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Abstract—The paper presents the electromagnetic (EM) wave
propagation in cylindrical optical fibers with helical windings under
slow- and fast-wave considerations. Field components are deduced
for both the cases, and also, the dispersion relations are obtained
by applying the boundary conditions, as modified by the presence
of conducting helical windings. Two special cases are considered
corresponding to the values of the helical pitch angle as 0◦ and 90◦. A
comparison of the dispersion relations is presented.

1. INTRODUCTION

Optical waveguides have been investigated extensively during the past
four decades, and such guides with various forms of geometrical cross-
sections have been explored in the literature [1–9]. Fibers with helical
structures fall under the category of complex waveguides, and these
have drawn considerable interest among the R&D community owing
to the much use of helical structures in all low and medium power
traveling wave tubes (TWTs) [10]. The analysis of helical structures
generally includes waveguides under slow-wave consideration with
conducting sheath and tape helixes. The implementation of this
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concept in the case of optical fibers has been discussed before by the
investigators [11–16].

The use of helical windings in the case of optical fibers essentially
makes the analysis much rigorous. However, such a winding is
purposely introduced as it can control the dispersion characteristics
of the guide. For example, it has been investigated before that, under
fast-wave consideration, elliptical fibers with helical windings yield the
existence of band gap for 0◦ helix pitch angle, which is attributed to
the existence of periodicity in the structure. However, such band gaps
were not observed corresponding to 90◦ pitch angle, which is owing to
the elimination of periodicity [12] in this case. Further, under the fast-
wave consideration, the number of propagating modes depends much
on the helix pitch angle. The aim of the present communication is to
compare the dispersion relations of circular step-index fiber having a
conducting sheath helix [10] between the core and the cladding regions
under slow- and fast-wave considerations.

2. THEORY

We consider the case of a fiber with circular cross-section wrapped
with a sheath helix at the core-clad boundary, as shown in Fig. 1.
The description of a sheath helix is in Ref. [10]. In practice, a sheath
helix can be approximated by winding a very thin conducting wire
around the cylindrical surface so that the spacing between the adjacent
windings is very small and yet they are insulated from each another.
In our structure, the helical windings are made at a constant angle
ψ — the helix pitch angle. The structure has high conductivity in
a preferential direction. The pitch angle can be effectively used to
control the propagation behavior of such fibers, and serves as an
additional controlling parameter [12–16]. We assume that the core
and the cladding regions have the respective real refractive indices n1

and n2. In the case of slow-wave consideration, which essentially have
n1 = n2 = 1, and the phase velocity vp < c, the speed of light in
free-space.

Figure 1. The sheath helix.
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A fiber with helical windings is more explicitly illustrated in Fig. 2.
An alternative way of realizing the sheath is to have a thin planer sheet
made of alternate conducting thin strips and non-conducting gaps in
an oblique fashion, and then wrapping it along the cylindrical core
without any overlap (Fig. 3).

Figure 2. The fiber structure.

Figure 3. Planer sheet made of alternate conducting thin strips and
non-conducting gaps.

We start the analysis with a sheath helix which is perfectly
conducting in a direction making an angle ψ with the plane
perpendicular to the axis, and vanishing conductivity in a direction
normal to the direction of conduction. Although we present the
analysis for the general case when there is no restriction on the pitch
angle ψ, but for simplicity we consider only two particular values
of ψ, viz. 0◦ and 90◦. The analysis requires the use of cylindrical
coordinate system (r, φ, z) [17] with the z-axis being the direction of
wave propagation.
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The expressions for field components corresponding to circular
step-index fiber [11] for slow and fast wave structures can be given as
follows.

2.1. Field Components for Slow-wave Structure

EZ1 = AIν(τr)e−iβz cos νφ (1)

HZ1 = BIν(τr)e−iβz cos νφ (2)

Eφ1 = −
[
iνβ

τ2a
AIν(τr) sin νφ+

iωµ

τ
BI ′ν(τr) cos νφ

]
e−iβz (3)

Hφ1 =
[
− iνβ

τ2a
BIν(τr) sin νφ+

iωε

τ
AI ′ν(τr) cos νφ

]
e−iβz (4)

EZ2 = CKν(τr)e−iβz cos νφ (5)

HZ2 = DKν(τr)e−iβz cos νφ (6)

Eφ2 = −
[
iνβ

τ2a
CKν(τr) sin νφ+

iωµ

τ
DK ′

ν(τr) cos νφ
]
e−iβz (7)

Hφ2 =
[
− iνβ

τ2a
DKν(τr) sin νφ+

iωε

τ
CK ′

ν(τr) cos νφ
]
e−iβz (8)

2.2. Field Components for Fast-wave Structure

EZ1 = A1Jν(ur)ei(ωt−βz+νφ) (9)

HZ1 = B1Jν(ur)ei(ωt−βz+νφ) (10)

Eφ1 = − i

u2

[
iνβ

a
A1Jν(ur) + ωµ0uB1J

′
ν(ur)

]
ei(ωt−βz+νφ) (11)

Hφ1 = − i

u2

[
iνβ

a
B1Jν(ur) + ωε1uA1J

′
ν(ur)

]
ei(ωt−βz+νφ) (12)

EZ2 = C1Kν(wr)ei(ωt−βz+νφ) (13)

HZ2 = B1Jν(ur)ei(ωt−βz+νφ) (14)

Eφ2 = − i

w2

[
iνβ

a
C1Kν(wr) − ωµ0wD1K

′
ν(wr)

]
ei(ωt−βz+νφ) (15)

Hφ2 = − i

w2

[
iνβ

a
D1Kν(wr) + ωε2wC1K

′
ν(wr)

]
ei(ωt−βz+νφ) (16)

In above equations, the subscripts 1 and 2 correspond to the situations
in the core and the cladding sections, respectively. Also, for the fast-
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wave structure

k2n2
1 − β2 = u2 and β2 − k2n2

2 = w2,

and for the slow wave structure

k2 − β2 = u2 = τ2 and β2 − k2 = w2 = −τ2.

2.3. Boundary Conditions

Remembering that the tangential component of the electric field in the
direction of the conducting helix should be zero, and in the direction
perpendicular to the helical winding, the tangential component of both
the electric and magnetic field [18, 19] must be continuous, we can
have the following boundary conditions for slow- as well as fast-wave
structures:

EZ1 sinψ + Eφ1 cosψ = 0 (17)
EZ2 sinψ + Eφ2 cosψ = 0 (18)
(EZ1 − EZ2) cosψ − (Eφ1 − Eφ2) sinψ = 0 (19)
(HZ1 −HZ2) sinψ + (Hφ1 −Hφ2) cosψ = 0 (20)

2.4. Dispersion Relation under Slow-wave Consideration

Using Eqs. (1)–(8) and Eqs. (17)–(20), we finally get

A

[
Iν(τa) cos νφ sinψ − iνβ

τ2a
Iν(τa) sin νφ cosψ

]

+B
[
− iωµ

τ
I ′ν(τa) cos νφ cosψ

]
= 0 (21)

C

[
Kν(τa) cos νφ sinψ − iνβ

τ2a
Kν(τa) sin νφ cosψ

]

−D
[
iωµ

τ
K ′

ν(τa) cos νφ cosψ
]

= 0 (22)

A

[
Iν(τa) cos νφ cosψ +

iνβ

τ2a
Iν(τa) sin νφ sinψ

]

+B
[
iωµ

τ
I ′ν(τa) cos νφ sinψ

]

−C
[
Kν(τa) cos νφ cosψ +

iνβ

τ2a
Kν(τa) sin νφ sinψ

]

−D
[
iωµ

τ
K ′

ν(τa) cos νφ sinψ
]

= 0 (23)
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A

[
iωε

τ
I ′ν(τa) cos νφ cosψ

]

+B
[
Iν(τa) cos νφ sinψ − iνβ

τ2a
Iν(τa) sin νφ cosψ

]

−C
[
iωε

τ
K ′

ν(τa) cos νφ cosψ
]

D

[
Kν(τa) cos νφ sinψ − iνβ

τ2a
Kν(τa) sin νφ cosψ

]
= 0 (24)

In Eqs. (21)–(24), a is the radius of the fiber core. Eliminating
the constants A, B, C and D from the above set of Eqs. (21)–(24), we
finally get, corresponding to ψ = 0◦, the dispersion relation as

ν2β2

τ4a2
I2
ν (τa)Kν(τa)K ′

ν(τa) sin2νφ+
ν2β2

τ4a2
Iν(τa)I ′ν(τa)K

2
ν (τa) sin2νφ

+
ω2µε

τ2
Iν(τa)I ′ν(τa)K

′
ν
2(τa)cos2νφ−ω2µε

τ2
I ′ν(τa)Kν(τa)K ′

ν(τa)cos2νφ

= 0 (25)

Considering a special case corresponding to ν = 1 and φ = 0◦, we can
have

I1(τa)K ′
1(τa) −K1(τa) = 0 (26)

On the other hand, ν = 1 and φ = 90◦ yield

I1(τa)K ′
1(τa) − I ′1(τa)K1(τa) = 0 (27)

Following the above procedure, corresponding to ψ = 90◦, we get
the dispersion relation as

I ′ν(τa)Kν(τa) − Iν(τa)K ′
ν(τa) = 0 (28)

which, for ν = 1, gives

I ′1(τa)K1(τa) − I1(τa)K ′
1(τa) = 0 (29)

This is to be pointed out here that, in order to avoid mathematical
complexity, we consider the low order azimuthal mode index (i.e.,
ν = 1). However, the analysis is valid for any order of the mode
index.
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2.5. Dispersion Relation under Fast-wave Consideration

Using Eqs. (9)–(16) and Eqs. (17)–(20), we finally obtain(
sinψ +

νβ

u2a
cosψ

)
A1Jν(ua) +

iωµ0

u
B1J

′
ν(ua) cosψ = 0 (30)

(
sinψ +

νβ

w2a
cosψ

)
C1Kν(wa) +

iωµ0

w
D1K

′
ν(wa) cosψ = 0 (31)

(
cosψ − νβ

u2a
sinψ

)
A1Jν(ua) −

iωµ0

u
B1J

′
ν(ua)

−
(

cosψ − νβ

w2a
sinψ

)
C1Kν(wa) +

iωµ0

w
sinψD1K

′
ν(wa) = 0 (32)

− iωε1

u
A1J

′
ν(ua) cosψ +

(
sinψ +

νβ

u2a
cosψ

)
B1Jν(ua)

+
iωε2

w
C1K

′
ν(wa) cosψ −

(
sinψ +

νβ

w2a
cosψ

)
D1Kν(wa) = 0 (33)

Eliminating the constants A1, B1, C1 and D1 from the above Eqs. (30)–
(33), we finally get the dispersion relation, corresponding to ψ = 0◦
and ν = 1, as

β2

u3a2
J2

1 (ua)K1(wa)
{
−K1(wa)

w
−K0(wa)

}

− β2

w3a2

{
−J2

1 (ua)K2
1 (wa)

u
+ J0(ua)J1(ua)K2

1 (wa)
}

−4 (π/λ)2 n2
2

w

{
−J2

1 (ua)
u

+ J0(ua)J1(ua)
} {

K2
1 (wa)
w2

+K2
0 (wa)

+2K0(wa)
K1(wa)

w

}
− 4(π/λ)2n2

1

u

{
J2

1 (ua)
u2

+ J2
0 (ua) − 2J1(ua)

u
J0(ua)

}
{
−K2

1 (wa)
w

−K0(wa)K1(wa)
}

= 0 (34)

The dispersion relation, corresponding to ψ = 90◦ and ν = 1, becomes

1
u2

{J1(ua)K1(wa) + uJ0(ua)K1(wa)}

=
1
w2

{J1(ua)K1(wa) + wJ1(ua)K0(wa)} (35)
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3. RESULTS AND DISCUSSION

In this communication, we focus our analysis on the variation of the
dispersion behavior of the fiber under consideration. In order to plot
the dispersion relations, we plot the normalized frequency parameter
V against the normalized propagation constant bnor, given as

bnor =
{

β2 − k2n2
2

k2(n2
1 − n2

2)

}1/2

. (36)

In our Illustrative case, we consider n1 = 1.5, n2 = 1.46, and the
operating wavelength λ = 1.55µm. As stated earlier, we considered
two special cases corresponding to the values of the pitch angle ψ as
0◦ and 90◦.

The dispersion curves corresponding to Eqs. (34) and (35) are
shown in Figs. 4 and 5, respectively. We observe in Fig. 4 that,
corresponding to the case of fast-wave structure with ψ = 0◦ and ν = 1,
the dispersion curves have the usual trend, as observed in the case of
other general type of fiber. However, in the present case, we notice the
strange feature that there exists one band gap which falls within the
limiting range V = 27 to V = 29. Also, we find that the first modal
cutoff exists at V ≈ 4. From the features of the dispersion curves,
it may the inferred that an additional effect of the use of conducting
helical winding is to split a mode into a pair of adjacent modes, which
is essentially equivalent to removing the mode degeneracy.

Figure 4. Dispersion curve corresponding to ψ = 0◦.



Progress In Electromagnetics Research, PIER 80, 2008 417

Figure 5. Dispersion curve corresponding to ψ = 90◦.

Corresponding to the case of ψ = 90◦ and ν = 1, as illustrated
in Fig. 5, we observe that the degeneracy of modes is again sustained,
which is owing to the reason that the helical windings are now only
parallel to the optical axis of the fiber. In other words, in this case, the
sheath helix essentially degenerates into a sheath made of conducting
lines parallel to the optical axis of the fiber. Further, since there is no
periodicity observed in the direction of wave propagation, the existence
of band gap is strictly eliminated. We also observe that the cutoff of
the first mode [20–29] exists approximately at V ≈ 7. As such, we see
that the introduction of helical winding reduces the modal cutoff.

The descriptive analysis of the fiber under the slow-wave
consideration is still in progress, and will be taken up in a future
communication. The authors expect that all the results stated in the
paper are of much technical significance owing to the features of the
guide governed by the helixes.

4. CONCLUSION

Form the above analytical investigation, conclusion may be drawn that
the helical windings play a vital role in determining the propagation
characteristics of the fiber. The introduction of helix along the
direction perpendicular to the propagation axis brings in a kind of
band gap in fibers, and also, shifts the modal cutoff to a lower value
as compared to the case when the helical turns are only parallel to the
optical axis.
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