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1 INTRODUCTION

Let 𝐺 be a separable locally compact group and 𝜋 an irreducible unitary representation of 𝐺 on a separable Hilbert space
. Let() denote the algebra of bounded operators on. An inductive algebra is a weakly closed abelian subalgebra
of () that is normalized by 𝜋(𝐺), that is, 𝜋(𝑔)𝜋(𝑔)−1 =  for each 𝑔 ∈ 𝐺. If we wish to emphasize the dependence
on 𝜋, we will use the term 𝜋-inductive algebra. Amaximal inductive algebra is a maximal element of the set of inductive
algebras, partially ordered by inclusion.
The identification of inductive algebras can shed light on the possible realizations of  as a space of sections of a

homogeneous vector bundle (see e.g., [8–12]). For self-adjoint maximal inductive algebras, there is a precise result known
asMackey’s imprimitivity theorem, as explained in the introduction to [9]. Inductive algebras have also found applications
in operator theory (see e.g., [4, 5]).
In [6], it was shown that finite-dimensional inductive algebras for a connected group are trivial. However, the title of

[6] is somewhat misleading, as finite groups can have non-trivial finite-dimensional inductive algebras.
In this note, we show that inductive algebras for a compact group are self-adjoint. This is significant because, in general,

the classification of self-adjoint inductive algebras is easier than the classification of all inductive algebras. This is because
the methods of spectral theory are available only in the former case. Also, unlike in the classification work cited above,
we do not need to assume maximality.
In Section 2, we prove some results about subalgebras of 𝐿∞(𝑋, 𝜇), which will be used in the proof of ourmain theorem,

but which are also of independent interest.

2 SUBALGEBRAS OF 𝑳∞

Theorem 1. Let (𝑋, 𝜇) be a measure space. The algebra 𝐿∞(𝑋, 𝜇) is finite-dimensional if and only if all of its subalgebras
are self-adjoint.

Proof. Assume first that 𝐿∞(𝑋, 𝜇) is finite dimensional. Observe that under this hypothesis, if 𝑓 ∈ 𝐿∞(𝑋, 𝜇), then there
exists a simple function 𝑠 such that 𝑓 = 𝑠 almost everywhere (see [2, Proposition 3.4.2] and [7, Section 13.3, Corollary 6]).
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Let  ⊆ 𝐿∞(𝑋, 𝜇) be a subalgebra. Let {𝑓1, 𝑓2, … , 𝑓𝑛} be a basis for , and choose simple functions 𝑠1, 𝑠2, … , 𝑠𝑛 such
that 𝑓𝑗 = 𝑠𝑗 (a.e.), 𝑗 = 1, 2, … , 𝑛. Define a map 𝐬 ∶ 𝑋 → ℂ𝑛 by

𝐬(𝑥) = (𝑠1(𝑥), 𝑠2(𝑥), … , 𝑠𝑛(𝑥)).

Since simple functions attain only finitely many values, 𝐬(𝑋) is finite, and we may write

𝐬(𝑋) ⧵ {0} = {𝐯1, 𝐯2, … , 𝐯𝑚},

for some𝑚 ∈ ℕ.
Put 𝐴0 = 𝐬−1(0) and

𝐴𝑘 = 𝐬−1(𝐯𝑘), 𝑘 = 1, 2, … ,𝑚.

Then {𝐴𝑘}
𝑚
𝑘=0

are disjoint, and

𝑋 =

𝑚⋃
𝑘=0

𝐴𝑘.

Let 𝑣𝑘𝑗 denote the 𝑗-th component of the vector 𝐯𝑘. Observe that if 𝑥 ∈ 𝐴𝑘 then 𝑠𝑗(𝑥) = 𝑣𝑘𝑗 , 𝑗 = 1,… , 𝑛, 𝑘 = 1,… ,𝑚, that
is, each 𝑠𝑗 is constant on each 𝐴𝑘. Therefore,

𝑠𝑗 ∈ span{𝜒𝐴𝑘 }
𝑚
𝑘=1

, 𝑗 = 1,… , 𝑛.

Therefore ⊆ span{𝜒𝐴𝑘 }
𝑚
𝑘=1

.
Fix distinctℎ, 𝑘 ∈ {1, … ,𝑚}. Since 𝐯ℎ ≠ 𝐯𝑘, there exists 𝑗 = 𝑗(ℎ, 𝑘) such that 𝑣ℎ𝑗 ≠ 𝑣𝑘𝑗 . Since 𝐯ℎ ≠ 0, there exists 𝑙 = 𝑙(ℎ)

such that 𝑣ℎ𝑙 ≠ 0. Observe that

𝜑ℎ𝑘 = (𝑠𝑗 − 𝑣𝑘𝑗)𝑠𝑙 ∈ .
If 𝑥 ∈ 𝐴𝑘, then

𝜑ℎ𝑘(𝑥) = (𝑠𝑗(𝑥) − 𝑣𝑘𝑗)𝑠𝑙(𝑥)

= (𝑣𝑘𝑗 − 𝑣𝑘𝑗)𝑣𝑘𝑙

= 0,

and if 𝑥 ∈ 𝐴ℎ, then

𝜑ℎ𝑘(𝑥) = (𝑠𝑗(𝑥) − 𝑣𝑘𝑗)𝑠𝑙(𝑥)

= (𝑣ℎ𝑗 − 𝑣𝑘𝑗)𝑠𝑙(𝑥)

= (𝑣ℎ𝑗 − 𝑣𝑘𝑗)𝑣ℎ𝑙

≠ 0.

Put

𝜓ℎ𝑘 =
𝜑ℎ𝑘

(𝑣ℎ𝑗 − 𝑣𝑘𝑗)𝑣ℎ𝑙
.

Then, 𝜓ℎ𝑘 ∈ , 𝜓(𝑥) = 1 if 𝑥 ∈ 𝐴ℎ and 𝜓(𝑥) = 0 if 𝑥 ∈ 𝐴𝑘.
Since 𝜒𝐴ℎ =

∏
𝑘≠ℎ 𝜓ℎ𝑘, it follows that 𝜒𝐴ℎ ∈ , ℎ = 1,… ,𝑚. Therefore = span{𝜒𝐴𝑘 }

𝑚
𝑘=1

. Therefore is self-adjoint.
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Assume now that 𝐿∞(𝑋, 𝜇) is infinite dimensional. We claim first that 𝑋 has a sequence {𝐸𝑛}∞𝑛=1 of disjoint measurable
subsets of positive measure. Indeed, there exists a real-valued function 𝑓 ∈ 𝐿∞(𝑋, 𝜇) such that

−∞ < ess inf 𝑓 < ess sup 𝑓 < ∞.

Put

𝑐 =
ess inf 𝑓 + ess sup 𝑓

2
.

Let

𝑌 = {𝑥 ∈ 𝑋|𝑓(𝑥) > 𝑐}, and 𝑍 = {𝑥 ∈ 𝑋|𝑓(𝑥) ≤ 𝑐}.

Then 𝑌 and 𝑍 are disjoint measurable sets, and by the definitions of essential supremum and essential infimum 𝜇(𝑌) > 0

and 𝜇(𝑍) > 0. Since

𝐿∞(𝑋) ≅ 𝐿∞(𝑌) ⊕ 𝐿∞(𝑍),

either 𝐿∞(𝑌) or 𝐿∞(𝑍) must be infinite dimensional, say dim𝐿∞(𝑍) = ∞. Let 𝐸1 = 𝑌. We may iterate the previous
argument with 𝑍 in place of 𝑋 to produce the required sequence.
Choose points 𝑒𝑛 ∈ 𝐸𝑛, and let consist of all 𝑓 ∈ 𝐿∞(𝑋, 𝜇) which are constant on each 𝐸𝑛, 𝑛 = 1, 2, … , and

lim
𝑚→∞

𝑓(𝑒2𝑚+1) − 𝑓(𝑒1)

(1∕𝑚)
= 𝑖 lim

𝑚→∞

𝑓(𝑒2𝑚) − 𝑓(𝑒1)

(1∕𝑚)
.

It is easy to check that is a subalgebra of 𝐿∞(𝑋, 𝜇). Now, define 𝑓 ∶ 𝑋 → ℂ by

𝑓(𝑥) =

⎧⎪⎪⎨⎪⎪⎩

0 if 𝑥 ∈ 𝐸1,

1

𝑛
if 𝑥 ∈ 𝐸𝑛, 𝑛 even,

𝑖

𝑛
if 𝑥 ∈ 𝐸𝑛, 𝑛 > 1 odd.

Then, 𝑓 ∈  but 𝑓 ∉ . Therefore is not self-adjoint. □

3 COMPACT GROUPS

Theorem 2. Let 𝐺 be a compact group and 𝜋 an irreducible unitary representation of 𝐺 on a Hilbert space. If ⊆ ()

is a 𝜋-inductive algebra, then is self-adjoint.

Proof. By the Peter–Weyl theorem, is finite dimensional.
Let denote the set of nilpotent elements in (the nilradical of). Let

 = {𝑥 ∈  | 𝑇𝑥 = 0, ∀𝑇 ∈  }.

By (a trivial case of) Engel’s theorem [3, Section 3.3], ≠ 0. Observe that is normalized by𝜋(𝐺), so is𝜋(𝐺)-invariant.
However, since 𝜋 is irreducible, it follows that = , whence = 0.
Let∗ denote the space of linear functionals on. For each 𝜆 ∈ ∗, let

𝜆 = {𝑣 ∈  | 𝑇𝑣 = 𝜆(𝑇)𝑣 for all 𝑇 ∈ },
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and

Λ = {𝜆 ∈ ∗ |𝜆 ≠ 0}.

Then Λ is a finite set.
Since is abelian, and = 0, the Jordan–Chevalley decomposition [3, Section 4.2] implies that

 =
⨁
𝜆∈Λ

𝜆. (1)

Let ⟨⋅, ⋅⟩ denote the inner product of. There exists an inner product ⟨⋅, ⋅⟩1 on such that𝜆 and𝜇 are orthogonal
with respect to ⟨⋅, ⋅⟩1 if 𝜆 ≠ 𝜇. Let 𝜎 denote the Haar probability measure on the compact group 𝐺. By Schur’s lemma (see
[1]), there exists a constant 𝑐 such that

⟨𝑣, 𝑤⟩ = 𝑐 ∫
𝐺

⟨𝜋(𝑔)𝑣, 𝜋(𝑔)𝑤⟩1 𝑑𝜎.

If 𝑔 ∈ 𝐺 and 𝜆 ∈ ∗, define 𝑔𝜆 ∶  → ℂ by

𝑔𝜆(𝑇) = 𝜆(𝜋(𝑔)−1𝑇𝜋(𝑔)), 𝑇 ∈ .
This defines an action of 𝐺 on∗, which preserves Λ.
Note that for any 𝑔 ∈ 𝐺, 𝜆 ∈ ∗ and 𝑣 ∈ 𝜆, 𝜋(𝑔)𝑣 ∈ 𝑔𝜆. Also, 𝜆 ≠ 𝜇 implies 𝑔𝜆 ≠ 𝑔𝜇. Therefore, if 𝜆 ≠ 𝜇, 𝑣 ∈ 𝜆

and 𝑤 ∈ 𝜇, then

⟨𝑣, 𝑤⟩ = 𝑐 ∫
𝐺

⟨𝜋(𝑔)𝑣, 𝜋(𝑔)𝑤⟩1 𝑑𝜇
= 0.

Therefore𝜆 and𝜇 are orthogonal with respect to ⟨⋅, ⋅⟩ if 𝜆 ≠ 𝜇.
Observe that if 𝜆 ∈ Λ, then 𝜆 is multiplicative. Indeed, if 𝜆 ∈ Λ, then there exists 𝑣 ∈ 𝜆 ⧵ {0}. Therefore, if 𝑇1, 𝑇2 ∈ ,

then

𝜆(𝑇1𝑇2)𝑣 = 𝑇1𝑇2𝑣 = 𝑇1(𝜆(𝑇2)𝑣) = 𝜆(𝑇2)𝑇1𝑣 = 𝜆(𝑇2)𝜆(𝑇1)𝑣.

Since 𝑣 ≠ 0, it follows that 𝜆(𝑇1𝑇2) = 𝜆(𝑇1)𝜆(𝑇2).
It follows that the map  ∶  → 𝐿∞(Λ) (with respect to counting measure) defined by

[(𝑇)](𝜆) = 𝜆(𝑇).

is an algebra homomorphism.
Since Λ is finite, 𝐿∞(Λ) is finite dimensional, and so () is self-adjoint by Theorem 1.
Let 𝑇 ∈ . Then there exists 𝑇1 ∈  such that (𝑇1) = (𝑇), that is, 𝜆(𝑇1) = 𝜆(𝑇) for all 𝜆 ∈ Λ. We claim that 𝑇1 = 𝑇∗,

that is, that

⟨𝑇𝑣,𝑤⟩ = ⟨𝑣, 𝑇1𝑤⟩ for all 𝑣, 𝑤 ∈ .

By Equation (1), it suffices to check this assuming that 𝑣 ∈ 𝜆 and 𝑤 ∈ 𝜇 for 𝜆, 𝜇 ∈ Λ.
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If 𝜆 = 𝜇, then

⟨𝑇𝑣,𝑤⟩ = ⟨𝜆(𝑇)𝑣, 𝑤⟩
= ⟨𝑣, 𝜆(𝑇)𝑤⟩
= ⟨𝑣, 𝑇1𝑤⟩.

If 𝜆 ≠ 𝜇, then ⟨𝑣, 𝑤⟩ = 0, and so

⟨𝑇𝑣,𝑤⟩ = ⟨𝜆(𝑇)𝑣, 𝑤⟩
= 0, and

⟨𝑣, 𝑇1𝑤⟩ = ⟨𝑣, 𝜇(𝑇1)𝑤⟩
= 0.

□

Corollary 3. Let 𝐺 be a finite group and 𝜋 an irreducible unitary representation of 𝐺 on a Hilbert space. If ⊆ () is
a 𝜋-inductive algebra, then is self-adjoint.

In view of Raghavan’s theorem [6], it might appear that Corollary 3 may be used whenever Theorem 2 is applicable.
However, that is not the case. Indeed, if 𝐺 = O(2), the group of orthogonal 2 × 2 matrices, then 𝐺 is compact and not
abelian, but its group of components is abelian. If 𝜋 is an irreducible representation of 𝐺 of dimension greater than one,
then Theorem 2 implies that all 𝜋-inductive algebras are self-adjoint, but Corollary 3 is not applicable.
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