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A Model Personalization-based Federated Learning

Approach for Heterogeneous Participants with Variability in

the Dataset

RAHUL MISHRA and HARI PRABHAT GUPTA, IIT (BHU) Varanasi, India

Federated learning is an emerging paradigm that provides privacy-preserving collaboration among multiple

participants for model training without sharing private data. The participants with heterogeneous devices

and networking resources decelerate the training and aggregation. The dataset of the participant also pos-

sesses a high level of variability, which means the characteristics of the dataset change over time. Moreover,

it is a prerequisite to preserve the personalized characteristics of the local dataset on each participant de-

vice to achieve better performance. This article proposes a model personalization-based federated learning

approach in the presence of variability in the local datasets. The approach involves participants with hetero-

geneous devices and networking resources. The central server initiates the approach and constructs a base

model that executes on most participants. The approach simultaneously learns the personalized model and

handles the variability in the datasets. We propose a knowledge distillation-based early-halting approach for

devices where the base model does not fit directly. The early halting speeds up the training of the model. We

also propose an aperiodic global update approach that helps participants to share their updated parameters

aperiodically with server. Finally, we perform a real-world study to evaluate the performance of the approach

and compare with state-of-the-art techniques.
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1 INTRODUCTION

Ubiquitous system has recently emerged as an attractive paradigm, which facilitates easier and con-
venient data collection using low-cost and small-size devices [36]. The system generates a large
amount of valuable data that can be used to train deep learning models on the centralized server. In
addition, the growth of the ubiquitous system also creates the possibility of collecting and process-
ing personalized data. However, sharing personalized data to the central server has raised privacy
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Fig. 1. An example scenario of FL with N participants (e.g., smartphones) with heterogeneous devices and

networking resources. B1, . . . ,BN denote unequal bandwidths among the participants and the central server.

concerns and security threats. Moreover, limited networking resources (e.g., bandwidth) between
the devices and the central server incur communication delays and increase the training time of
the model [17, 40]. Federated Learning (FL) is a collaborative technique to train the model with-
out using local data of participant devices at the central server [33, 35, 44]. Each participant device
in FL trains the model using the local dataset and sends the trained model’s Weight Parameter

Matrices (WPM) to the central server. In turn, the central server aggregates the WPM received
from participant devices and sends them back the updated WPM. FL finds various applications in
the ubiquitous system, including human activities recognition, healthcare system, vehicular edge
computing, intelligent recommendations (e.g., Gboard), and so on [26, 34, 39].

A participant device in FL uses its resources, such as memory and processing power to load the
model and train them locally. The availability of resources at the participant devices depends on
their type and other installed services. Such heterogeneity in device resources requires unequal
time to train the model using local datasets. The heterogeneity in the devices and networking
resources implies that all devices may not simultaneously transfer the WPM to the central server
for the aggregation and hence slow down the FL. Therefore, it becomes challenging to handle
heterogeneity among participant devices in FL. Figure 1 illustrates an example scenario of FL that
trains a shared model on the participant devices using local datasets. The participant devices are
the smartphones of different brands, and have unequal memory and processing power. Similarly,
the participants are at diverse locations; thus, the bandwidth between the devices and the server
may be non-identical.

FL involves the aggregation of WPM from multiple participant devices after each communi-
cation round. Such aggregation improves the generalization ability by utilizing the local dataset
characteristics of multiple participant devices. However, the aggregation may vanish the local
properties or personalized features of the participants’ datasets. Personalization in FL refers to the
process of preserving the dataset characteristics of the participants [7, 20, 25, 28]. For example, the
participants can only send the personalized layers for aggregation and train the local model with
personalized layers [20]. Dataset variability leads to performance diminution and frequently oc-
curs in real-world [15, 47, 57]. Specifically, the available dataset of the participants in FL is sensitive
to the time of data collection, environmental conditions, and even the emotions of the participants.
Thus, it is tedious to simultaneously maintain personalization and handle dataset variability on the
participant devices.

To address the heterogeneity in resources among the participants, prior studies proposed mecha-
nisms that discard slow processing participants, called stragglers, from the federation [3, 22]. How-
ever, the removal of stragglers hampers effective utilization of the local datasets (on stragglers) and
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prohibits performance improvement. Some existing work [27] have considered a fixed size model
for all the devices with heterogeneous resources. The fixed size model may not fully utilize the
colossal resources on the devices. The existing work [45, 56] used Knowledge Distillation (KD)
to resize and train the model that fit on the devices. The KD is a student-teacher learning process.
The training of the student model by the teacher model sometimes requires multiple epochs in KD;
therefore, delays the aggregation process at the central server.

While considering the heterogeneity in devices and networking resources, we are the first to
simultaneously personalize the model for the participants and handle the dataset variability. We
present a model personalization-based federated learning approach in the presence of heterogene-
ity in devices and networking resources. This work investigates the following problem: how does

FL successfully train a model on the participant devices with heterogeneous resources while ensuring

model personalization and considering dataset variability? To this end, the major contributions and
novelty of this work are as follows:

— We first construct a base model on the server using the resources information of the par-
ticipants. We next design an approach to identify the personalized layers of the base model
on participants in accordance with their datasets and resources. We consider the dataset

variability on the participants, which changes personalized layers over time. Therefore, we
preserve non-personalized layers and train with personalized layers for limited epochs to
handle variability. We called this novel technique as re-personalization, which retains the
performance despite dataset variability.

— We consider the scenarios where devices have sufficient, colossal, and insufficient resources
to train the model. The approach uses knowledge distillation to train resized base models for
insufficient and colossal resource devices. To speed up the model’s training at insufficient
and colossal resource devices, we propose a novel early halting technique, where training
halts at halting epochs. We derive an expression to determine the halting epoch for a given
accuracy. Furthermore, we propose an aperiodic global update approach where the server
does not wait to receive the WPM from all the participants to estimate the aggregated WPM.
The duration of two consecutive global updates divides into fixed time intervals. The server
aggregates the received WPM in each interval and uses the aggregated WPM in the next
interval. Such aperiodic global update speedups the training.

— Finally, we perform a real-world study to analyze the heterogeneity in devices and network-
ing resources among the participants. The task of the real-world study was to recognize the
locomotion modes of the users. We also consider the task of handwritten digit recognition,
image classification, and human activity recognition. We verify the proposed approach on
the existing baseline techniques (HetroFL [5], FedProx [23], FedAvg [31], and Hermes [20]),
collected and existing datasets [1, 16, 19, 41], and validation metrics.

The rest of the article is organized as follows. In the next section, we briefly discuss the prior
studies and motivation. Section 3 presents the approach to train a model on the participant devices
with heterogeneous resources, followed by the theoretical analysis in Section 4. The real-world
study and performance evaluation are discussed in Sections 5 and 6, respectively. Finally, the article
concludes in Section 7.

2 BACKGROUND AND MOTIVATION

This section first presents the existing FL work that considered the heterogeneity in devices and
communication resources. We next discuss the prior studies that considered KD, personalization
of models in FL and heterogeneous dataset in FL.
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2.1 Heterogeneity in Device Resources

The authors in [12] highlighted the problem of heterogeneous devices in FL, which limits the size
of the global model to accommodate low resource or slow participants. They proposed an ordered
dropout approach, FjORD, which dynamically adapts the model’s size for heterogeneous devices.
FjORD identified the candidate values of dropout and determined multiple models. The participant
selects an appropriate model. The authors in [5] introduced the technique of handling variation
in computational and communication resources. They named the technique as HetroFL, which
produces a single global model apart from multiple size global models in [12]. The server sent the
portion of the global model to the participants.

2.2 Heterogeneity in Communication Resources

The authors in [44] recognized the issue of limited and dynamic communication resources among
participants in FL. They proposed a mechanism to control the number of global aggregations at the
server and reduce the learning loss to minimize the communication budget. The authors in [18]
presented a specialized technique, namely, Oort, which prioritizes the selection of participants in
FL. The technique selected those participants that offered the highest utility and minimizes the
communication delay. The authors in [23] introduced a framework called FedProx to handle the
issue of heterogeneity in FL. FedProx used a proximal term to minimize the impact of updates and
restricted it close to the server’s model.

2.3 Knowledge Distillation in FL

The authors in [9] presented a group knowledge transfer training algorithm, abbreviated as
FedGKT. The target is to train a large-size CNN model on the server using the WPM from the dif-
ferent and small-size models on heterogeneous participants. Authors in [27] utilized KD in FL for
transforming different size models of participants into equal sizes. The participant devices in [45]
trained a large-size model, converted to the lightweight model using KD, and communicated to
the server. The devices converted the received lightweight model from the server to a large-size
using reverse-KD. It helped to reduce communication overhead.

2.4 Personalization in FL

Hermes [20] is a computational and communication efficient framework to handle the critical
bottleneck of communication cost and data heterogeneity. Hermes used a structured pruning tech-
nique to develop the personalized model for each participant. Authors in [6] proposed an algorithm
that performed global aggregation in FL, namely, FedDist, where the aggregation depends upon
the similarity among the WPM from the participants. Furthermore, the authors in [25] proposed
an approach that addressed the data heterogeneity and provided communication efficiency using
two-step learning to achieve personalization.

2.5 Heterogeneous Dataset in FL

The authors in [46] introduced a federated learning approach, HiFlash, which ensured communica-
tion efficiency using adaptive staleness control and also caters heterogeneity in participants-edge
association. HiFlash proved to be an important approach for addressing heterogeneity in federated
learning through its hierarchical structure and adaptive staleness control. The approach optimized
communication and enhanced its efficiency. To handle heterogeneity in dataset of federated learn-
ing, the authors in [24] proposed a blockchain-based decentralized federated learning framework.
The framework tends to be a novel and intriguing for heterogeneity in a distributed setting. The
authors have utilized committee consensus method to potentially facilitate the learning process
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while handling disparate datasets. The proposed work did not involve blockchain applications,
however, we acknowledge the importance of exploring diverse methods to handle heterogeneity.
Fedmd (heterogeneous federated learning via model distillation) [21] is introduced to handle het-
erogeneity of dataset in federated learning. It leveraged the knowledge of a global model to distill
the local models’ information, this method can potentially mitigate the effects of varying datasets.

Furthermore, Zheng et al. in [4] addressed the critical challenge of handling resource and data
heterogeneity in the context of federated learning. The authors proposed strategies to mitigate the
impact of varying computational resources and diverse data distributions across clients in a feder-
ated learning. Similarly, the authors in [13] addressed the challenge of non-IID (Non-Independently
and Identically Distributed) data in federated learning, especially when dealing with heteroge-
neous datasets. They employed cross-silo federated learning, where data from different sources
exhibit significant differences. In addition, the approach utilized data transformation and adap-
tation strategies to enable effective knowledge sharing across diverse data distributions. Finally,
the authors in [38] proposed a federated learning framework, FedBoost, which leverages the di-
versity of participants’ datasets to improve overall performance. FedBoost strategically assigning
more weight to participants with better performance during aggregation, which helps in handling
heterogeneity of participants’ dataset.

2.6 Motivation

This work is motivated from the following limitations in prior studies. The local model may
not achieve adequate accuracy if its weights are discarded during aggregation [3]. Reducing
the processing power of the device during training of the model slows down the aggregation
process [49, 51]. Additionally, estimating the exact complexity of the model supported by a
participant is tedious [5]. Suppressing the communication round for aggregation [14, 44, 48]
also increases the stale models. The parallel training and communication come with the cost of
gradient-staleness [55]. Considering a fixed size of lightweight models is not suitable for unequal
resources participant devices [9]. Sending WPM of the lightweight model to the central server
increases the number of the round for aggregation [45]. Moreover, using KD in FL slows down
the training of models [27, 45, 56]. The existing approaches have considered model personaliza-
tion [7, 20, 25, 28]; however, non-of-the existing approaches have considered variability in the
datasets. In summary, the existing FL in the presence of heterogeneous resources avoids the straggler

devices during aggression, delays the aggression process, and/or reduces the number of aggregation

round. Moreover, none-of-the existing work handled the issue of variability in dataset of participants.

3 MODEL PERSONALIZATION-BASED FEDERATED LEARNING APPROACH

This section proposes a model personalization-based FL approach for heterogeneous participants
with variability in their local datasets. Figure 2 shows the framework of the proposed approach.
The server initiates the approach by collecting the available resource information from K out of
N participants then constructs and randomly initializes a base model, denoted as Mo ( 1©). The
server transfersMo to all the devices ( 2©).Mo is successfully trained on sufficient resources devices,
where personalized models are obtained by analyzing the WPM of trained Mo . We next propose
a KD-based early halting approach for insufficient or colossal resources devices to train Mo . The
halting approach speeds up the training process and improves the performance of the model within
available resources ( 3©). Afterwards, participants share their updated WPM of the personalized and
trained model ( 4©). Furthermore, we propose an aperiodic global update approach that helps the
participant devices to share their updated WPM aperiodically with server ( 5©). Finally, the server
sends the aggregated and personalized WPM to the participants ( 6©). Steps 3© − 6© are repeated
for sufficient communication rounds to achieve desired performance. Algorithm 1 shows the steps
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Fig. 2. Illustration of the framework for the model personalization-based FL approach.

of the proposed approach. In this work, the participants do not share data (or its characteristics)
with each other and the server. Therefore, the approach did not violate the dataset privacy of
the participants. However, we do not consider the mechanism to encrypt or protect WPM from
attackers.

3.1 Construction of Model at Central Server

This work assumes a scenario comprising a set P of N participants, P = {p1, . . . ,pN } and a cen-
tral server. The server randomly selects K (K < N ) out of N participants for training. The server
constructs a model prior to the FL-based training on K participants. However, constructing a one-
fits-all model for K participants is tedious. If the model is too large, some participants may not
accommodate and delay the aggregation. We introduce two simple and sequential steps to circum-
vent the difficulties to construct a base model. Firstly, the K participants send available resource
information to the server. The server extracts the information of the available resources from par-
ticipants and then develops an initial model (“base model in this work”) suitable for most of the
participants. Specifically, the server constructs a one-fits-all model, which may be too small to
achieve adequate performance.

In the second step, the server enhances the model size using the technique discussed in [30]. This
step makes the model large enough to achieve adequate performance with the condition that the
majority of participants can accommodate it. By majority, we mean that more than 50% participants
can directly run the base model Mo . Initially, determining the one-fit-all lightweight model and
imposing a 50% participants cap differentiate the proposed approach from [30]. Moreover, the
technique in [30] is tested in centralized training, and we utilize and test it in federated learning-
based model training.

Let T be the maximum allowable time between two communication rounds. The server sets
the local epochs, denoted as E, to train the base model Mo on all the participants. Later, the
server fetches the information about the number of instances ni in the local dataset di of pi ,
∀i ∈ {1 ≤ i ≤ K }. The server estimates the local training time by determining the floating-point
operations of Mo for one epoch using ni . Afterward, the time to execute the floating-point opera-
tions is estimated for one epoch using the available processing power of the participants. Further,
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the server evaluates the time to execute E epochs of training, i.e., local training time. The server
enhances model Mo such that majority of the participants can train the base model within T . The
remaining participants that are incompetent in training Mo , reduce the size of Mo using pruning
and KD techniques, discussed later (participants with insufficient resources). The model selection
steps are shown in Procedure 1.

Procedure 1: Construction of model at central server
Input: Resource information of P participants, ni of pi (1 ≤ i ≤ N ), local epoch E, and threshold T ;

1 Server randomly selects K out of N participants;

/*Step 1: Constructing one-fits-all small size base model*/

2 for each participant pi ∈ P, where 1 ≤ i ≤ K do

3 Server extracts resources information of pi ;

4 A← A.append (available resource on pi ); B ← B.append (ni on pi );

5 a ← min(A); Construct a one-fits-all model Mo satisfying a;

6 /*Step 2: Enhancing the model size Mo using [30]*/

7 while Pcount ≥ K/2 do

8 Pcount ← 0;

9 for each participant pi ∈ P, where 1 ≤ i ≤ K do

10 e ← Estimate training time of Mo on pi using ni and E; /*Using list B obtain ni on pi */

11 if e ≤ T then

12 Pcount ← Pcount + 1;

13 Mo ← enhance size of Mo ;

14 return base model Mo ;

3.2 Model Personalization and Training on Participant Devices

This section describes the model personalization and training of the base model Mo , obtained
previously. Procedure 2 illustrates the different steps for model personalization and training in
presence of dataset variability.

3.2.1 Model Personalization. This work designs a personalized model for each participant de-
pending upon the current state of the dataset and Mo from the server. The authors in [20] per-
formed structured pruning of layers to obtain personalized model, where few unimportant layers
of the models are pruned permanently. Since we consider the high-level of variability in the lo-
cal dataset; thus, personalized layer changes overtime. Thus, we can not directly employ such
pruning technique. In the proposed approach, each pi learns a personalized model using the struc-
tured pruning technique, as discussed in [20], and also retains the pruned connection to handle
the variability in the dataset. We introduce a mechanism to perform efficient training that stops
training of non-personalized layers of model at the participant after pre-specified epochs < E, e.g.,
25% epochs considered in the experiment. However, the training of personalized layers is contin-
ued for E. This stopping preserves the training resources without performance compromise and
makes pruned layers usable on changing the dataset status.

Each participant performs channel-wise and filter-wise pruning for CNN and row-wise and
column-wise pruning for fully connected layer. The participant generates a binary mask of the
WPM, where 0 and 1 indicate pruned and un-pruned values, respectively. After training, the par-
ticipants send WPM along with the binary mask, which facilitates the server to identify the pruned
connections. Here, the transmission of the binary mask produces ignorable communication over-
head compare to floating-point parameters. Figure 3 illustrates the model personalization and re-
personalization for handling dataset variability on pi , where i ∈ {1 ≤ i ≤ N }. 1© server initially
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Fig. 3. Illustration of model personalization and re-personalization to handle variability in the local dataset

of the participant pi , where i ∈ {1 ≤ i ≤ N }.

sends base model Mo to the participant that trains and personalizes the model. 2© participant pi

train personalized model. 3© re-personalization of the model on the participant to handle variabil-
ity in the dataset.

3.2.2 Model Training. Each participant pi ∈ P trains the received model then personalize Mo

using local dataset di . The duration of the training, personalization and inference on the partici-
pant devices depend on their processing power. Similarly, the storage requirement relies upon the
size of the model. We consider three scenarios based on the heterogeneity in available resources
on the participant devices. In the first scenario, the available resources are sufficient to train
and obtain a personalize model from Mo . The other scenarios are possible when the participant
device’s resources are colossal or insufficient to train, personalized and perform inference on
model Mo .

(1) Participant devices with sufficient resources: In this scenario, the available resources of
participant devices match the requirement of resources to train, personalize and perform inference
on model Mo . This scenario is illustrated in Figure 2. The training of Mo incorporates forward and
backward propagation for E local iterations. WPM of the trained model is analyzed to determine
the personalized and non-personalized layers. Later, the binary mask is generated and sent with
the WPM of the personalized layer to the server for aggregation.

The server sends the updated WPM of the personalized layer to the participants. Furthermore,
the participants replace their WPM of personalized layer and train the local model with person-
alized and non-personalized layers. The training of the non-personalized layers is stopped after
certain epochs prior to E, whereas personalized layers are trained for E epochs. This training of
the local model and aggregation is continued until the performance is greater than a threshold,
denoted as athr es . When the model’s performance deteriorates due to variability, the personalized
layers are re-identified from the trained model, and the above steps are repeated, as shown in
Figure 3. We also incorporate loss function, denoted as La (·), during training of Mo on pi . La (·)
estimates the discrepancy between predicted and actual labels of di for classification tasks. La (·)
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Fig. 4. Illustration of early halting and layer sharing among student and teacher, while training the base

model.

can be probabilistic (i.e., cross-entropy), regression (i.e., mean square error), or hinge (i.e., hinge
function) depending upon the scenarios.

(2) Participant devices with colossal resources: A participant pi with colossal resources can
run a sophisticated model Mi that achieves better inference performance than model Mo . We use
the deep network growing concept discussed in [43] to generate Mi from Mo . We also employ
reverse KD technique with the loss La (·) and distillation loss LDL (·) [50] to utilize features of
Mo while training Mi , as shown in Figure 2. The training of Mi continued for E local epochs on
di . Later, the participant pi uses trained Mi for local inference. pi regenerates Mo from trained
Mi to share the updated WPM to the server for the next round of aggregation. We use the KD
technique [11] to transfer the knowledge from the trained Mi to Mo . The logits of trained Mi

become a hard target for Mo ; therefore, the comparisons of their logits don’t provide satisfactory
performance [52]. Furthermore, using untrained Mi and trained Mi teachers for training student
Mo guides Mo with appropriate initialization and provides smooth logits for comparison. This
process requires huge training parameters [54]. To overcome these issues, the approach considers
Mi as untrained and trained teacher models andMo as student model with layers sharing, as shown
in Figure 4(a). However, the training of Mo using trained and untrained Mi requires enormous
resources.

The proposed approach early halts the training of the untrained Mi model after epochs h1 to
overcome the requirement of enormous resources, where h1 < E. The early halting saves the
device’s resources during training of Mo with no performance compromise. Hereafter, the training
ofMo will continue under the guidance of trainedMi . Theorem 1 proves that the number of epochs
h1 to halt the training of untrainedMi is sufficient to achieve the desired accuracy. The early halting
technique uses loss La (·), attention loss LAL (·) [52], and distillation loss LDL (·) [11], as shown
in Figure 4(a). The performance of Mo can be improved under the supervision of trained Mi that
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compares output at each epoch. The comparison is carried out using attention loss between Mo

and Mi . The combined loss (Lcomb (·)), which operates during simultaneous training of Mo and
untrained Mi , is given by

Lcomb (·) =
{
λ1Lo

a (·) + λ2LAL (·) + λ3LDL (·) + λ4Li
a (·), till training of untrained Mi ,

λ1Lo
a (·) + λ2LAL (·) + λ3LDL (·), (1)

where λ1, λ2, λ3, and λ4 are the fractional contribution of different loss functions, 0 <
{λ1, λ2, λ3, λ4} < 1. We only optimize the combined loss associated with Mo , as the contribution of
the loss of untrained Mi is uniform throughout the training of Mo . The early halting optimizes the
following problem

min Lo
comb (·) s.t., λ1 + λ2 + λ3 = 1, 0 < {λ1, λ2, λ3} < 1. (2)

The participants with colossal resources do not identify personalized layers. Such participants
with abundant resources can effectively train and communicate WPM of the model incorporating
all the layers without pruning.

(3) Participant devices with insufficient resources: The participants with insufficient re-
sources can not perform training and personalization, simultaneously. In other words, a partici-
pant pi with insufficient resources can run a less complex model Mi , which provides inferior per-
formance than Mo . We use the pruning technique discussed in [8] to generate a small size model
Mi from Mo . We also employ KD technique [11] while generating small model using La (·) and
LDL (·), as shown in Figure 2. The participant uses trained Mi for inference.

The participant pi regenerates Mo using trained Mi to obtain a personalized model. We use KD
to transfer the knowledge from the trained teacher model Mi to the student model Mo . Due to
insufficient resources on participant pi , it is tedious to train Mo for E epochs in a limited time.
We use the proposed early halting approach as shown in Figure 4(b). During the training of the
Mo model, we do not use knowledge from the untrained model Mi due to limited resources. The
knowledge from trained Mi is used to guide the training of Mo , where training of Mo is halted
at epoch h2 (h2 < E). We can obtain h2 using Theorem 1. Similar to the sufficient resources par-
ticipants, we determine the personalized layers in trained Mo on the participant by analyzing the
WPM. The training is continued until the performance ≥ accthr es . When the model’s performance
deteriorates due to dataset variability, the personalized layers are re-identified from the trained
local model, and the above steps are repeated.

3.3 Aperiodic Global Update

Each participant sends the WPM of the trained model to the central server for aggregation. The
server may not receive the updated WPM simultaneously from all the participants if participant de-
vices have unequal network bandwidth and processing power. The waiting for the updated WPM
from all the participants at the server introduces unavoidable delays during aggregation. The pro-
posed approach introduces aperiodic global updates at the server inspired from [53] to overcome

the above problem. It allows each participant pi to aperiodically transfers its updated WPMW [t ]
i

to the server at global iteration t of T time interval, where t ≤ R and R is the number of global
iteration. The following steps are executed at iteration t :

Step 1: Let none of the participants has sent the updated WPM before t , and the server has
WPMW [t−1]. Let k participants of set P have to send their WPM in threshold time T . Let η and
Qi denote the learning rate and the number of instances in di , respectively. The server performs
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Procedure 2: Model personalization and training on participant devices

Input: Base model Mo , h1 h2, local epochs E, accuracy threshold accth , R communication rounds, E1
np ,

and E2
np ;

1 for each participant pi ∈ P do

2 if (pi has sufficient resources) then

3 if R == 1 and accuracy of Mo < accth then

4 Train Mo on di ; lpi , lnpi ;

5 Bi ←Personalization (Mo , di );

6 Train Mo with lpi and lnpi layers for E1
np epochs;

7 Train Mo with lpi layers for remaining (E − E1
np ) epochs;

8 return WPM for lpi layers and Bi to the central server;

9 else if (pi has colossal resources) then

10 Train Mi from Mo using reverse KD and di ;

11 for epoch e ≤ E do

12 if e ≤ h1 then

13 Train Mo using pre-trained and untrained Mi ;

14 else

15 Train Mo using pre-trained Mi ;

16 return WPM for Mo to the central server;

17 else

18 if R == 1 and accuracy of Mo < accth then

19 i). Train Mi from Mo using KD and di ;

20 ii). Train Mo using pre-trained Mi for h2 epochs;

21 lpi , lnpi , Bi ←Personalization (Mo , di );

22 Train Mo with lpi and lnpi layers for E2
np epochs;

23 Train Mo with lpi layers for remaining (E − E2
np ) epochs;

24 return WPM for lpi layers and Bi to the central server;

25 return Mi for pi and WPM of Mo for central server;

Function Personalization (Model M , Dataset d)

Use pruning to obtain personalized layers Lp of M and determine binary mask BM ;

Preserve the pruned components to obtain non-personalized layers Lnp of M ;

return Lp , Lnp , and BM ;

aggregation at t + T and updated WPM is given as

W [t+T ] =W [t−1] − η∇(W ′),where,W ′ =
k∑

i=1

( Qi

Q1 +Q2 + · · · +Qk

)
W [t ]

i . (3)

The sever sends back the updated WPMW [t+T ] to all k participants.
Step 2: Let l (l ∈ {1, 2, . . . ,N − k }) denotes the number of participants, which have send their

WPM in the interval t +T and t +2T . Similar as Step 1, the server performs aggregation at t +2T
to obtain WPMW [t+2T ] as

W [t+2T ] =W [t+T ] − η
(
∇(W ′) + δ∇(W ′) � ∇(W ′) � (W [t+T ] −W [t−1])

)
, (4)
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where,W ′ is evaluated using Equation (3) for l participants. δ is a variable that lies in range [0, 1]
and symbol � represents an element-wise product. This step repeats until all the participants not
send their WMP to the server. Aperiodic global update steps are shown in Procedure 3.

The global iteration time interval is estimated using the processing capacity of the slowest par-
ticipant, where the server waits for the WPM from the slowest participant. Moreover, the approach
provides communication efficiency; thus, the bottleneck due to the slowest participant is low. Apart
from [53], the aperiodic global update mechanism allows all the participants to take part in the
aggregation after each communication round, similar to the synchronous global update. It avoids
the possibility of achieving desired global performance using only a subset of participants, leaving
some participants partially trained or untrained [42, 53]. We deduce the mechanism of multiple
intermediate updates between two global updates. It provides faster participants to perform multi-
ple local training in-between two rounds, which aggregately results in performance improvement
of all the participants.

Procedure 3: Aperiodic global update

Input: Global aggregation interval T , time threshold T ;

1 Initialize: q ← 1 ;

2 for j ← 1 to T do

3 if j ≤ T then

4 Collect WPM from the participants;

/*Let k participants send WPM in first T interval*/

5 Aggregate WPM from k participants using Equation (3);

6 while q < T
T do

7 if q.T < j ≤ (q + 1)T then

8 Collect WPM from the participants;

9 Aggregate WPM using Equation (4);

10 q ← q + 1;

11 return Aggregated WPM of Mo at central server;

ALGORITHM 1: Model personalization-based federated learning approach.

Input: Set P of N participants with their local dataset, global iteration R;

Output: Trained model on each participant pi (1 ≤ i ≤ N );

1 Call Procedure 1 to select base model at central server;

2 Central server shares model to the participants P;

3 for R global iterations do

4 Call Procedure 2 to train base model using local dataset at each device;

5 Call Procedure 3 to send updated WPM from participant devices to the server;

6 Return Trained model at each participant device;

4 THEORETICAL ANALYSIS

This section deduces the expression for halting epochs and analyzes the convergence of the pro-
posed approach.

4.1 Deriving Expression for Halting Epoch

We derive the expression of halting epoch h (h1 and h2) in terms of allowable loss variance ϵ . Let
WH (e ) and WE (e ) denote the WPM at epoch e (e ≤ E) when the training of model at partici-
pant incorporates halting or non-halting mechanism, respectively. Similarly, Lcomb (WH (e )) and
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Lcomb (WE (e )) represent the combine loss (Equation (1)) at participant incorporate halting or non-
halting mechanism, respectively. To derive the expression for threshold ϵ , we use the assumptions
as given in [44]:

Assumption 1. Lcomb (·) is ρ-Lipschitz, i.e., ‖Lcomb (W ) −Lcomb (W ′)‖ ≤ ρ‖W −W ′‖ for random

W andW ′.

Assumption 2. Lcomb (·) is β-smooth, i.e., ‖∇Lcomb (W ) −∇Lcomb (W ′)‖ ≤ β ‖W −W ′‖.

Definition 1 (Gradient Discrepancy). For epoch e and WPM W , upper bound of ‖∇WH (e ) −
∇WE (e )‖ is given as:

‖∇Lcomb (WH (e )) − ∇Lcomb (WE (e ))‖ = 0; if e ≤ h,
‖∇Lcomb (WH (e )) − ∇Lcomb (WE (e ))‖ ≤ ϕ (e ); otherwise

. (5)

=⇒ ϕ =

∑E
e=h
‖∇Lcomb (WH (e )) − ∇Lcomb (WE (e ))‖

E − h .

Lemma 1. For epoch e , where e ∈ (h ≤ e ≤ E), we have: V(‖WH (e ) −WE (e )‖E
e=h

) ≤ q(e ), where

q(e ) = (1 − ηβ )
ϕ

β
((1 − ηβ )e + (1 − ηβ )), η < 1

β
, η > 0, and β > 0. V(·) denotes the variance.

Proof. To prove the lemma, we consider the following inductionV(‖WH (e )−WE (e )‖E
e=h

) ≤ q(e )
and using the rule of gradient update, WH (e + 1) = WH (e ) − η∇Lcomb (WH (e )), we obtain the
following expression

V(‖WH (e + 1) −WE (e + 1)‖E−1
e=h

) = V(‖WH (e ) − η∇Lcomb (WH (e )) − (WE (e ) − η∇Lcomb (WE (e )))‖E
e=h

).

Using triangle inequality [44] and property of variance: V[aX +b] = a2V(X ) for constant a and
b, we obtain

V(‖WH (e + 1) −WE (e + 1)‖E−1
e=h ) ≤ (1 − ηβ )2V(‖WH (e ) −WE (e ))‖Ee=h ). (6)

Using considered induction, we reach to following expression

V(‖WH (e + 1) −WE (e + 1)‖E−1
e=h

) ≤ (1 − ηβ )2q(e ) =⇒ V(‖WH (e + 1) −WE (e + 1)‖E−1
e=h

) = q(e + 1).

(7)

Using Equation (7), we obtain, V(‖WH (e ) −WE (e )‖E
e=h

) ≤ q(e ). Hence proved. �

Theorem 1. IfV(‖Lcomb (WH (e ))−Lcomb (WE (e ))‖E
e=h

) ≤ ϵ , then relation between ϵ and e (e = h)

is defined as: ϵ =
√

2ρϕ (1−ηβ )e+1

υη (2−βη) , where η < 1
β

, η > 0, β > 0 and υ = 1
V( ‖WH (e )−WE (e ) ‖E

e=h
)2 .

Proof. For an epoch e ∈ (h ≤ e ≤ E), we assume Ψ(e ) as

Ψ(e ) = V(‖Lcomb (WH (e )) − Lcomb (WE (e ))‖Ee=h ). (8)

Using β-smoothness of the loss function and property discussed in [2]:

Lcomb (W ) ≤ Lcomb (W ′) + ∇Lcomb (W ′)T (W −W ′) +
β

2 ‖W −W
′‖2, we get the following

V(‖Lcomb (WH (e + 1)) − Lcomb (WH (e ))‖E−1
e=h ) ≤V(‖∇Lcomb (WH (e ))T (WH (e + 1) −WH (e ))‖Ee=h ),

(9)

≤ − η2
(
1 − βη

2

)
V(‖∇Lcomb (W (e ))‖Ee=h )2. (10)

From Equation (8), we have following expressions:

Ψ(e ) = V(‖Lcomb (WH (e )) − Lcomb (WE (e ))‖E
e=h

),Ψ(e + 1) = V(‖Lcomb (WH (e + 1)) − Lcomb (WE (e + 1))‖E−1
e=h

),
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Further, using the expression derived in Equation (10), we get

Ψ(e + 1) ≤ Ψ(e ) − η2
(
1 − βη

2

)
V(‖∇Lcomb (W (e ))‖Ee=h )2. (11)

Assuming independentWH (·) andWE (·), we have

Ψ(e ) = V(‖Lcomb (WH (e )) − Lcomb (WE (e ))‖Ee=h ) ≤ V(‖∇Lcomb (WH (e ))T (WH (e ) −WE (e ))‖Ee=h ),

Ψ(e )

V(‖WH (e ) −WE (e )‖E
e=h

)
≤ V(‖∇Lcomb (WH (e ))‖Ee=h ).

Using value of V(‖∇Lcomb (WH (e ))‖E
e=h

) in Equation (11), we get

Ψ(e + 1) ≤ Ψ(e ) − υη2
(
1 − βη

2

)
Ψ(e )2. (12)

Since, Ψ(e + 1)Ψ(e ) > 0, thus, it would not harm the inequality of Equation (12) upon division on
both side.

1

Ψ(e + 1)
− 1

Ψ(e )
≥
υη(1 − βη

2 )Ψ(e )

Ψ(e + 1)
≥ υη2

(
1 − βη

2

)
. (13)

Using ρ-Lipschitz property and Lemma 1, we have,

Ψ(e ) − Ψ(e + 1)

Ψ(e + 1)Ψ(e )
≥ ρηϕ (1 − ηβ )e+1

Ψ(e + 1)Ψ(e )
. (14)

Using Equation (8) and assuming ϵ > 0, we get

V(‖Lcomb (WH (e + 1)) − Lcomb (WE (e + 1))‖E−1
e=h ).V(‖Lcomb (WH (e )) − Lcomb (WE (e ))‖Ee=h ) ≤ ϵ2.

(15)

1

Ψ(e + 1)Ψ(e )
≥ 1

ϵ2
. (16)

Using Equation (16) and Equation (14), we obtain

Ψ(e ) − Ψ(e + 1)

Ψ(e + 1)Ψ(e )
≥ ρηϕ (1 − ηβ )e+1

ϵ2
. (17)

Using Equation (13) and Equation (17) and taking limiting condition

υη2
(
1 − βη

2

)
=

ρηϕ (1 − ηβ )e+1

ϵ2
.

Since, ϵ > 0, taking positive value of square root, we obtain the desired expression:

ϵ =

√
ρϕ (1 − ηβ )e+1

υη(1 − βη

2 )
=

√
2ρϕ (1 − ηβ )e+1

υη(2 − βη)
. (18)

�
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4.2 Convergence Analysis of the Proposed Approach

From Algorithm 1 of the proposed approach, we identify that the convergence depends upon Pro-
cedure 1, Procedure 2, and Procedure 3. Procedure 1 is a one-time initialization process; thus, it
does not play a significant role in the convergence. It implies convergence depends upon Proce-
dure 2 and Procedure 3, i.e., knowledge-distillation based training and aperiodic global update in
communication, respectively. We first discuss the convergence of the approach considering simple
(non-KD) training, i.e., convergence depends upon Procedure 3. We use Assumption 2 and other
assumptions given in [48], as

Assumption 3. The combined loss function Lcomb (·) at any participant (∈ P) is μ-strongly con-

vex for all WPM W and W ′; thus, following inequality holds: Lcomb (W ) ≥ Lcomb (W ′) + (W −
W ′)T∇Lcomb (W ′) +

μ

2 ‖W −W
′‖. Given Lcomb (·) = La (·) for sufficient resource participants.

Assumption 4. Let κt
i represents the uniformly and randomly selected sample from the local

dataset of any participant pi ∈ P at global iteration t , where 1 ≤ t ≤ R. Let ∇Lcomb (κt
i ,W

t
i )

and ∇Lcomb (W t
i ) represent the gradient of loss function Lcomb (·) on κt

i samples and entire samples

of the local dataset, respectively. The variance of the gradient on each participant pi is bounded as

E‖∇Lcomb (κt
i ,W

t
i ) − ∇Lcomb (W t

i )‖ ≤ σ 2
i .

Assumption 5. The expected squared norm of loss function gradient is uniformly bounded as

E‖∇Lcomb (κt
i ,W

t
i )‖2 ≤ G2, where 1 ≤ t ≤ R and 1 ≤ i ≤ N .

Using Assumptions 2, 3, 4, and 5, we can obtain the expression for desired precision (qo ) in
terms of local epoch count E, and global iteration R. The desired precision is defined as: qo =

E[Lcomb (W R )] − L∗
comb

, whereW R is the aggregated weight at final global epoch R and L∗
comb

is the minimum and unknown value of Lcomb at the server. Let L∗
combi

is the minimum value

of Lcombi
at participant pi ∈ P then degree of non-i.i.d datasets among different participants:

a3 = L∗comb
−∑N

i=1 L∗combi
. Let G denotes the total number of SGD operations on the participants.

FedAvg converges at the rate of O (1/G) [48], if following condition is satisfied:

E[Lcomb (W R )]−L∗comb ≤
β/2μ2

a1 + G − 1

(
4a2 + μ

2a1E‖W 1 −W ∗‖
)
,

a1 = max{8β/μ,E}, a2 =

N∑
i=1

b2
i σ

2
i + 6βa3 + 8(E − 1)2G2, (19)

where bi is the fraction contribution of participant pi , ∀pi ∈ P.
Procedure 3 proposes the aperiodic global update, which reduces the number of rounds for

convergence, R ≤ RF edAvд . It is because the proposed approach allows the colossal resource par-
ticipants to perform more updates in the given communication interval. It implies the number of
SGD operations in the approach, denoted as G′, is less than FedAvg, G′ < G. We obtain the conver-
gence rate of the proposed approach as O (1/G′) using Equation (19) and considered assumptions,
which is greater than FedAvg, i.e., O (1/G′) > O (1/G). From this discussion, we observe that the
proposed approach follows a similar convergence pattern as FedAvg in non-KD based training.

The work presented in [37] determined the faster convergence of the model training using KD.
They observed that the classifiers constructed using the outputs of another classifier as soft labels,
instead of ground truth data, converge much faster and are reliable. Similarly, we observed that the
KD-based training requires lesser epochs for convergence during experimental evaluations. Thus,
from our observations and the previous work [37], we conclude that when we incorporate KD to
train the models on the participants, the optimization steps are generally well-behaved in contrast
with non-KD based training. Therefore, it reduces the number of local epochs for convergence and
the number of communication rounds.
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Let X and Y denote the input and output spaces, respectively, with P (X) being the probability
distribution. The hypothesis function of teacher is H ∗ : X → Y and that of student is H : X → Y .
The target of KD-based training is to minimize the empirical risk, defined as the the probability of
student output different from teacher:

Risk (H ) = Px∼P (X)[H
∗ (x ) � H (x )]. (20)

KD-based training of deep learning model with polynomial distribution at any participant

pi ∈ P is converged when the following condition is satisfied [37]: Ex∼P (X)ni [Risk (�H (x ))] ≤
C 1+(log ni )ω

nω

i

, where ni number of instances in the training dataset di of participant pi ∈ P. C > 0

and ω ≥ 0 are the constants. Risk (�H (x )) is the optimal or minimum value of the empirical

risk. In ideal condition Risk (�H (x )) → 0; however, for general case it must be satisfied to ensure
convergence of KD-based training. Moreover, we also introduce early-halting in KD-based
training; thus, the convergence is achieved much earlier. From this discussion, we observe that
the proposed approach follows a similar convergence pattern as FedAvg in non-KD based training.
Additionally, the incorporation of KD for training local models at the participants accelerates the
convergence.

Notably, we adopt different assumptions to determine the expression for the early halting epoch
and analyze the convergence of the proposed approach. Such assumptions are suitable for convex
loss functions like squared SVM, logistic regressions, and so on. However, the loss function in
the deep neural networks is non-convex due to cascade linear and non-linear transforms. Thus,
if we can establish the existence of solutions and convergence of the gradient-based method to
the global minimizer then we can ensure the convergence of the proposed approach. It also en-
sures the derived early halting expression and convergence suit deep neural networks. The au-
thors in [29] presented a general framework to study the non-convex landscapes and optimizers
of over-parameterized system, i.e., deep neural networks, in terms of the Polyak-Lojasiewicz

(PL) condition. They argued that PL holds on to most of the parameter space that is sufficient
for the existence of the solution and convergence to a global minimizer. Therefore, using [29], we
can conclude the proposed approach converges to an optimal solution, despite non-convex loss
functions in the deep neural networks.

5 REAL-WORLD STUDY

The real-world study analyzes the resource characteristics of 128 smartphone users. The smart-
phones of the users have different specifications and brands; thus, the smartphones have heteroge-
neous resources, i.e., memory and processing power. RAM on these smartphones lie in the range
of 1 GB to 12 GB, as illustrated in Figure 5(a). Similarly, the processing power or CPU clock speed
lies in different ranges, as illustrated in Figure 5(b). We consider the processing power of a single
core with the highest clock speed. The network bandwidth between users and the central server
located at the institute possesses a high level of heterogeneity. Figure 5(c) illustrates the network
bandwidth in the ranges. Besides, from Figure 5, we can observe that maximum volunteers have
RAM of 3 GB (41 volunteers), CPU speed in the range 2.0–2.3 GHz (33 volunteers), and network
speed < 10 Mbps (48 volunteers).

Figure 6 illustrates the normalized values of resources of first 100 users. We used unit-based
normalization, which brings all values into the range [0,1]. The devices are arranged in ascending
order of their proceeding capacity then bandwidth and memory resources are arranged accord-
ingly. Ellipses e1, e2, and e3 in Figure 6 illustrate the normalized values of resources of devices,
where e1 and e3 are the devices with least and colossal resources, respectively. This case study
illustrates the high level of heterogeneity among the users.
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Fig. 5. Participants devices and central server in real-world study. (a) RAM , (b) Processing, and (c) Band-

width.

Fig. 6. Illustration of devices and networking resources (normalized values) of first 100 users.

5.1 Dataset Collection

We collected a dataset, called as the LMR dataset, to recognize six locomotion modes, including
bicycle, bike, car, auto-rickshaw, bus, and train. We developed an android application that uses
three onboard sensors of the smartphone (i.e., accelerometer, magnetometer, and gyroscope) for
data collection. We selected 40 volunteers for collecting the data for a period of two months. The
volunteers were in the age group of 18 to 55 years, where 20 volunteers were men and 20 were
women. Each volunteer used an android based smartphone and installed the developed application.
A volunteer selected a locomotion mode from the provided menu and recorded measurements for
60 seconds. We set the sampling rate of all the sensors to 100 Hz to collect 6, 000 data points per
minute. In this experiment, the participants are directed to perform 200 repetitions for each mode.
The dataset is collected for a period of two months; thus, distinct readings are recorded for each
day. As a result, the created dataset consists of a total of 48, 000 (i.e., 40 participants ×6 modes ×200
repetitions) instances.

5.2 Challenges Observed During Study

The first challenge encountered during the study was the inconsistency in the availability of the de-
vices. This inconsistency is a matter of the fact that the student volunteers are at distinct locations.
Next, the limited mobility is another challenge of data scarcity. The volunteers collected only a
few samples of locomotion modes data. In addition, some volunteers collected data for a sub-set
of classes only. We also encountered the variation in the sensory data instances due to different

brands of smartphones.
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5.3 Criteria of Selecting Participants

We selected 100 participants for FL-based training from 128 users such that the observed challenges
are minimized. For example, we prefer those users as participants that are always available and
have sufficient amount of data against all the classes. The selection of the participants relies upon
a high level of heterogeneity, i.e., the users having different specifications of resources are preferred
over similar ones. Network bandwidth and residual energy also play a vital role in selecting the
participants. The participants can use Wi-Fi or cellular connectivity. The participants using the
same Wi-Fi are less preferred over distinct. The devices mainly were plugged-in are preferred over
the ones that are operating over batteries during training.

6 PERFORMANCE EVALUATION

This section describes the existing datasets, baseline techniques, implementation details, and vali-
dation metrics used to evaluate the performance of the proposed approach.

6.1 Datasets and Baseline Techniques

This section describes the existing SHL [41], HAR [1], MNIST [19], CIFAR-10 [16] datasets used dur-
ing experimental evaluations. SHL [41] dataset was collected from the onboard sensors of HUAWEI
Mate 9 smartphones to recognize locomotion modes of the users. HAR [1] is a smartphone-based
dataset used for recognizing six different activities. Furthermore, the broader applicability of
MNIST and CIFAR-10 for validating different FL-based approaches has motivated its consideration
in the experiment. MNIST is a handwritten digit recognition dataset comprising 60, 000 images of
digits from 0 − 9 in the training and 10, 000 images in the testing sub-datasets. CIFAR-10 dataset
comprises 60, 000 images of 10 different classes, where each class has 6, 000 images.

We considered the existing techniques [5, 20, 23, 31] as baselines, noted as HetroFL [5], Fed-
Prox [23], FedAvg [31], and Hermes [20], to evaluate and compare the performance of the proposed
approach. HetroFL [5] divided the heterogeneous participants into different clusters depending
upon the various level of complexity. FedProx [23] handled the problem of heterogeneity by using
a proximal term, which minimized the impact of local updates and restricted such updates closer to
the server’s model. FedAvg [31] is the benchmark and classical FL learning technique. Hermes [20]
is a communication efficient framework to handle the critical bottleneck of communication cost
and data heterogeneity.

6.2 Implementation Details

We implemented the proposed approach using Python with Tensorflow and Keras libraries. We
selected the window size of 20 to reduce the length of dataset instances from 6000 to 300 during
pre-processing in LMR and SHL datasets. We perform the random and disjoint partitioning of the
datasets into training and testing in ratio 70 : 30 using sklearn.model_selection.train_test_split ().

— Data distribution among the participants: We randomly split the datasets into 100 overlap-
ping partitions using LMR, SHL, HAR, MNIST, and CIFAR-10 datasets. The overlapped parti-
tioned datasets are allocated to the 100 participants. We divided both the testing and training
datasets for all the participants.

— Data variability: To induce the variability in the collected LMR and existing SHL, HAR,
MNIST, and CIFAR-10 datasets, we remove the training dataset assigned to each participant
with the randomly re-partitioned training datasets. We perform this exercise at random com-
munication rounds in increasing order. For example, during training for 100 communication
rounds, the data re-partitioning is performed at rounds like 10, 20, 30, and so on.
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— Models: Let C (X ) and F (X ) represent the convolutional and fully connected layers with X
filters and neurons, respectively. For MNIST and HAR datasets, we used the configuration
of the model as C (128) − C (64) − C (128) − C (256) − C (512) − F (classes_count ). C is a one-
dimensional convolutional layer (Conv1d) for sensory datasets, i.e., LMR, SHL, and HAR. For
the image-based MNIST and CIFAR-10 dataset, C is a two-dimensional convolutional layer
(Conv2d). The model for CIFAR-10 is ResNet-18 [10], whereas LMR and SHL used DeepZero
model [32].

We observe an error range of −1.5 to +0.95 in the estimated results; thus, we repeat each exper-
iment for 20 time and put the average values of the results in the entire experimental evaluations.
The optimal a_thres for MNIST, HAR, LMR, and SHL datasets are 99%, 96%, 93.5%, and 93%, respec-
tively. We determine the optimal a_thres using a survey of existing federated learning literature
and rigorous experimental evaluations.

6.3 Validation Metrics

This work used the following standard classification metrics: F1-score, accuracy, and leave-one-out
test validation. Let a given dataset consists of a set of A classes, and |A| represents the number
of classes. Let TPi , TNi FPi , and FNi are the true positive, true negative, false positive, and false
negative counts of a class i ∈ A, respectively. The accuracy and F1-score metrics are computed as

1
|A |
∑ |A |

i=1
T Pi+T Ni

T Pi+T Ni+F Pi+F Ni
and 1

|A |
∑ |A |

i=1
2×T Pi

2×T Pi+F Pi+F Ni
, respectively. We finally consider the leave-

one-out test metric that trains the model for all class labels except for one randomly chosen label.
However, the unseen class instance is also supplied for predicting the output during training.

6.4 Results

6.4.1 Impact of Datasets on the Convergence. This experiment aims to determine the impact of
datasets on the convergence of the proposed approach and considered baselines, i.e., HetroFL [5],
FedProx [23], FedAvg [31], and Hermes [20]. We considered 200 communication rounds with het-
erogeneous participants, where heterogeneity is introduced via randomly assigned local epochs.
We set the proximal term in FedProx as 0.01 and compressed the hidden layers to determine the
lightweight models. We induce data variability after 40 communication rounds.

Figure 7 illustrates the impact of datasets on existing (HetroFL, FedProx, FedAvg, Hermes) and
proposed approaches, where the proposed approach achieved the best accuracy. It is because of
using KD and appropriate handling of variability in the dataset. The learning curve presented in
Figure 7 depicts two-step behavior and exhibits a classic shape. As the conventional learning mech-
anism, the learning starts with a steep increment in the performance until it reaches a monotonic
plateaued value after 20th communication rounds. Next, the accuracy grows with more communi-
cation rounds. The convergence of the approaches on the MNIST dataset is achieved at fewer com-
munication rounds and marginal improvement afterward, as shown in Figure 7(a). It is due to the
balanced and sufficient number of instances for all the classes in MNIST. FedAvg achieved slower
convergence with minimal accuracy due to incompetence in handling heterogeneity among the
participants and dataset variability. Hermes achieved comparable performance to the proposed ap-
proach due to a similar strategy for addressing the heterogeneity among the participants through
personalization. However, it did not incorporate a mechanism to tackle variability and did not use
KD; thus, it lags in the accuracy.

Observation: The first observation from the result is that the convergence curve of FL-based train-

ing follows a traditional pattern, where learning starts with steep steps, followed by monotonically

plateaued performance. The next observation is the positive effect of using the technique to handle
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Fig. 7. Illustration of impact of datasets on the convergence of proposed approach, HetroFL, FedProx, FedAvg,

and Hermes.

heterogeneity among the participants and tackling dataset variability. The involvement of KD during

training also plays a crucial role in improving performance.

6.4.2 Performance of the Approach. The objective of this experiment is to evaluate and compare
the performance of the proposed approach with considered baselines. The experimental setup is
similar to the previous result and the validation metrics as given in Section 6.3. We considered
all datasets, where variability is induced at an interval of 40 communication rounds. We set the
communication rounds to 200.

Table 1 illustrates the performance of different approaches on considered datasets, including
HetroFL, FedProx, FedAvg, Hermes, and the proposed. FedAvg achieves the lowest performance
among FL-based approaches due to the absence of a mechanism to handle heterogeneity among
participants and dataset variability. The proposed approach outperforms the existing approaches in
terms of accuracy and F1-score on all the considered datasets. The approach involved a mechanism
for handling heterogeneity among the participants simultaneously with effective management of
dataset variability. Contrastively, HetroFL, FedProx, and Hermes proposed the approach to manage
heterogeneity among the participants without considering the dataset variability. We also observed
that the F1-score is greater than the accuracy. The statistical heterogeneity among the participants’
datasets makes false-negative and false-positive more crucial than true-negative and true-positive,
which appeared in the form of higher F1-score. The achieved performance on the MNIST dataset
appears to be the highest among all the datasets due to the availability of sufficient data instances.

Observation: An interesting observation from the result is that effectively managing heterogeneity

among the participants with the dataset variability is crucial for attaining high-order performance.

Additionally, a large number of training data instances improves the performance.

6.4.3 Impact of Learning Rate. This experimental evaluation studies the impact of the learning
rate on the performance of the proposed approach. We used MNIST, HAR, CIFAR-10, and LMR
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Table 1. An Illustration of Global Performance Achieved by the Different Approaches, i.e., HetroFL,

FedProx, FedAvg, Hermes, and Proposed, on Considered Datasets (MNIST, HAR, CIFAR-10, LMR, and

SHL)

Datasets MNIST HAR CIFAR-10 LMR SHL

Approach Acc. (%) F1 (%) Acc. (%) F1 (%) Acc. (%) F1 (%) Acc. (%) F1 (%) Acc. (%) F1 (%)

HetroFL 98.12 98.53 93.27 93.79 91.79 92.23 90.81 91.73 89.71 90.45

FedProx 97.90 98.31 92.90 93.23 91.41 91.87 90.21 91.10 89.23 91.03

FedAvg 97.17 97.44 91.11 91.59 90.73 91.30 89.47 90.13 88.66 89.35

Hermes 98.23 98.71 94.19 94.62 92.31 92.84 90.07 91.14 89.83 90.67

Proposed 99.14 99.37 96.97 97.41 94.71 95.19 93.83 94.21 93.21 93.91

Acc.= Accuracy and F1 = F1-score.

datasets and restricted the communication round to 10. We bound the round as the approach con-
verges for all the learning rates at the higher communication rounds. The parameters are the same
as discussed in Section 6.4.1 and data variability induced after 40 communication rounds.

Figure 8 illustrates the impact of different learning rates on the performance of the proposed
approach using considered datasets (MNIST, HAR, CIFAR-10, and LMR). The results depicted the
efficacy of the approach on smaller values of the learning rate (e.g., 0.001). The model converged
to sub-optimal weights, or the training became unstable for a higher learning rate. The approach
converges faster for the MNIST dataset; thus, we achieved accuracy beyond 90% for all the datasets
at different learning rates. However, we obtained the lowest accuracy for the learning rate = 0.010
due to faster convergence. The approach achieved accuracy following a linear curve for MNIST,
whereas other datasets have shown a plateaued behavior due to slow convergence.

Observation: We observed from the result that the learning rate plays a crucial role in ensuring the per-

formance of the approaches. If we can train the model for a large number of communication rounds, a

small learning rate is beneficial. Contrarily, if limited communication rounds are available for train-

ing the model, it is helpful to use a higher learning rate. This work considered a smaller value of

learning rate (i.e., 0.001) as we are using 200 communication rounds.

6.4.4 Impact of Dataset Variability. This experiment aims to highlight and compare the impact
of dataset variability on the performance of Hermes and proposed approaches. We introduced
dataset variability after 10 − 60 communication rounds to study its impact. Let V1, . . . ,V6 denote
the level of dataset variability introduced at communication rounds 10, . . . , 60, respectively.

Table 2 illustrates the impact of dataset variability on the achieved accuracy of the proposed
approach. We diversify the dataset variability by shuffling the participants’ dataset after commu-
nication rounds 10, 20, 30, 40, 50, and 60, using the technique discussed in Section 6.2. The level
of dataset variability is highest when the dataset of the participants are shuffled after 10 com-
munication rounds (V1) and lowest for shuffling after 60 (V6). The result demonstrated the rapid
increment in the accuracy upon decreasing the level of data variability. It is because when the
model is trained for many communication rounds on a specific dataset, it learnt more refined fea-
tures. The impact of lower dataset variability is minimal on the performance as the model gets
sufficient time to learn well-refined features at such variability. The result in Table 2 demonstrated
that the approach outperforms Hermes. It is because the proposed approach involved the pruned
layers whenever dataset variability is observed during training. We can make similar observations
for F1-scores, as shown in Table 2. The achieved inference accuracy and F1-score are lower for SHL
than LMR due to the imbalanced and more number of classes in SHL.

Observation: We observed from the result that the dataset variability plays an adversarial role in

achieving the desired performance. Therefore, effective handling of the dataset variability is requisite.
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Fig. 8. Impact of learning rate on the performance of the approach on different datasets at communication

rounds = 10.

Table 2. Impact of Dataset (LMR and SHL) Variability on Accuracy and F1-score on Different Approaches

Metrics Accuracy (%) F1-score (%)

Approach→
Variability ↓ Hermes Proposed Hermes Proposed

L
M

R
d

a
ta

se
t V1 86.45 92.32 87.79 92.81

V2 88.71 92.68 90.06 93.21
V3 89.23 93.17 90.72 93.79
V4 90.07 93.83 91.14 94.21

V5 90.23 93.97 91.29 94.87
V6 91.07 94.07 91.85 95.17

Metrics Accuracy (%) F1-score (%)

Approach→
Variability ↓ Hermes Proposed Hermes Proposed

S
H

L
d

a
ta

se
t V1 85.71 91.42 86.93 92.17

V2 87.73 92.03 89.19 92.71
V3 88.76 92.43 89.81 93.29
V4 89.84 93.21 90.67 93.95

V5 89.91 93.41 91.21 94.31
V6 90.46 93.82 91.73 94.89

Additionally, the proposed approach maintains accuracy ≈ 90% for SHL and LMR datasets even at

high-order variability (V1). Moreover, the achieved accuracy > 93% for the datasets at the medium

level of the dataset variability (V4). Therefore, the experiments presented in this article used such a

medium level of variability.

6.4.5 Impact of Model Sizes. This experiment studies the impact of different size models on the
performance of heterogeneous participants. We divided the 100 available participants into eight
different types, denoted as T1 − T8. The processing capacity of participant type T1 is the lowest
and highest for T8. We obtained three types of models from the DeepZero models [32], i.e., small
model (with three layers of CNN), adequate model (with all five layers of CNN), and large model
(with seven layers of CNN).

Figure 9(a1) illustrates the accuracy of different considered models on the LMR dataset. It
shows the large-size model in the proposed approach gives higher accuracy than the small and
adequate size models for all categories of devices. It is because the small model is a lightweight
for all the devices that inefficiently utilize the available resources. Similarly, the adequate size
model did not exploit the colossal resources of T6 − T8. However, using the large-size model on
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Fig. 9. Illustration of the accuracy, F1-score, and leave-one-out test of the proposed approach on different

model sizes.

all the participant devices requires extra communication costs and memory, which may not be
available. The approach resizes the model based on the limited resources of T1 and directly uses
the adequate-size model for T5. The higher category of devices have more resources and therefore
achieves higher accuracy on large-size model. The results in Figure 9(a2) give less accuracy than
Figure 9(a1) for all the models in the proposed approach and categories of participant devices
because of the SHL dataset that has imbalanced classes. Figure 9(b) illustrates the F1-score for val-
idating the preference of different models in the proposed approach. The class distribution in the
collected LMR dataset is similar; therefore, the true positives and true negatives are important and
false negatives and false positives are not crucial. The results in Figure 9(b1) illustrate the similar
behavior as shown in Figure 9(a1). However, it is not true for Figure 9(b2), where false negatives
and false positives are crucial and give less accuracy. Finally, we performed experiments using a
leave-one-out validation metric where instances of one class are not considered during training.
Figure 9(c) illustrates the results of the leave-one-out validation metric where instances of one
class are not considered during training. The results illustrate that the difference of the accuracy
in Figure 9(a1) and Figure 9(c1) is less for colossal resources devices T8 than insufficient resource
devices T1. It is because the colossal resource devices train more successfully than insufficient
ones.

6.4.6 Impact of Early Halting. The objective of this experiment is to illustrate the impact of the
early halting on the performance of participants with colossal and insufficient resources on LMR
dataset. We also demonstrate the reduction in floating-point operations (FLOPs) using the early
halting.

We considered the participants of category T7 to describe the impact of the early halting mech-
anism on colossal resources participants. Table 3 illustrates that significant improvement in ac-
curacy and F1-score of Mo is observed up to 20 epochs of simultaneous training with untrained
large-size Mi (model on participant pi ) under the guidance of trained Mi . After that, we observe
a minor improvement in the accuracy and F1 score of Mo . However, the required resources for
further training increases sharply. It indicates that the training of untrained Mi with Mo do not
improve performance despite consuming enormous resources (FLOPs). Therefore, we can halt the
training of untrained Mi at 20 epochs. Next, we considered participant type T3 to study the role of
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Table 3. Impact of Early Halting on T7 Participants

Epochs 10 15 20 25 30 35 40

Accuracy (%) 86.47 90.02 94.23 94.41 94.76 94.81 95.23

F1-score (%) 87.92 92.31 95.19 95.03 95.17 95.29 96.17

FLOPs per
round (×1013)

2.53 2.77 2.93 3.09 3.29 3.56 3.73

Table 4. Impact of Early Halting on T3 Participants

Epochs 10 15 20 25 30 35 40

Accuracy (%) 74.39 79.89 86.43 90.72 91.22 91.53 91.79

F1-score (%) 76.07 81.24 87.19 92.19 92.37 91.83 93.11

FLOPs per
rounds (×1013)

1.17 1.23 1.41 1.54 1.71 1.82 1.91

Table 5. Impact of AGU and SGU on the Communication Rounds to Achieved Given Accuracy (x%)

Technique
Communication rounds to reach x% accuracy on the dataset

MNIST (98%) HAR (96%) CIFAR-10 (92%) LMR (91%) SHL (91%)

AGU (T = 0.8 ×T ) 8 41 70 57 79

AGU (T = 0.5 ×T ) 6 37 67 53 73

AGU (T = 0.3 ×T ) 9 39 69 55 77

SGU 11 54 84 66 91

T is time required for a communication round and T is the time threshold.

early halting on insufficient resources participants. Table 4 depicts the performance improvement
up to 25 epochs during training of Mo under guidance of lightweight Mi is rapid. After that, the
performance improvement is low, but resource consumption is high. Thus, we halt the training of
Mo for type T3 participants at 25 epochs.

6.4.7 Ablation Studies: Aperiodic Global Update, Knowledge Distillation, and Pruning. This ex-
periment aims to determine the impact of aperiodic global updates, knowledge distillation, and
pruning on the communication rounds for convergence and performance of the proposed ap-
proach. Similar to previous experiments, we induce dataset variability after 40 communication
rounds. During the experiment, we obtained time for one communication round T as 14, 27, 138,
117, and 128 minutes for MNIST, HAR, CIFAR-10, LMR, and SHL, respectively. We use the time
threshold T as a fractional multiple ofT , i.e., 0.3 ×T , 0.5 ×T , and 0.8 ×T and set dropout to 0.25,
0.50, and 0.75 for pruning personalized layers.

Table 5 illustrates the impact of Aperiodic Global Updates (AGU) and Synchronous Global

Updates (SGU) on the communication rounds to reach the x% accuracy threshold. We used
three variants of AGU, where we set T = 0.8 × T , 0.5 × T , and 0.3 × T . We observed that the
AGU requires fewer communication rounds to reach the accuracy threshold on any considered
datasets. It is because AGU offers some faster participant devices to perform multiple local
training in between a communication round. We also observed the lowest communication round
is possible when T = 0.5 × T . It is because at a lower value of T only a few participants are
involved in the intermediate aggregations, which results in inferior quality of aggregated WPM.
On the other hand, the increment in T allowed more devices to participate in intermediate
aggregation, which generated precise aggregated WPM. However, beyond the ratio of 0.5, the
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Table 6. Impact of using KD on Communication Rounds (CR) for

Convergence and Accuracy (Acc)

Datasets→ MNIST HAR CIFAR-10 LMR SHL

CR
Without KD 17 72 129 117 137

With KD 10 48 74 65 92

Acc.

(in %)

Without KD 97.22 91.27 90.43 89.41 88.22
With KD 99.14 96.97 94.71 93.83 93.21

Table 7. Impact of Repersonalization and Pruning (Dropout) on Accuracy

A
cc

u
ra

cy
(i

n
%

)

Dropout

(Pruning)
Repersonalization

Dataset

MNIST HAR CIFAR-10 LMR SHL

0.25
Without 99.14 94.73 87.82 86.57 84.63

With 99.14 96.97 94.71 93.83 93.21

0.50
Without 92.37 84.41 77.35 72.23 64.51

With 92.37 88.73 83.23 78.29 72.38

0.75
Without 80.31 61.79 54.64 52.67 39.78

With 80.31 70.26 62.24 56.39 44.31

number of participants involved in the intermediate aggregation increases, but the aggregation
is performed only once between two global iterations. The participant devices with colossal
resources get the updated WPMs quickly but wait for the next global iteration. Therefore, in
this work, we select T = 0.5 × T in all the experiments. Similarly, Table 6 depicts the impact of
knowledge distillation on communication rounds and the accuracy of the proposed approach. We
observed that knowledge distillation from the large-size model to the lightweight improves the
performance and reduces the communication rounds.

Further, Table 7 illustrates the impact of pruning and repersonalization on different datasets.
To perform personalized pruning on the participants, we adopted the dropout mechanism and set
three different values, i.e., 0.25, 0.50, and 0.75. As expected, the highest accuracy is obtained at the
dropout of 0.25. We used the dropout of 0.25 in the entire presented experiment. Moreover, we ob-
served that repersonalization improves performance on HAR, CIFAR-10, LMR, and SHL datasets. It
is because we induce data variability after 40 communication rounds, which hampers performance
if not handled appropriately. We do not observe the impact of the repersonalization on the MNIST
dataset at its converses before the 20 communication rounds, where data variability is induced.

7 CONCLUSION

This article proposed a model personalization-based federated learning approach for heteroge-
neous devices and networking resources. The approach also handled the variability in the local
datasets of the participants. Unlike the existing work, the proposed approach trained the model
on participant devices with resource heterogeneity and dataset variability. The central server ini-
tiated the approach and constructed a base model. Next, the proposed approach simultaneously
learnt the personalized model and handled the dataset variability. We further proposed an early
halting approach for faster training of the resized model, which fits on the insufficient and colos-
sal resource devices. We finally proposed an aperiodic global update approach for aggregation of
WPM at the server. We also did a real-world study to evaluate feasibility and performance of the
proposed work.
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We found the following conclusions from this work: federated learning work successfully only
when the devices and networking resources are considered simultaneously with dataset variability;
if the dataset is imbalanced then the selection of the base model must be favorable for insufficient
resource devices. The proposed approach considers the heterogeneity in three resources (memory,
processing power, and bandwidth). We will consider the heterogeneity in other parameters (such as
data sources and sampling rate) in the future. We also plan to consider different types of challenges
in datasets, such as imbalanced, noisy, and unseen classes.
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