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1 | INTRODUCTION

Let G be a separable locally compact group and 7 an irreducible unitary representation of G on a separable Hilbert space
H. Let B(H) denote the algebra of bounded operators on H. An inductive algebra is a weakly closed abelian subalgebra .A
of B(H) that is normalized by 7(G), that is, 7(g).A7(g)~! = A for each g € G. If we wish to emphasize the dependence
on 7, we will use the term 7z-inductive algebra. A maximal inductive algebra is a maximal element of the set of inductive
algebras, partially ordered by inclusion.

The identification of inductive algebras can shed light on the possible realizations of H as a space of sections of a
homogeneous vector bundle (see e.g., [8-12]). For self-adjoint maximal inductive algebras, there is a precise result known
as Mackey’s imprimitivity theorem, as explained in the introduction to [9]. Inductive algebras have also found applications
in operator theory (see e.g., [4, 5]).

In [6], it was shown that finite-dimensional inductive algebras for a connected group are trivial. However, the title of
[6] is somewhat misleading, as finite groups can have non-trivial finite-dimensional inductive algebras.

In this note, we show that inductive algebras for a compact group are self-adjoint. This is significant because, in general,
the classification of self-adjoint inductive algebras is easier than the classification of all inductive algebras. This is because
the methods of spectral theory are available only in the former case. Also, unlike in the classification work cited above,
we do not need to assume maximality.

In Section 2, we prove some results about subalgebras of L* (X, u), which will be used in the proof of our main theorem,
but which are also of independent interest.

2 | SUBALGEBRAS OF L*

Theorem 1. Let (X, i) be a measure space. The algebra L (X, u) is finite-dimensional if and only if all of its subalgebras
are self-adjoint.

Proof. Assume first that L*(X, u) is finite dimensional. Observe that under this hypothesis, if f € L*(X, u), then there
exists a simple function s such that f = s almost everywhere (see [2, Proposition 3.4.2] and [7, Section 13.3, Corollary 6]).
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Let A C L®(X, u) be a subalgebra. Let {f;, f,, ..., f,} be a basis for .4, and choose simple functions sy, s, ..., §,, such
that f; = s; (a.e.), j = 1,2,...,n. Defineamaps : X - C" by

s(x) = (81(), 52(%), ... , (X))

Since simple functions attain only finitely many values, s(X) is finite, and we may write

s(X) \ {0} = {VI’VZ’ ’Vm}a

for some m € N.
Put A, = s~!(0) and

A =s71(vp), k=1,2,..,m.

Then {A.}/ ) are disjoint, and

m
X =] A
k=0

Let vy denote the j-th component of the vector v;.. Observe that if x € A, then sj(x) =, J=1,..,m, k=1,..,m,that
is, each s J is constant on each Aj. Therefore,

Sj € Span{){Ak}lela ] = 1, ey, N

Therefore A C span{y4, },_ ;-
Fixdistinct h, k € {1, ..., m}. Since vj, # vy, there exists j = j(h, k) such thatvy,; # vy;. Since v, # 0, there exists | = I(h)
such that vy; # 0. Observe that

Pne = (sj — Ukj)s; € A.
If x € Ag, then

Pric(x) = (5;(x) = vgj)sy(x)
= (Uj — U)ok
= 0’

and if x € A, then

Pnic(x) = (5;(x) = vk )si(x)
= (Upj — vk Isi(x)
= (bpj — Ukj)ni
# 0.

Put

Phk
(Vpj = Vi)V

Yk =

Then, l,bhk €A, zp(x) =1lifx € Ap and l,b(x) =0ifx € Ag.
Since x4, = Hk#l Yni, it follows that x4, € A, h = 1,..., m. Therefore A = span{y 4, Zl=1' Therefore A is self-adjoint.
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Assume now that L*(X, u) is infinite dimensional. We claim first that X has a sequence {E,,},” , of disjoint measurable
subsets of positive measure. Indeed, there exists a real-valued function f € L*(X, u) such that

—oo < essinf f < esssup f < oo.

Put

essinf f + esssup f
c= 2 .

Let
Y={xeX|f(x)>c}, and Z={xeX|f(x)<c}

Then Y and Z are disjoint measurable sets, and by the definitions of essential supremum and essential infimum u(Y) > 0
and u(Z) > 0. Since

LYX) = L=(Y) @ L*(2),

either L*(Y) or L*(Z) must be infinite dimensional, say dim L*(Z) = . Let E; = Y. We may iterate the previous
argument with Z in place of X to produce the required sequence.
Choose points e,, € E,,, and let A consist of all f € L*(X, u) which are constant on each E,,, n = 1,2, ..., and

. f(e2m+1)_f(el)_. . fleyn) — fler)
we A e ()

It is easy to check that A is a subalgebra of L*(X, u). Now, define f : X — C by

0 ifx€E,
fx) = % if x € E,, n even,
% ifx € E,,n>1odd.
Then, f € A but T ¢ A. Therefore A is not self-adjoint. O

3 | COMPACT GROUPS

Theorem 2. Let G be a compact group and 7 an irreducible unitary representation of G on a Hilbert space H. If A C B(H)
is a w-inductive algebra, then A is self-adjoint.

Proof. By the Peter-Weyl theorem, H is finite dimensional.
Let A denote the set of nilpotent elements in A (the nilradical of A). Let

K={xeH|Tx=0, VT €N}
By (a trivial case of) Engel’s theorem [3, Section 3.3], K # 0. Observe that A is normalized by 7(G), so K is 7(G)-invariant.
However, since 7 is irreducible, it follows that X = H, whence N = 0.

Let A* denote the space of linear functionals on A. For each 4 € A", let

Hy={veH|To=AT)v forallT € A},
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and

A={l€ A% | H; +0}.

Then A is a finite set.
Since A is abelian, and N = 0, the Jordan-Chevalley decomposition [3, Section 4.2] implies that

H =P H,. 1)

e

Let (-, -) denote the inner product of H. There exists an inner product (-, -); on H such that H; and H,, are orthogonal
with respect to (-, -); if 1 # u. Let o denote the Haar probability measure on the compact group G. By Schur’s lemma (see
[1]), there exists a constant ¢ such that

(wow) =c / (@), (g)w), do.
G

Ifge Gand A € A% definegl : A - Cby
gAT) = A(x(g)"'Tn(g)), T € A.
This defines an action of G on .A*, which preserves A.

Note that for any g € G, 1 € A" and v € H;, m(g)v € Hy,. Also, 4 # u implies g4 # gu. Therefore, if A # u, v € H,
andw € H,, then

0.w) = [ (xew. m@w): du
G
=0.
Therefore 1, and H,, are orthogonal with respect to (-, ) if 1 # u.
Observe thatif 1 € A, then 4 is multiplicative. Indeed, if A € A, then there exists v € H; \ {0}. Therefore, if T;,T, € A,
then

AT Tr)v = T1Tov = T(MTL)v) = AT,)Tv = AT)A(T,)v.

Since v # 0, it follows that A(T;T,) = A(T1)A(T,).
It follows that the map G : A — L®(A) (with respect to counting measure) defined by

[G(D)](A) = A(T).
is an algebra homomorphism.
Since A is finite, L*(A) is finite dimensional, and so G(.A) is self-adjoint by Theorem 1.
Let T € A. Then there exists T, € A such that G(T;) = G(T), that is, A(T,) = A(T) for all 1 € A. We claim that T, = T*,
that is, that

(Tv,w) = (v, Tw) forallv,w e H.

By Equation (1), it suffices to check this assuming thatv € H; and w € H,, for 4, u € A.
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If A = u, then

(Tv,w) = (A(T)v, w)
= (v, A(T)w)

= (v, T;w).
If X # u, then (v, w) = 0, and so

(Tv,w) = (A(T)v,w)
=0, and

(v, Tyw) = (v, W(T)w)

=0.
O

Corollary 3. Let G be a finite group and 7 an irreducible unitary representation of G on a Hilbert space H. If A C B(H) is
a m-inductive algebra, then A is self-adjoint.

In view of Raghavan’s theorem [6], it might appear that Corollary 3 may be used whenever Theorem 2 is applicable.
However, that is not the case. Indeed, if G = O(2), the group of orthogonal 2 X 2 matrices, then G is compact and not
abelian, but its group of components is abelian. If 7 is an irreducible representation of G of dimension greater than one,
then Theorem 2 implies that all 7-inductive algebras are self-adjoint, but Corollary 3 is not applicable.
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