of CO and LPG reductant over 

Ag/Al2O3 

As the feed gas in the present study con-

tained two different reductants over Ag/Al2O3 

catalysts, both kind of the reductant might con-

tribute to the overall NO conversion [38]. In or-

der to elucidate the individual effect of each 

kind of reductants and catalysts on the cata-

lytic performance, first NO conversion over 

Ag/Al2O3 catalyst with LPG as well as CO was 

compared. It is very clear from the Figure 6 

that the activity of the catalyst was greatly in-

fluenced by the type of reductant. The maxi-

mum conversion of NO with CO reductant was 

35.15%, while this value (97.79 %) is relatively 

very high in case of LPG reductant. NO conver-

sion with LPG reductant increased to the maxi-

mum conversion of 97.79% in two steps. In the 

first step 30% NO conversion was achieved at 

269 oC. In the second step, with slight increase 

in temperature, conversion was suddenly in-

creased to the steady-state value of 97.79% in 

the temperature range 296-366 oC. After 366 
oC NO conversion was decreased. Therefore, it 

is evident that LPG is better reductant than 

CO for NO conversion over Ag-Al2O3 catalyst. 

 

3.2.2 Effect of H2 addition on CO and LPG re-

ductant over Ag/Al2O3  

Figure 7 shows the NO reduction with CO 

and LPG reductants over Ag-Al2O3 catalyst in 

presence and absence of H2. It is clearly ob-

served that the addition of hydrogen in feed 

stream has remarkable effect on the activity of 

the catalyst with ~95% reduction below 100 oC. 

Though 100% conversion could be achieved 

with both the reductants but occurs at different 

temperatures. The maximum conversion of 

100% of NO in presence of H2 could be achieved 

with both the reductant. The temperature 

range for 100% NO reduction with CO reduc-

tant is narrower (108-160 oC) than LPG reduc-

tant. The maximum conversion with CO reduc-

tant without H2 was only 35% at 224 oC, 

whereas in presence of H2 this value is 100% at 

far below lower temperature of 108 oC.  

With LPG reductant also 100% NO conver-

sion could be achieved in presence of H2 as well 

as in absence of H2 at different temperatures 

(Figure 7). The 100% conversion with LPG re-

ductant in presence of H2 was achieved at far 

lower temperature (220 oC) than without H2 at 

366 oC. Reduction of NO with LPG also gives 

97% conversion at the temperature 367 oC but 

the addition of hydrogen decreases the tem-

perature approximately 150 oC. 

Table 3 summarizes the experimental re-

sults for the catalyst tested using CO and LPG 

as reductant in presence and absence of H2 to 

Figure 5. SEM micrographs of Ag/Al2O3 catalyst at different magnifications:  a) fresh, b) used  

Figure 6. NO conversion over Ag/Al2O3 catalyst 

with (a) CO and (b) LPG  
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the feed showing characteristic temperatures 

(Ti and Tmax) for NO reduction. Complete NO 

conversion could be achieved specifically in 

presence of H2. The table shows that Ag-Al2O3 

catalyst initiation (Ti) as well as total NO con-

version (Tmax) occurred at lower temperatures of 

60, for which these values were 107 and 304 oC 

respectively. Thus, Ag-Al2O3 behaves uniquely 

for NO reduction in presence of H2.  
The high catalytic performance of Ag/Al2O3 

can be explained on the basis of Ag loading and 

the Ag physical and chemical states. It is re-

ported by several authors that 2 wt.% Ag load-

ing is optimum and contains Ag in the +1 oxi-

dation state [40-42]. The same Ag loading is fol-

lowed in the present experiment, resulting in 

formation of Ag+ species as evidenced by XRD 

and XPS studies. It is reported in literature by 

Shibata et al. [39] that H2 enhance the rate-

determining step and prevents active sites from 

strongly adsorbed species (e.g. nitrates) at low 

temperature. H2 addition results in a decreased 

activation energy for NOx reduction. Further, 

H2 promotes indirectly the SCR-NOx through 

the changes in some states of the active cata-

lyst but H2 itself is not active as it is neither a 

reducing agent nor an intermediate species.  

 

4. Conclusions 

LPG is a better reductant in comparison to 

CO for NO reduction over Ag-Al2O3catalyst at 

low temperature. Addition of H2 to the LPG, 

further reduces the NO reduction temperature. 

With LPG reductant 100% NO conversion can 

be achieved in presence of H2 as well as in ab-

sence of H2 but at different temperatures. The 

100% conversion with LPG reductant in pres-

ence of H2 was achieved at far lower tempera-

ture (117 oC) than without H2 (220 oC). LPG has 

several advantages over other HCs such as eas-

ily available, economic market price and envi-

ronment friendly characteristics. LPG being 

gas at ambient condition no pump is required 

to feed it in the SCR unit. There is no notice-

able change in the characteristics of the fresh 

and used 2 wt.% Ag/Al2O3 catalyst under the 

conditions studied in the present investigation. 

Therefore, it is proposed that H2-LPG-SCR of 

NOx over Ag/Al2O3 catalyst is a good system for 

low temperature control of NOx emissions. 
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