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Abstract. In this study, we automated the diagnostic procedure of autism spectrum 
disorder (ASD) with the help of anatomical alterations found in structural magnetic 
resonance imaging (sMRI) data of the ASD brain and machine learning tools. 
Initially, the sMRI data was preprocessed using the FreeSurfer toolbox. Further, the 
brain regions were segmented into 148 regions of interest using the Destrieux atlas. 
Features such as volume, thickness, surface area, and mean curvature were extracted 
for each brain region, and the morphological connectivity was computed using 
Pearson correlation. These morphological connections were fed to XGBoost for 
feature reduction and to build the diagnostic model. The results showed an average 
accuracy of 94.16% for the top 18 features. The frontal and limbic regions 
contributed more features to the classification model. Our proposed method is thus 
effective for the classification of ASD and can also be useful for the screening of 
other similar neurological disorders.    
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1. Introduction 

Autism spectrum disorder (ASD) is a neurodevelopmental condition that adversely 

affects the social communication, behavior, and in some cases, even cognition of an 

 
1Corresponding Author: Vaibhavi GUPTA, E-mail: vaibhavigupta.rs.bme22@itbhu.ac.in. 

Telehealth Ecosystems in Practice
M. Giacomini et al. (Eds.)
© 2023 European Federation for Medical Informatics (EFMI) and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/SHTI230734

33



individual [1]. Current diagnostic techniques rely mainly on subjective evaluations and 

may result in prolonged or misdiagnosis of the condition. Studies have shown that the 

structural and functional alterations of the brain are considered major biomarkers for the 

diagnosis of ASD [2]. Structural magnetic resonance imaging (sMRI) is a powerful 

technique that helps in the identification of these anatomical alterations. Many studies 

have used univariate analysis based on voxel-wise or local anatomical features like 

volume, thickness, and surface area of the various brain regions to analyze the ASD brain 

with the help of sMRI images [3]. However, these approaches fail to provide information 

on the inter-regional associations of the different brain regions. Morphological 

connectivity measures provide higher-order cortical information on the regions through 

interregional morphological relationships between pairs of brain regions that could be a 

valuable tool in the diagnosis of ASD [4]. Studies have also demonstrated the importance 

of morphological connectivity in classifying ASD and proved that it outperformed the 

morphological features [5]. The availability of a single 3D volume of sMRI per subject 

complicates the creation of morphological connectivity networks. To solve this problem, 

we proposed an approach that computed the morphological connectivity (correlated all 

the regions of interest) from morphological features of various brain regions using 

Pearson correlation. Furthermore, the performance of the morphological connectivity 

features on the diagnostic classification of ASD was tested using the XGBoost model.  

2. Methods 

The overall process pipeline followed in the study is shown in Figure 1. 

 

Figure 1. Process pipeline of the study 
 

We obtained the raw sMRI data from the two open-access databases, ABIDE I & ABIDE 

II [6]. For our analysis, we considered the sMRI data from the Georgetown University 

(GU) site that contains 34 ASD and 40 typically developing (TD) individuals. We 

excluded two subjects (one ASD and one TD) from our analysis that contained 

incomplete data. The demographic information of the individuals selected for our 
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analysis from the GU site is given in Table 1. After preprocessing the data using the 

FreeSurfer toolbox, the brain regions were parcellated into different regions of interest 

(ROIs) with the help of the Destrieux atlas. The following features were extracted: 

volume, thickness, surface area, and mean curvature from these ROIs, and all the 

extracted features were then correlated to calculate the morphological connectivity using 

the Pearson correlation. A total of 74 regions from each hemisphere (148 ROIs in total) 

were selected, and we obtained a total of 10,878 (��
���) feature combinations of the ROIs. 

We used XGBoost for feature reduction, and the selected features were then fed into the 

XGBoost classifier with manual 5-fold cross-validation. We also tested the performance 

of different sets of the top 53 features that demonstrated a non-zero feature score (F- 

score) during feature reduction.  

 

Table 1. Demographic information of GU site. 

3. Results  

Figure 2(a) shows the average accuracy of the XGBoost classifier for the different sets 

of top morphological connectivity features ranked based on their F-score. It can be noted 

that the top 18 features produced the highest average 5-fold classification accuracy, 

sensitivity, specificity, and f1-score of 94.16%, 95%, 94.28%, and 93.59%, respectively. 

Figure 2(b) shows the 3D representation of the brain regions of the top 18 features that 

contributed to the classification model. It can be noted that features from the frontal and 

limbic region of the brain contributed the most. 

 
 

Figure 2. a) Performance of classifier for different sets of morphological features, b) 3D representation of 

significant brain regions contributing to the classifier model 

 

Figure 3 shows the pie chart representation of the Pearson-correlated features contributed 

by each lobe on the XGBoost model. It can be noted that the frontal, limbic, and insular 

 
TD 

(Mean±Standard Deviation) 

ASD 

(Mean±Standard Deviation) 

Number of subjects. 39 33 

Gender (Males/Females) 21 /18 29 /4 

Age (years) 10.69±1.79 11.28±1.29 

Full IQ standard score (FIQ) 121.74±14.43 118.5±13.88 

(a) (b) 
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regions contribute the major percentage of features to the classifier. We can observe that 

the occipitotemporal and temporal regions also contribute a significant number of 

features to the classification model. 

 

Figure 3: Pie chart representation of morphological correlated features from the brain lobes used in the 

XGBoost model for the GU site 

 

4. Discussion 

This research employed sMRI data to examine the impact of morphological connectivity 

via Pearson correlation on the diagnostic classification of ASD and TD individuals. The 

machine learning classifier XGBoost was employed, demonstrating proficient 

performance in discriminating between ASD and TD populations. The findings 

elucidated that an inadequate number of features utilized in the machine learning model 

resulted in suboptimal performance, underscoring the criticality of judiciously selecting 

an appropriate feature set. These results align with prior research highlighting the 

significance of a meticulous feature selection process in neuroimaging studies to enhance 

classification accuracy [7].  

Furthermore, the study examined the effect of lobes on the classification models and 

identified that features from the frontal lobe region contributed significantly to the 

machine learning models in discriminating ASD and TD individuals. This finding aligns 

with prior research that has reported significant morphological differences in the frontal 

lobe of individuals with ASD compared to TD individuals [8]. The frontal lobe is known 

to play a crucial role in social cognition, which is impaired in individuals with ASD. 

Thus, the current study provides further evidence supporting the involvement of frontal 

lobe morphology in the classification of ASD [9]. 
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5. Limitations and Future Work 

The results of our study suggest that the morphological connectivity of various features 

is an effective method for classifying ASD and TD. However, our study has a few 

shortcomings; the performance of classifiers on features corresponding to zero F-score 

and other sites of the ABIDE database were not analyzed. The training dataset in this 

study is comparatively smaller and contains a less diverse population in terms of age. 

Moreover, we never compared the results with the non-correlated morphological features 

on the XGBoost classifier. This research can be extended to study the effect of 

morphological connectivity on different sets of morphological features. Furthermore, we 

plan to investigate the performance of structural and functional connectivity in addition 

to morphological connectivity for the diagnostic classification of ASD. These will also 

include different correlation methods and machine learning algorithms to improve the 

performance of the classification model.  

6. Conclusion 

In this study, we analyzed the effect of morphological connectivity features in the 

diagnostic classification of ASD. We computed the morphological connectivity using 

the Pearson correlation method and tested the classification using XGBoost. We 

achieved the highest average 5-fold classification accuracy, sensitivity, specificity, and 

f1-score of 94.16%, 95%, 94.28%, and 93.59%, respectively, using the top 18 features. 

The features from the frontal and limbic regions helped to achieve high classification 

accuracy. Our study proves that morphological connectivity can serve as an effective 

method to screen ASD subjects.  
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