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The concept of efficiency (Pareto optimum) is used to formulate duality for
multiobjective variational problems. Wolfe and Mond-Weir type duals are formu-
lated. Under generalized (F, p) — convexity assumptions on the functions involved
weak and strong duality theorems are proved. © 1994 Academic Press, Inc.

1. INTRODUCTION AND PRELIMINARIES

The aim of this paper is to use the concept of efficiency (Pareto optimum)
to formulate some results of duality under generalized (F, p) — convexity
assumptions for the following class of multiobjective variational problem:

(P) Minimize fbf(t, x(1), x(0) dt

= ( f " e, SO dt f  fot, x(0), 1)) dt)

subject to
x(a) = a, x(b) = B e}
g(t, x(0), x(1)) <0 (2)
h(t, x(D), x(1) =0 V1t E|la,b), (3)
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wheref, = I x R" x R"—>R,i€{l, ..., p} = P, and

g = (g]a'~'9gm)a ngIXR"X R""—)R, j= 1,...,m,

h = (h,...,hy), h:I xR xR*—>R, k=1,..4,
are assumed to be continuously differentiable functions. I = [a, b] is a
real interval.

Following Bector and Husain [1] and Mishra and Mukherjee [3], we
consider for primal problem (P) the Wolfe type dual and Mond-Weir type
dual. Notations are same as in [1] and [3]. In [2], Egudo has used the
concept of efficiency (Pareto optimum) to formulate duality for multiobjec-
tive non-linear programs. Preda [4] has used the same concept under a
weaker assumption, namely generalized (F, p) — convexity. Bector and
Husain [1] have discussed duality theorems and related proper efficient
solutions of the primal and dual problems for multiobjective variational
problems.

Let X denote the set of all feasible solutions of (P) and

X:={xeCU,R: x(a) = a,x(b) = B,g(t,x,x})<0,
h(t,x,x) = 0,ViE],
where C(I, R") is the space of piecewise smooth functions x with norm
x| = llxll. + [|Dx]l..

DEFINITION 1. A point x € X is said to be an efficient solution of (P)
ifforall x € X

b
f fit, x*(1), x*(t)) dt = fbf"(t, x(1), x(2)) dt, YiEeP
b b
:fwaﬂmxm»w=ffomxmnm ViEP.

In this paper proofs for strong duality results will invoke the following:

LEMMA 1. x%is an efficient solution for (P) if and only if x° solves

b
. .
PM%Z{Lfmﬂmﬂmm

subject to
b b
[ fite, xtoy, xan e < [ fia, 20, $%0) di

Sor all j # k,
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gt x(1), x(1) =0, h(t, x(2), x()) = 0
foreachk =1, ..., p.

DerINITION 2. A functional F: 1 X R*" x R" x R* x R* — R is
sublinear if for any x, x° € R, x, x* € R”,

F(t, x, x, x° x% a, + a)) < F(t, x, x, x° x% a)) + F(t, x, x, x° x9% a,)

for any qa,, a, € R,
and
F(t, x, x, x° x% aa) = aF(t, x, x, x° x% a)

forany o €E R, a = 0 and a € R".

Now consider the function f: I x R” x R" — R, and suppose that f is
with first partial derivatives at x° an interior point of X, V, f(z, x%Q2),
x%1) is the gradient vector of f with respect to x at x°, and V, f(¢, x%1),
x%2) is the gradient vector of f with respect to x at x%. Let d(¢, -, -) be a
pseudo metric on R”, and p € R.

DEFINITION 3. f(t, x(1), x(8)) is said to be (F, p) — convex if
b
[ xw, x0) - £ 2%, L)
b
= [ Flt, 5, 50, 20, 20 5, £ (1, 20, 1)
d on o0
= 7 Ve (6, X0, X0))) dt
b
+ pf d(t, x(), x%(1) dt.
The function f'is said to be strongly F-convex, F — convex, or weakly
F — convex at x°, accordingtop >0, p = 0, or p < 0.
DEFINITION 4. The function f(z, -, ) is (F, p) — quasiconvex at x9 if
for all x € X such that

b
f flt, x(D), x() dt < j'bf(t, X0, x%t)) dt

we have
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f ’ F (1, x(8), x (1), x°(0x°(0); V. f (1, x%02), X°(0))

b
4 9, f0 @, POMdr < —p [ e x(0), 0 .
We say that f(¢, -, -) is strongly F-quasiconvex, F-quasiconvex, or weakly

F-quasiconvex at x° according to p > 0, p = 0, or p < 0.

DEFINITION 5. The function f(¢, -, *) is (F, p) — pseudoconvex at x°

if for all x € X such that
f F(t,x,%,x°, £% V,_£(t, x%0), £°2)) — —-(v £t x°0), $%0) dt
> —p [ ¥, xt0), 00 dr
we have
b b
[ e x@, i@y de= [ 1o, x%), 20 dr.
Functionf (1, -, -) is strongly F-pseudoconvex, F-pseudoconvex, or weakly
F-pseudoconvex according top > 0, p = 0, or p < 0.
DerFiNITION 6.  The function f(z, -, -) is strictly (F, p) — pseudoconvex
at x° if for all x € X. x # x° such that
b
[ F @, x@, ), x%0, 20 9, £ ¢, x%0), £°0)
d o o0
= 5 (VS (6, X°0), 220)) dr
b
= —p [ 6, x0,x0) di
and we have

b
[ rax@.zwyar> [ fa, 00, i) dr,
or equivalently, if

b
f *ft x(), $(0) di < j £, X0, £(1)) dr

409/187/1-4



44 MISHRA AND MUKHERJEE

we have
f ’ F (¢, x(0), x(0), x%(1), x%0); V, £, x%1), x%(1))

- %(Vi £, X%, X% de < —p f hdz(t,x(t),xo(t)) dr.

2. WoLFE Type DuaLIiTY

In the present section we prove weak and strong duality relations be-
tween (P) and the Wolfe type dual [1]

b
(WD) Maximize (f (£ u), 6(0) + y7 g, ult), @ ()

+ 2T ke, ut), ()} dt, ..., f " CERe ue). (o)
+ yTg(t, ut), u(t) + 2" ht, u(®), u (1))} dt)

subject to

x(a) = a, x(b) = B 4)

p

S filt, u), a(0) + Y70 g, (e, u(a), i (D)

i=1

i=1

+ 210 A, u(®), u(1)) = D [i 7[5 u(), u(h) + y'()

gt u(t), a () + 2"h (2, u(), li(t))]

tel (5)

y=0 6)
P

720, >rm=1 @)
i=1

THEOREM 1 (Weak Duality). Assume that, for all feasible x for (P)
and all feasible (u, 7, y, z) for (WE),

@ 7@, -, ) +y'gt, )+ ZTh(t, -, ) is F-convex at u. Further,
if either
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b)) 7,>0Vie{l, .., p}or
() 7If, -, )+ yTgt,, ) + ZTh(1, -, ") is strictly F-convex at u, then

| " £, x(1), 5(0) d
b
<[4£, o), o)) + ¥ 80, ), ) ®)
+ Z(OTh(t, u(D), u(D)} dt Viell,..,p}
and
[ e, =0, 50y de

b
< [ 1, w@), @) + y07gte, u, a @) )
+ Z(OTh(t, u(r), u(1))} dt for some j{1, ..., p} cannot hold.

Proof. Suppose, contrary to the result, that (8) and (9) hold. Then
since x is feasible for (P) and y = 0, (8) and(9) imply

b
f {fit, x(D), X (1) + y(OTg(t, x(£), x(1)) + Z()Th(z, x(1), x(1))} dt

(10)
< f ’ {Fit, u(t), a() + yTg(t, u(r), u(n)) + ZTh(t, u(t), u()} dt

forallie P

and
b
f {Ft, x(0), x(0)) + yTg(t, x(1), X (1) + ZTh(z, x(1), x (1)} dt

b
< f {9, u(t), u(0)) + yTg(t, u(r), u(0)) + Z7h(s, u(r), u())} dt,

forsomeje P, (11)
respectively. Now hypothesis (b) and Ef; 7 = 1 imply
b
j {77, x(0), x(0)) + yTg(t, x(D), X(1) + ZTh(z, x(¢), X (1))} dt
‘ (12)
< fb{T’f(t, w(t), u(t)) + yTg(t, u(t), u(9)) + ZTh(t, u(r), u())} dt.
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According to (9), (12), and by sublinearity of F, we have
b
J Ft,x, %, u, (Vo u, i)' + (Y, g, u, i)]Ty

+ [V, u, )] Z) — %([fo(f, w, )]'r (13)
+ [Vig(t,u, )Ty + [V, h(t, u, )T Z)) dt <0,

which contradicts (5), because
b
J F(t,x,%,u,i;0)dt = 0.

When the hypothesis (c) holds, since 7, = 0, i € P, and 2/_, = 1, (10)
and (11) imply

fb T (8, x(), x (D) + y(O)Tg(t, x(1), X (D) + Z(O)Th(1, x(2), X (1))} dt
< f ’ FTF @, u), a(n) + YD g, ult), u(t)) + Z(OTh(t, u(r), u(1))} dt,

and then again we reach (13). Hence the proof is complete.

THEOREM 1’ (Weak Duality). Assume that for all feasible x for (P)
and all feasible (u, 7, y, 2) for (WD), (@) f,, i€ P, g, j =1, ..., m, h,
—h, k=1, ..., qare F-convex. Further, if either (b) or (c) from Theorem
1 is satisfied, then (8) and (9) cannot hold.

Proof. See Preda [4] and the proof of Theorem I, above.
Now we give weak duality results under (F, p) — convexity.

THEOREM 2 (Weak Duality). Assume that for all feasible x for (P) and
all feasible (u, 7, y, z) for (WD), (@) 71 (¢, -, ) + yTg(t, -, ) + ZTh(s, -,
) is (F, p) — convex at u. Further, if either (b) 7, > 0, for all i € P and
p =0, or (c), given any metric d(t, -, *) on R" and preset p > 0, we have
the following, i.e., (8) and (9) cannot hold.

Proof. We suppose contrary to the result that (8) and (9) hold. Because
x and (i, 7, y, z) are feasible solutions for (P) and (WD), respectively, in
the case (b), we find

f " (T X0, H0) + YT, X(), £(0) + ZTh(t, x(1), 5 ()} d
‘ (15)

< f ’ (L, u(e), a(D) + yTg(t, u(®), w(D) + ZTh(z, u(D), u(0)} dt.
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Now, from (15) and (9), we obtain

b
[ Fx ki (V£ )7+ 19,000, )Yy
T d T
+ [V h(t, u, i))'2) — E([V,tf(h u, wl'r (16)
b
+ [Viglt,u, Ty + [V hit, u, )] 2)) dt < —pf d(t, x, u) dt
and then, from (5) and sublinearity of F, this implies
b
pJ' d¥t, x, u) dt <0,

which is a contradiction to the fact that p = 0.
When we have (¢) from (8) and (9) and 7 = 0, we obtain

f ’ {77 (¢, x(2), X (1)) + y()g(t, x(1), X (1)) + Z()Th(z, x(1), X (1))} dt

b
< [ f ), i) + y@g(, ut), i ()
+ Z(O)Th(z, u(r), u(1))} dt
and then, by (a), we find (13) with equality as well.

But this contradicts (5) again. Hence the proof is complete.

THEOREM 2’ (Weak Duality). Assume that for all feasible x for (P)
and all feasible (u, 7, y, z) for (WD)

(@) f;is (F, p,) — convex, i € P;
(b) g;is (F, py) — convex,j =1, .., m;

(c) hyis (F, py) — convex, —hy is (F, py) convex with py, + py =
0,1 sks=gq.

Also, if either

(d 7,>0, forall i € P and 2¢_p\7; + Ej'"zlpzjyj + 27 px
Z,=0

or
© 2 pm + Ej";]ijyj + 2 puZ >0

and d(t, -, *) is a metric on R*, then (8) and (9) cannot hold.
Proof. See Preda [4] and Theorem 2, above.
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CoROLLARY 1. Let (u®, 7% y°, Z% be a feasible solution for (WD)
such that

b 7 . b T .
f y'et W, i) di = 0, f ZVh(t, 1, i) dt = 0

and assume that u° is feasible for (P). If weak duality (any of Theorems
1, 1’, 2, or 2°) holds between (P) and (WD), then u° is efficient for (D)
and (°, 7°, y°, Z° is efficient for (WD).

Proof. Suppose that «® is not efficient for (P); then there exists a
feasible x for (P) such that, for some i € P,

b b
f £, x(2), x(1)) d1<f i, W), u%0) dt (17
and

14 b
j £, x(0), £(1)) di < j Fit, u), 1) dt
a a (18)
forallj e P.

By hypothesis
b
f {yelt, u®, 4% + Zh(t, u®, i} dr = 0,
s0 (17) and (18) can be written as

b
f it x(0), () dt < f Fite, €0, i) + yg(t, 1), ()
+ Zh(t, uO(p), ()} dt for somei € P

and

[ Fie,xto, s de < [ (e, way, i)

+ Yo g(t, D), %) + Z%OTh(t, u®1), (1)} dt
VjEP,

respectively; and since (19, 7°, y°, Z% is feasible for (WD) and x is feasible
for (P), these inequalities contradict weak duality (Theorems 1, 1’,2, or2’).
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Also suppose that («°, 79, y°, Z% is not efficient for (WD). Then there
exists a feasible (v, 7, y, z) for (WD) such that for some i € P

f ’ {£ie, u(t), u(t)) + yTg(t, u(0), u () + ZTh(t, u(r), u(r)} dt
>fuﬂmu%LWM)+W%&u%LWM)

(19)
+ Zh(t, u®1), 40} dt

and

f ’ {£t, u(®), u(n)y + yTg(t, u(®), u(1)) + ZTh(t, u(r), u()} dt

4 (20)
b

= f {£7t, (), 0%1)) + y7g(t, %), a%) + ZTh(t, u¥0), (1)} dt

forallj € P;

and since
fa b{y"’g(t, u’(1), a®)) + h(t, u’e), a%1)} dt = 0,
(19) and (20) reduce to
L b {1, u(0), a(0) + yTg(t, u(0), u(8) + ZTh(t, u(t), a ()} dt
> f ’ fie, ude), i) i, for some i € P
and
L ’ {fe, u), a) + yTg(t, u(®), a(0) + Zh(t, u(t), a(1)} dt
> j "L ). i%0) + dr, foralljE€ P,

respectively. Since 1 is feasible for (P), these inequalities contradict weak
duality (Theorems 1, 1', 2, or 2).
Therefore «° and (1, 7°, ¥9, 1°) are efficient for their respective programs.
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THEOREM 3 (Strong Duality). Let x° be a feasible solution for (P) and
assume that
(i) x%is an efficient solution;

(i) for at least one i, i € P, x° satisfies a constraint qualification
for problem P(x°).

Then there exist ™° € R?, y* € R™, Z° € RY such that (x°, 7°, y°, Z% is
feasible for (WD) and

f ’ {Y) g, x%0), %)) + Z%O7h(t, x°(1), x°(0)} dt = 0.

Further, if weak duality (Theorems 1, 1', 2, or 2') also holds between (P)
and (WD) then (x°, 1°, y°, Z% is efficient for (WD),

Proof. Similar to the proof of Theorem 3 of Egudo [2] and Corollary
1 above.

3. MoND-WEIR TYPE DUALITY

In this section, we establish various duality theorems for the
Mond-Weir dual given below:

(MD) Maximize (be'(t, u(t), ul)) ds, ..., be"(t, u(t), u(t)) dt)

subject to

x(a) = a, x(b) = B (21
P

> filt, u(), () + yOTg (e, ul®), w(0)) + ZOTh(t, u(@), i(1))

i=}

=D [fj £t u(@®), a () + y(0)g (e, u(t), i(1) (22)
+ é—(tl)Thk(t, u(t), u(0)], tel

y(0)g(t, u(r), () = 0 (23)

Z(OTh(t, u(e), () = 0 (24)

=1 (25)

y=0, 7120, (26)

where e = (1, ..., DT € R7,
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The weak duality results are given under conditions of generalized (F,
p) — convexity and (F, p) — convexity.

THEOREM 4 (Weak Duality). Assume that for all feasible x for (P)

and all feasible (u, 7, y, Z) for (MD)

(@) yTg(t, -, Y + ZTh(1, -, ") is (F, p) — quasiconvex at u, and also
if any of the following holds

(b) 7,>0Vi€P, andf, is (F, p,;) — pseudoconvex at u for any
i€ P, withp + Z'_pm=0;

(c) 7 >0Vi€Pand7’f(t, -, ") is (F, p') — pseudoconvex at u,
withp + p' = 0;

(d) 77fQ@, -, ) is strictly (F, p') pseudoconvex at u, withp + p' >
0, then

b b
[ fiaxw, xayde < [ i, u, i) dr
a a (27)

vieP

and

j  fie x(t), £(1)) dt < f £t u(e), i (0)) dt
a a (28)

for some j € P cannot hold.

Proof. Let x be an arbitrary feasible solution of (P) and (u, 7, y, z) be
an arbitrary feasible solution of (MD). Then in view of y = 0 we have that

b b
[ et x0, i) dr < [y, uw), i) de

and
]: Z0)Th(t, x(1), $(0) dt = f: Z0Th(t, u(e), a(n) dt.
Hence
f: {y(O7Tgt, x(1), (1)) + ZDh(t, x(2), x(1))} dt
= J'ab{Y(t)Tg(t, u(®), u () + ZWOTh(, u(t), u(0)} dt
and since

y(t)g(t, -, ) + ZWTh(, -, ) is
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(F, p) — quasiconvex at u, this implies
b
| F. 50, 50, un), i (0; (9,80, 1), i)Y y
+ [V, u(t), 1(0)}72)
_d T
T (IVig@t, u@®), u()]'y
+ [V A, ult), a()))'2)) dr (29)

< -p f: d3(t, x(1), u(r)) dt.
From (29) feasibility of («, 7, y, Z) and sublinearity of F we obtain
[P x50, w0, 03190, 0, i)'
= &4t e, )V di (0)

> J " 2 x(0), u(e)) dr.

On the other hand, suppose, contrary to the result of the theorem, that
(27) and (28) hold. If we have the hypothesis (b), then (27), (28), and (F,
p) — pseudoconvexity of f;, i € P imply

fb F(t, x(8), x(0), ult), u(D); V, fi(t, u(t), u(1))
— DV fit, u(r), u (1)) dt (31

b
< —p, f 4, x(0), w(t) dt, Y i € P
and

j " E(t x(0), £(0), 4, 4(0; V. £, ut), (1)
— D(V i, u(t), u(0))) dr 31
< —py; f " 2t x(0). u(t) dt,

for some j € P.
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Because 7; > 0, Vi € P, from (31), (32), and the sublinearity of F we have

j "B x(0), $0), we). i (0): [V.f(t, u(r), a(@)]Tr
“ (33)

— DIV ft, ult), a())r) di < — (i p,,f,.) [ " 2 x(0), u) dt,
i=1 a

which is a contradiction to (30), because

D
p+ 2 pm=0.
i=1
When the hypothesis (c) holds, from (27) and (28) we obtain
b h
[ 77w, @y di < [ fia, uo, i) de

and then we have a contradiction to (30). Finally, in the last case, if the
hypothesis (d) holds, from (27) and (28) we have

j LT x(), £ (0) di < f " u(e). () de

and the strictly (F, p) — pseudoconvexity of 77f(z, -, -) at u implies again
a contradiction to (30). Hence the proof is complete.

THEOREM 5 (Weak Duality). Assuming that for all feasible x for (P)
and all feasible (u, 7, y, Z) for (MD)

(@) f{t, -, ") is (F, p) — convex, i € P;
(b) g1, -, *)is (F, py) convex, j = 1, ..., m;

(©) ht, -, ») is (F, py) — convex; —h(t, -, *) is (F, py) — convex
with py, + py; =0 forallk =1, .., q.

Further, if either (d) or (¢) of Theorem 2’ holds, then (27) and (28)
cannot hold.

Proof. Similar to the proofs of Theorems 2’ and 4.

The following Theorem is weak duality under (F, p) — convexity.

THEOREM 5’ (Weak Duality). Assume that for all feasible x for (P)
and all feasible (u, 7, y, z) for (MD), (a) and either (b) or (c) of Theorem
2 holds then (27) and (28) cannot hold.

Proof. Similar to the proof of Theorem 2.
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Now we give the following result, which is very similar to Corollary 1
in Section 2.

CoRoLLARY 2. Let (u°, 7°, ¥°, Z% be a feasible solution for (MD) and
assume that u° is feasible for (P). If weak duality (Theorems 4, 5, or 5')
holds between (P) and (MD), then 1° is efficient for (P) and (u°, 7°, y°,
Z% is efficient for (MD).

Proof. Suppose that u" is not efficient for (P); then there exists a
feasible x for (P) such that (27) and (28) hold. But (4, 79, y°, Z% is feasible
for (MD), hence the result of weak duality (Theorems 4, 5, or §') is
contradicted. Therefore, u® must be efficient for (P). Similarly, assuming
that («°, 7°, y°, Z% is not efficient for (MD) leads us to a contradiction
and hence (u°, 7°, y°, Z% is efficient for (MD).

0

THEOREM 6 (Strong Duality). Let x° be a feasible solution for (P) and
assume that

(a) x°is efficient;
(b) x° satisfies a constraint qualification for P{x%) for at least one
i€ P.

Then there exist 7% € R?, y* € R™, Z° € R? such that (x°, 7% y°, Z% is
feasible for (MD).

Further, if weak duality (Theorems 4, 5, or 5') also holds, then (u°, 7°,
y°, Z% is efficient for (MD).

Proof. See Preda [4] and Egudo (2].
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