
Received January 9, 2019, accepted January 26, 2019, date of publication February 25, 2019, date of current version March 7, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2897894

Matching Theoretic Beam Selection in
Millimeter-Wave Multi-User MIMO Systems
AMOD HEGDE1 AND K. V. SRINIVAS 2
1NVIDIA Graphics Pvt. Ltd., Bengaluru 560045, India
2Department of Electronics Engineering, IIT (BHU) Varanasi, Varanasi 221005, India

Corresponding author: K. V. Srinivas (kvsrinivas.ece@iitbhu.ac.in)

ABSTRACT Beamspace multiple-input multiple-output (MIMO) with beam selection offers an attractive
solution to reduce the number of radio-frequency chains in a high-dimensional millimeter-wave MIMO
system. Considering amulti-userMIMO system inwhich an access point, having anN element antenna array,
communicates with K users (K < N ), each having a single antenna, we address the problem of selecting K
beams with sum rate as the performance metric. We model beam selection as a two-sided matching between
the two sets of players (users and beams) and consider two different ways of modeling players preferences.
When the interdependences between the players’ preferences are considered, it becomes matching with
externalities. The proposed algorithm, which finds a stable matching in such a case, outperforms the existing
beam selection algorithms.

INDEX TERMS Millimeter waves, beamforming, sum-rate, matching theory, stable matching, precoding.

I. INTRODUCTION
To meet the exponentially growing demand for high data rate
wireless services, it is essential to have larger operating band-
widths. Current wireless cellular networks operate at carrier
frequencies below 6 GHz, where the spectrum is crowded.
Communication at millimeter wave (mmWave) frequencies
offer a potential solution to the problem of wireless spec-
trum shortage and is expected to be a key enabler in the
emerging 5G wireless networks [1], [2]. Millimeter waves
occupy the spectrum from 30 GHz to 300 GHz, which is
underutilized as of now; It is expected that bandwidths of
about 2 GHz can be made available for wireless services
at mmWaves [3]. Apart from huge bandwidths, mmWaves
have another distinct advantage: shorter wavelengths allow
us to pack more antenna elements into a given antenna aper-
ture, enabling amassive, or, high-dimensional, multiple-input
multiple-output (MIMO) operation [4]. A massive MIMO
system can achieve a significant amount of beamforming gain
or spatial multiplexing gain [5].

However, the need for a separate RF chain to drive each
antenna element restricts the practical realization of mmWave
massive MIMO systems. Each RF chain consumes about
250 mW of power at mmWave frequencies [6], which is
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significantly higher than that of when operated at below
6 GHz. While analog beamforming requires only one RF
chain, it supports only single-stream transmission. Spatial
modulation, as well as antenna selection, activate only few
antennas at any given time and thus require less number of
RF chains; However, these techniques fail to perform when
the underlying MIMO channel becomes correlated, which is
the case with mmWave channels, due to the nature of highly
directional propagation of mmWaves [6].

The highly directional nature of mmWave propagation
can be used to our advantage. As the mmWaves occupy
only a small range of directions during their propagation in
the space, the mmWave channels are sparse in the angular
domain. The beamspace MIMO (B-MIMO) concept, origi-
nally proposed in [7] and [8], and adopted tommWaves in [9],
provides a potential solution for reducing the RF hardware
complexity: As each beam in B-MIMO corresponds to an
RF chain, transforming the channel from spatial domain to
angular domain (i.e., beamspace) and selecting few beams
can possibly lead to mmWave massive MIMO systems with
low RF hardware complexity. While the channel can be trans-
formed to the angular domain using a discrete lens antenna,
what beams to select is the main challenge.

The maximum magnitude beam selection [10] selects
beams to maximize the received signal strength at the
users, but the number of simultaneously active RF chains
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is a variable depending on the channel realization. The
interference-aware (IA) beam selection [11] assigns a single
beam to each user and achieves near optimal performance by
minimizing the multi-user interference. Beam selection algo-
rithms for multiple performance metrics have been developed
in [12]. An iterative beam selection algorithm based on QR
decomposition has been proposed in [13].

In this paper we formulate the problem of beam selec-
tion as the problem of finding a stable matching between
the set of users and the set of beams. Matching theory,
originally developed in the field of Economics, provides
an elegant mathematical framework for the combinatorial
problem of matching two distinct set of players, taking
care of their individual preferences [14], [15]. It has been
successfully employed for solving real-world problems in
macro-economics and Social sciences, such as, devising bet-
ter mechanisms for admissions into New York and Boston
public schools, selecting medical residents and matching
compatible kidney donors and recipients [16]. In recent
times, matching theory has attracted the attention of wireless
researchers as a powerful framework for solving resource
management problems [17]. When the players preferences
become interdependent, which is the case in a multi-user
wireless network because of coupling between the users
through interference, finding a stable matching is a challeng-
ing problem [18].

Following are the main contributions of this paper:
• With users’ preferences depending only on the desired
signal strength, we propose a simple, low complexity
matching algorithm that achieves sum-rate performance
close to that of the near optimal IA beam selection.

• Considering both signal and interference powers in
determining the user’s preferences, we model beam
selection as matching with externalities and develop an
iterative algorithm to obtain a stable matching; It outper-
forms existing algorithms, including the one that uses all
the beams with a zero-forcing precoder.

Rest of the paper is organized as follows. After introducing
systemmodel in Section II, we present the matching theoretic
beam selection algorithms in Section III. Linear precoder
is discussed in Section IV. After presenting the simulation
results in Section V, we conclude the paper in Section VI.
Notation: Matrices and vectors are denoted by boldface

uppercase and lowercase letters, respectively. aij and xi denote
(ij)th element of matrix A and ith element of vector x, respec-
tively. ‖a‖ denotes the Frobenius norm of a. IN is N × N
identitymatrix. Superscripts−1,T ,H indicate inverse, trans-
pose and conjugate transpose, respectively.A \B andA×B
denote the difference and Cartesian product of sets A and B,
respectively. E[·] denotes the expectation operator.

II. SYSTEM MODEL
Consider an access point (AP) equipped with a uniform linear
array (ULA) of N antenna elements with spacing between
successive elements equal to λ

2 meters, where λ is the carrier
wavelength in meters, communicating to K mobile users,

TABLE 1. Variables used and their physical meaning.

each having a user equipment (UE) with a single antenna.
Let s ∈ CK×1 is the symbol vector (with symbol sk intended
for UE k), and E[ssH ] = IK . With P ∈ CN×K represent-
ing the precoder for canceling the multi-user interference,
the discrete-time input-output relation, in spatial domain,
of such a multi-user MIMO system can be expressed as

y = HHPs+ w, (1)

where H = [h1, . . . ,hK ] ∈ CN×K is the channel matrix
and hk ∈ CN×1, k th UE’s channel vector, contains the
channel gains from N elements of the ULA to the k th UE.
w denotes the additive white Gaussian noise vector with w ∼
CN (0, σ 2IK ).
Using the Saleh-Valenzuela channel model [19], we model

the downlink channel (i.e., from AP to users) in the spatial
domain, as follows. Let φ(0)k ∈

[
−
π
2 ,

π
2

]
be the physical

angle of arrival of the Line-of-Sight (LoS) component at
k th UE and θ (0)k = 0.5 sinφ(0)k be the spatial frequency
induced by φ0k . Similarly, let the physical angle of arrival of
and the corresponding spatial frequency of `th non line-of-
sight (NLoS) component at k th UE is given by φ(`)k and θ (`)k ,
respectively. The array response vector corresponding to the
LoS component is given by,

a
(
θ
(0)
k

)
=

1
√
N

[
exp(−2πθ (0)k i)

]
i∈I(N )

, (2)

where I(N ) = {i − (N − 1)/2, i = 0, 1, . . . ,N − 1} is
an index set. The array response vector corresponding to the
`th NLoS component, a

(
θ
(`)
k

)
, can be obtained in a similar
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manner using θ (`)k and φ(`)k . UE k’s channel vector is given by

hk =

√
N

L + 1

L∑
`=0

β
(`)
k a

(
θ
(`)
k

)
, (3)

where β(0)k and β(`)k denote the complex-valued path gain of
the LoS component, and `th NLoS component, respectively.
Due to the highly directional nature of propagation at

mmWave frequencies, the angular spread of mmWaves
is considerably low and beamspace domain (i.e., angular
domain), captures the inherent sparsity in such channels. The
spatial channel model can be transformed into the beamspace
domain by employing a discrete lens array (DLA) at the
transmitter [9]. DLA plays the role of a spatial discrete
Fourier transform, which can be represented by the matrix
U ∈ CN×N , with its ith column given by

ui = a
(
θi =

i
N

)
. (4)

Thus, columns ofU are array response vectors corresponding
to N orthogonal predefined directions covering the entire
angular space, and, thus, to N fixed spatial frequencies, given
by θi = i

N , i ∈ I(N ) [9].
The beamspace representation of the system is given by,

y = HH
b Pbs+ w, (5)

where Pb = UHP andHb = UHH is the beamspace channel.
Each hb,k = UHhk , k = 1, . . . ,K , will have few dominant
entries, significantly less than N , around θ (0)k .
Columns of HH

b represent the beams available in the sys-
tem. The concept of beam selection, in which we select few
columns (out of N ) from HH

b , has been introduced in [10].
We address the problem of selecting K beams, out of N , for
the K UEs without causing significant loss to the sum-rate
Rsum, where

Rsum =
∑
k

Rk =
∑
k

log(1+ SINRk ). (6)

Rk is the data-rate achieved by UE k and SINRk is the signal-
to-interference plus noise ratio at UE k . With K beams,
the number of required RF chains reduces from N to K ,
resulting in a significant saving in cost and energy. The
system equation after beam selection can be expressed as

y = H̃H
b P̃bs+ w, (7)

where, H̃H
b ∈ CK×K is the (low-dimensional) channel matrix

and P̃b is the corresponding (low-dimensional) precoding
matrix.

For beam selection and precoding, discussed in subse-
quent sections, we assume that the access point has complete
knowledge of the channel Hb.

III. MATCHING THEORETIC BEAM SELECTION
Selecting, or, assigning K beams, out of N , to K users has a
strong analogy to the problem of stable matching between
two sets of players, studied in matching theory [15], [18].

Definition 1: Let K = {1, . . . ,K } and N = {1, . . . ,N }
denote, respectively, the set of UEs and the set of beams. Each
k ∈ K has a strict linear ordering �k over N , where n �k n′

denotes that k prefers n over n′. This ordering�k is known as
the preference relation of k . Similarly each n ∈ N has a strict
linear ordering�n overK. These components together define
a one-to-one matching game (K,N , (�i)i∈K∪N ), withK and
N as the two sets of players.
Definition 2: The outcome of a matching game is a match-

ing µ. A matching µ is a one-to-one mapping from K to N
such that:

i. µ(k) ∈ N , ∀k ∈ K
ii. µ(n) ∈ K, ∀n ∈ Lµ
iii. µ(µ(i)) = i, ∀i ∈ K ∪ Lµ

Here, µ(k) indicates the beam matched, or, equivalently,
assigned, to user k ∈ K and Lµ = {µ(k) : ∀k ∈ K} is the set
of all matched (equivalently, assigned) beams. Thus N \ Lµ
is the set of all unassigned (or, unmatched) beams.
Definition 3: A matching µ is said to have a blocking pair

(k, n) ∈ K × N if n �k µ(k), k �n µ(n) and µ(k) 6= n;
i.e., both k and n prefer to be matched with each other over
their current partner in µ.
Definition 4: A matching µ is said to be pairwise stable if

it does not have any blocking pair.

A. DEFERRED ACCEPTANCE (DA) ALGORITHM
FOR BEAM SELECTION
Gale and Shapely [14] have shown the existence of a pair-
wise stable matching for every matching game when the
preferences are strict, and, also, provided an algorithm called
deferred acceptance, to find such amatching.We now present
our first algorithm for beam selection, based on deferred
acceptance algorithm.

The DA algorithm is an iterative algorithm. In the first
round, each UE proposes to its most preferred beam and
then each beam provisionally accepts the proposal of the UE
it prefers the most and rejects all other proposals. In the
subsequent rounds, each unassigned UE proposes to its most
preferred beam to whom it has not yet proposed; Each beam,
then, provisionally accepts the proposal of the most preferred
beam if it is not currently assigned or if it prefers the UE over
its current provisional partner (in which case, the beam rejects
its current provisional UE who becomes unassigned). Thus,
a beam defers its decision in accepting a UE as its partner,
until it gets the best possible partner as per its preference
list.

The preference relation �k for each UE k ∈ K is deter-
mined based on the channel gain provided by the beams to
UE k , such that, for any two beams n, n′ ∈ N ,

n �k n′ ⇐⇒ |hk,n| > |hk,n′ | (8)

Similarly, the preference relation �n for each beam n ∈ N is
determined as follows:

k �n k ′ ⇐⇒ |hk,n| > |hk ′,n| (9)
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The idea is to maximize the channel gain for each of the
UE. Based on the obtained preference lists, we apply Algo-
rithm 1 to get the matching µDA.
Note that the above algorithm does not require a UE to

know the preferences of other UEs. It was shown that the
convergence of deferred acceptance algorithm to a stable
matching does not depend on the order in which players
participate and it does not require synchronization among
the players [15]–[17]. Thus, Algorithm 1, DA for beam
selection, can be implemented in a distributed manner. Fur-
ther, DA enjoys a low computational complexity, given by
O(KN ) [15].

Algorithm 1 Deferred Acceptance for Beam Selection
Phase I: Finding preference relations
Find �i, ∀i ∈ K ∪N , using (8) and (9)
Phase II:Matching
while Some UE k ∈ K is unmatched do

k proposes its most preferred beam n ∈ N to which
it has not yet proposed
if n is unmatched then

n accepts proposal from k
else if n prefers k to its current match k ′ then

n accepts proposal from k and
k ′ becomes unmatched

else
n rejects k

end if
end while

The data-rate of a UE depends not only on the desired
signal strength but also on the strength of interfering sig-
nals it receives from the beams transmitting to other UEs.
As the preference relations (8) and (9) does not take inter-
ference into account, the sum-rate performance of DA
for beam selection is relatively low, as will be shown in
Section V.

B. THE CONCEPT OF EXTERNALITIES
When both signal and interference powers are considered
for computing the preference relations, the players prefer-
ences become interdependent; When beam n gets matched
to user k , the preference relations of some (or, all) of the
users may get changed due to the interference created by
the beam n at other users. Thus, preferences become a func-
tion of the matching and the matching problem exhibits
externalities [18].

There is no general result showing the existence of a sta-
ble matching with externalities. We now propose a heuristic
algorithm to find a stable matching, considering externalities.
The algorithm starts with an arbitrary (or, equivalently, ran-
domly chosen) matching µa between users and beams, and
continuously updates the preferences and the matching in an
iterative fashion.

C. MATCHING WITH EXTERNALITIES
FOR BEAM SELECTION
Let Ui,j(µ) is the utility function for UE i ∈ K matched to
beam j ∈ N under a matching µ, where

Ui,j(µ) =
|hi,j|2

σ 2 + Ii,j(µ)
. (10)

Here, Ii,j(µ) =
∑

n∈Lµ\j |hi,n|
2 is the interference power at

UE i due to other UE-beam links under matching µ.
Let µ and µ′ are two different matchings such that µ(i) =

n, µ′(i) = n′ for UE i ∈ K and beams n, n′ ∈ N , n 6= n′.
Then, the preference relation for UE i ∈ K is given by

(n, µ) �i (n′, µ′) ⇐⇒ Ui,n(µ) > Ui,n′ (µ
′) (11)

The preference relation for a beam j ∈ N , UEs k, k ′ ∈ K and
matchings µ,µ′ such that µ(k) = j, µ′(k ′) = j is given by

(k, µ) �j (k ′, µ′) ⇐⇒ Rsum(µ) > Rsum(µ′), (12)

where Rsum(µ) represents the sum-rate achieved by match-
ing µ. Observe that the preference relations, given by (11)
and (12), are dependent on the matching, and enable us
to incorporate the externalities into the matching problem.
A matching µ is considered to be better than matching µ′

if Rsum(µ) > Rsum(µ′).
Algorithm 2 updates the matching µa, iteratively, to obtain

a stable matching µ∗ext. In Phase I, we first compute the
utilities Uk,n

(
µ
k,n
ext

)
, ∀k ∈ K and ∀n ∈ N , where µk,next is

the matching derived from µext by assigning (or, linking) n
to k (i.e., by forcing a matching between beam n and UE k).
There arises three possible cases while computing µk,next :
1) n /∈ Lµext : n is not matched to any UE. We add the link

(k, n) toµext and remove the link (k, µext(k)) fromµext
to get µk,next ; Thus, µ

k,n
ext = µext ∪ (k, n) \ (k, µext(k)).

2) n ∈ Lµext \ µext(k): n is matched to some other UE,
i.e., µext(n) 6= k . We obtain µk,next as follows:

µ
k,n
ext = µext ∪ {(k, n), (µext(n), n′)}

\ {(k, µext(k)), (µext(n), n)} (13)

Note that, we match µext(n) to a beam n′ ∈ N \ Lµext

(i.e., n′ is from the set of unmatched beams) which
causes least interference at k . The idea is to get maxi-
mum value of utility for UE k when linked to beam n.

3) n = µext(k): In this case, simply µk,next = µext.

Using the utilities Uk,n
(
µ
k,n
ext

)
, we obtain the preference

relations for UEs according to (11).
In Phase II, each UE k ∈ K proposes to its most preferred

beam n (if k is not already matched to the beam n), based on
the updated preference relations computed in phase I. Beam
n will accept the proposal only if the link (k, n) leads to an
increase in the sum-rate. This is ensured by comparing the
sum-rates achieved by µext and µnew, where µnew is derived
by adding the link (k, n) to µext. Two cases can arise while
obtaining µnew from µext.
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Algorithm2MatchingWith Externalities for BeamSelection
Input: A matching µa obtained by an arbitrary one-to-
one matching between users and beams.
Initialize: µext = µa
repeat

Phase I: Utility and preference relation computation

• ∀k ∈ K and ∀n ∈ N , compute Uk,n
(
µ
k,n
ext

)
• Generate �k ,∀k ∈ K, according to (11)
• Set µprevious = µext

Phase II: UE proposal evaluation
For each k ∈ K
repeat

Propose to the most preferred beam n which has
not rejected k at an earlier step
if µext(k) = n then

Continue with the next user
else

Compute µnew
if Rsum(µnew) > Rsum(µext) then

Accept the proposal
µext = µnew

else
Reject the proposal

end if
end if

until proposal is accepted
until µext = µprevious
µ∗ext = µext

1) n /∈ Lµext : n is not matched to anyUE inµext.We obtain
µnew as µnew = µext ∪ (k, n) \ (k, µext(k)).

2) n ∈ Lµext\{µext(k)}: n is matched to some UE other
than k; i.e., µext(n) 6= k . µnew is obtained as follows:

µnew = µext ∪ {(k, n), (µext(n), n′)}

\ {(k, µext(k)), (µext(n), n)}

Beam n′ is the most preferred beam for user µext(n)
which is not linked to any user.

Thus, in Phase II,µext gets updated only if there is a matching
that achieves a higher sum-rate. Hence, with every iteration
of Phase I and II, µext improves in terms of sum-rate.
While computing Rsum(µ) in (12), we compute sum-rate

for the system given by (7), where H̃b is the channel matrix
corresponding tomatchingµ and P̃b is the corresponding pre-
coder, computed according to either (14) or (16) (discussed in
Section IV), to cancel the multi-user interference. It is worth
noting that Algorithm 2 can be employed with any precoder
and need not be restricted to ZF or the precoder discussed in
the next section.

To summarize, Phase I computes the preferences under
µext, which are used by Phase II to update µext. The updated
µext is passed to Phase I to update the preferences; This
cycle continues until Phase II returns the same µext that it
receives.

Lemma 1: Algorithm 2 will converge.
Proof: There are two aspects to be understood. First,

since the number of UEs and beams are finite, the number
of matchings will also be finite. Second, for every iteration
of the algorithm we strictly attain a better matching. Thus,
the algorithm will converge to a matching µ∗ext.
Lemma 2: Upon convergence of Algorithm 2, a stable

matching µ∗ext will be obtained.
Proof: Suppose, Algorithm 2 converges to a matching

µ∗ext which means that µ∗ext cannot be further updated. Let us
assume that µ∗ext has a blocking pair (k, n) which means that
n 6= µ∗ext(k), n �k µ

∗
ext (k) and k 6= µ∗ext(n), k �n µ

∗
ext(n).

Consider another iteration of Algorithm 2 with µ∗ext as the
input. In Phase I, for UE k we get n �k µ∗ext(k). Thus
in Phase II, k will propose beam n before µ∗ext(k). Also,
beam n will accept the proposal as k �n µ∗ext(n). Therefore,
µ∗ext(k) will be updated with a (k, n) link contradicting our
assumption of convergence of Algorithm 2 at µ∗ext(k). There-
fore, it means that the Algorithm 2 will never converge to a
matching having a blocking pair. Thus upon convergence of
Algorithm 2, a stable matching will be obtained.

IV. LINEAR PRECODING
The matching µ determined by either of the matching theo-
retic beam selection algorithms gives us H̃H

b and (7) specifies
the system after beam selection. The multi-user interference
present in the effective channel H̃H

b can be cancelled by
employing a precoder P̃b ∈ CK×K at the transmitter.

Zero-forcing (ZF) precoder, given by

P̃b =

(
H̃H
b

)−1∥∥∥∥(H̃H
b

)−1∥∥∥∥ , (14)

completely cancels the interference but results in poor per-
formance as it reduces the received signal power [10]. The

normalization by

∥∥∥∥(H̃H
b

)−1∥∥∥∥ is to avoid increase in the trans-
mit power due to precoding. Over Gaussian MIMO chan-
nels (where each element of the channel matrix is a complex
Gaussian random variable with zero mean and unit variance),
loss in sum-rate due to the normalization factor in (14) has
been analyzed in [21].

We propose to employ a linear precoder inspired
by the well-known non-linear Tomlison-Harashima pre-
coder (THP) [22], [23]. QR-decomposition of H̃b yields a
unitary matrix Q ∈ CK×K and an upper-triangular matrix
R ∈ CK×K , such that H̃H

b = RHQH [20] and (7) can be
written as

y = LQH P̃bs+ w, (15)

where L = RH is a lower-triangular matrix. We propose to
employ the linear precoder given by

P̃b =
QL−1LD

α
, (16)
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where α = ‖QL−1LD‖ and LD is a diagonal matrix con-
structed with the diagonal elements of L. In (16), scaling by
α is to ensure that ‖P̃bs‖ = ‖s‖. It can easily be verified
that the above precoder diagonalizes the channel and the
received (interference free) symbols are given by

yi =
1
α
liisi + wi, i = 1, . . . ,K , (17)

where lii is the ith diagonal element of L.
For the MU-MIMO downlink, characterized by (15), THP

is a non-linear precoding scheme for canceling the multi-user
interference at the transmitter [22], [23]. By making P̃b = Q,
the effective channel becomes equal to L. Let the signaling
constellation A is an M -QAM, (i.e., sk ∈ A, k = 1, . . . ,K ),
where M is a square number and A = {aI + aQ|aI , aQ ∈
{±1,±3, . . . ,±(

√
M−1)}}. A symbol vector x is transmitted

over the channel L, where

xi =


si, i = 1,

si + ei −

∑i−1
j=1 lijxj
lii

, i = 2, . . . ,K ,
(18)

where ei ∈ {2
√
M (eI + eQ)|eI , eQ ∈ Z)}; Thus, integer

multiples of 2
√
M are added to the real and imaginary parts

of si. This modulo operation is performed to minimize the
excess transmit power due to precoding (i.e., to minimize the
difference ‖x‖−‖s‖). The effective data symbols di = si+ ei
are from an expanded signal set D = {dI + dQ|dI , dQ ∈
{±1,±3, . . .}} and the signal points that are separated in real
and imaginary part by 2

√
M are congruent and represent

the same message. The receiver takes care of the modulo
congruence while decoding, and the effective input-output
relation, with THP, becomes

yi = liisi + wi, i = 1, . . . ,K . (19)

It should be noted that THP still suffers from power
loss (referred to as precoding loss), and is equal to M

M−1
for square QAM constellations with uniform probability of
signaling, which becomes negligible even for moderate val-
ues of M . THP was shown to achieve significantly superior
performance compared to ZF precoding [22].

Based on (17) and (19), sum-rate achieved by the linear
precoder given by (16), denoted by RPsum, and the sum-rate
achieved by THP, denoted by RTHPsum , can be expressed as

RPsum =
K∑
k=1

log2

(
1+

∣∣l2kk ∣∣
α

)
, (20)

RTHPsum =

K∑
k=1

log2
(
1+

∣∣∣l2kk ∣∣∣). (21)

Performance of the linear precoder given by (16) will be
lower than that of the THP due to the normalization factor
α, which is essential to avoid transmitting excess power with
precoding; However, its linearity makes it more favorable for
implementation. Also, from (20) and (21), we can observe
that increasing the transmit power by α we can achieve the

same sum-rate as that of THP. Further, simulation results (pre-
sented in the next section) show that the linear precoder given
by (16) outperforms the ZF precoder. We do not have analyti-
cal results to quantify the performance difference between the
linear precoder given by (16) and the ZF precoder. We will
address this problem in our future work.

Note that the linear precoder proposed (and computed
through an iterative algorithm) in [13] also results in the
same input-output relation given by (17); Thus, the precoder
that we propose to employ here (given by (16)), may be
considered as equivalent to the one proposed in [13].

V. SIMULATION RESULTS
In this section, we present the sum-rate performance of
the proposed matching theoretic beam selection algorithms,
evaluated through Monte Carlo simulations. We consider an
AP equipped with an 80 element array communicating with
40 UEs, each having a single antenna, i.e., N = 80 and K =
40. The channel from AP to each UE has one LoS component
with β(0)k ∼ CN (0, 1),∀k , and two NLoS components with
β
(i)
k ∼ CN (0, 0.01),∀k , and i = 1, 2.

FIGURE 1. Sum-rate performance of proposed matching theoretic beam
selection algorithms in comparison with other algorithms.

Fig. 1 shows how sum-rate varies with signal-to-noise
ratio (SNR) for different beam selection algorithms. ‘‘DA
with ZF’’ and ‘‘ME with ZF’’ denote Deferred Acceptance
for beam selection (i.e., Algorithm 1) and Matching with
Externalities for beam selection (i.e., Algorithm 2), respec-
tively, with ZF precoder, given by (14), for canceling the
interference. Similarly, ‘‘DAwith P’’ and ‘‘MEwith P’’ refers
to Algorithm 1 and Algorithm 2, respectively, with precoder
given by (16). ‘‘MM’’ refers to the maximum magnitude
beam selection (proposed in [10] and modified in [12] to
assign only one beam per user), ‘‘MC’’ is the maximiz-
ing capacity decremental beam selection1 [12], ‘‘IA’’ refers
to the interference-aware beam selection [11], ‘‘MS’’ is the
maximizing SINR beam selection [12] and ‘‘QR’’ represents

1Difference in performance between MC decremental and incremental
algorithms, proposed in [12], is negligible.
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TABLE 2. Idealistic upper bound on sum-rate computed using Eqn. (13)
in [10] and sum-rate achieved by ME with TH precoding.

the QR decomposition based beam selection algorithm [13].
‘‘Full Dimensional ZF’’ employs all the N beams along with
ZF precoding and requires N RF chains [10]–[12].

As discussed previously, DA for beam selection neglects
interference among users, and achieves better performance
only compared to MM beam selection. Matching with exter-
nalities achieves a significantly higher sum-rate compared
to DA. The performance of both DA and ME improve
significantly when we employ the linear precoder given
by (16). ‘‘ME with P’’ outperforms other beam selection
algorithms, including the full dimensional ZF; Thus, with K
beams (thereby requiring only K RF chains), matching with
externalities along with the precoder given by (16) enables us
to achieve higher sum-rate compared to a system that uses all
the beams with a ZF precoder. Note that the performance of
full dimensional ZF is not ‘‘the’’ upper bound on the sum-rate
of a full dimensional system, as different precoders (such
as matched filter and Wiener filter [10]), result in different
upper bounds. Compared to the idealistic upper bound on the
sum-rate given by [10, eq. (13)] (and computed in Table 2 for
the system parameters that we consider here), the sum-rate
achieved by ‘‘ME with P’’ is lower, justifying that we are not
violating any fundamental limits. Table 2 also presents2 the
sum-rate performance of ’’ME with THP’’ (Algorithm 2 for
beam selection followed by TH precoder); Comparing the
simulation results for ‘‘ME with P’’ with ‘‘ME with THP’’
confirms that the performance difference between the linear
precoder (given by (16)) and the THP corresponds exactly
to the scaling factor α, as mentioned in the previous section.
Though IA beam selection considers multi-user interference,
it does so only for the interfering UEs (denoted as IUs
in [11]); While assigning beams to the non-interfering UEs,
IA algorithm does not consider the interference such a beam
causes at other users, which results in a loss of perfor-
mance. QR decomposition based beam selection [13], which
employs a linear precoder that results in exactly the same
effective channel as that of the linear precoder (given by (16))
that we employ here, also performs poorly compared to ‘‘ME
with P’’. It is to be noted that, in QR based beam selection,
once a beam is selected for a user, it’s effect on the beams
selected subsequently for other users is not accounted for;

2As the sum-rate of idealistic upper bound and ‘‘ME with THP’’ are
much higher than the sum-rate achieved by other schemes, plotting them
in Fig. 1 makes it difficult to distinguish performance of different schemes.

In ME, after obtaining a matching the beam assignments get
revised for all the users if there is a possibility for obtaining
higher sum-rate with a new matching. At the same time,
the this iterative process of modifying the beam assignment
to all the users for achieving higher sum-rate may prove to be
computationally costly.

Complexity of deferred acceptance algorithm is O(NK ).
Thus, the complexity of Algorithm 1 is of the same order as
that of the MM beam selection, but it has significantly bet-
ter performance compared to MM algorithm. Complexity of
Matching with Externalities (Algorithm 2), may be analyzed
as follows:
(a) Complexity of Phase 1 is mainly determined by the

complexity of computing the utility functions and
which is equal to O(K 2N ).

(b) In Phase 2, the algorithm has to compare Rsum(µnew)
with Rsum(µext) to accept or reject a UE’s proposal.
Computing Rsum(µ) requires computing the precoding
matrix for that particular matching through Eqn. (16)
and then computing the sum-rate through (20). This
complexity amounts to O(K 3). In the worst case, a UE
has to propose to N beams, resulting in a complexity of
(KN )O(K 3) for K users (It is worth noting that, during
our simulations with N = 80, K = 40, we have
observed that the average number of proposals that a
UE hasmade is only 2.8, which is significantly less than
80).

(c) Thus, the worst case complexity of one iteration of
Algorithm 2 is given by (KN )O(K 3) + O(K 2N ). The
number of iterations required depends on the channel
realization and the values of N and K . For the case
of N = 80, K = 40, we have observed that the ME
algorithm required an average of 3.75 iterations before
computing a stable matching.

ME may become computationally complex, especially when
it requires more iterations (containing Phase 1 and Phase 2) to
find a stable matching. Thus, we pay a price in terms of
complexity for the higher sum-rate achieved by ME.

VI. CONCLUSIONS
We have considered the problem of beam selection in a
high-dimensional mmWave multi-user MIMO system. By
modeling it as a problem of finding a stablematching between
the set of users and the set of beams, we have proposed
two beam selection algorithms. The first algorithm, deferred
acceptance for beam selection, is a simple and low com-
plexity one but has low sum-rate performance as it does
not account for the multi-user interference. When both the
interfering and the desired signal powers are considered in
finding a stable matching, it becomes a problem of matching
with externalities. We have proposed an iterative heuristic
algorithm that solves this problem by finding a stable match-
ing. Simulation results show that matching with externali-
ties, combined with a linear precoder that was inspired by
the Tomlinson-Harashima precoder, outperforms other beam
selection methods.
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We hope that our work will serve as a starting point for
developing more efficient beam selection algorithms based
on matching theory. Exploring matching with incomplete
information [24], [25], which would be useful when it is
difficult to have complete channel knowledge, is another
interesting avenue for future work.
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