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1. Introduction

The notion of holomorphic connections on a holomorphic vector bundle was introduced by Atiyah [1], 
which was further generalised in many contexts in mathematics. A well-known theorem due to Atiyah [1] and 
Weil [10] says that a holomorphic vector bundle E over a compact Riemann surface Y admits a holomorphic 
connection if and only if the degree of every holomorphic direct summand of E is zero. In [2], this result was 
extended to holomorphic principal G-bundles on Y , where G is a connected reductive complex algebraic 
group. Moreover, in [3] and [4], authors have studied the relationship between the existence of equivariant 
structures and holomorphic G-connections on a principal bundle over a complex manifold.
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Throughout this article π : X → S will denote a surjective holomorphic proper submersion between two 
complex manifolds X and S with connected fibres.

Motivated by the above results, we have a basic question in the relative set up described as follows.

Question 1.1. Let H be a connected complex Lie group. Let EH �−→ X
π−→ S be a holomorphic principal 

H-bundle over X/S. Is there a good criterion for the existence of a relative holomorphic connection on EH?

We tackle above question in the following manner (see Section 2).
Let H and EH be as above. Then, we construct a short exact sequence

0 −→ ad(EH) ι−→ AtS(EH) d̃�−→ TX/S −→ 0, (1.1)

of vector bundles over X/S, where ad(EH) is the adjoint vector bundle for EH and AtS(EH) is the relative 
Atiyah bundle for EH (see (2.13)).

A relative holomorphic connection on EH is by definition a holomorphic splitting of (1.1), see Lemma 2.1
for equivalent conditions.

We give a sufficient condition for the existence of a relative holomorphic connection on EH (see Theo-
rem 2.6), more precisely, we prove the following.

Suppose that for every s ∈ S, there is a holomorphic connection on the principal H-bundle �|EH
s

:
EH

s −→ Xs, and

H1(S, π∗(Ω1
X/S ⊗ ad(EH))) = 0 .

Then, EH admits a relative holomorphic connection.
We also note in Proposition 2.2 that the existence of a holomorphic connection on each bundle EH

s , 
s ∈ S, is a necessary condition for the existence of a relative holomorphic connection on EH .

Let G be a complex Lie group and let π : X −→ S be of relative dimension l = m − n, that is, X is a 
complex analytic family of connected complex manifolds of dimension l parametrised by a complex manifold 
S of dimension n. For every point s ∈ S, we denote π−1(s) by Xs. Consider actions of G on X

τ : G×X → X ,

and on S

ν : G× S → S ,

such that π : X → S is G-equivariant.
A similar question as in Question 1.1 can be asked for the existence of relative holomorphic G-connections 

on EH . For that, we proceed as follows (see Section 2).
Given the action of G on X and S such that π : X → S is G-invariant (i.e., the action ν is trivial), we 

also construct a short exact sequence of holomorphic vector bundles over X/S

0 −→ ad(EH) ι0−→ AtτS(EH) q−→ X × g −→ 0, (1.2)

where g is the Lie algebra of G. The vector bundle AtτS(EH) mentioned in (1.2) is a subbundle of the vector 
bundle AtS(EH) ⊕ (X × g). By definition, a relative holomorphic G-connection on EH is the holomorphic 
splitting of the short exact sequence (1.2). We prove a sufficient condition for the existence of the relative 
holomorphic G-connection on EH (see Theorem 2.7). Again, the existence of a holomorphic G-connection 
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on each EH
s is a necessary condition (see Proposition 2.5), and a part of the sufficient condition, for the 

existence of a relative holomorphic G-connection on EH .
To illustrate Theorem 2.6 and Theorem 2.7, we give examples of the existence of relative holomorphic 

connections and G-connections on EH where S is a Stein manifold (see Example 2.8). We also give an 
example of a relative G-connection on EH where S is a projective space and H is an abelian complex Lie 
group (see Example 2.9).

Note that the notion of a G-connection on EH depends on the G-action on the base X. This is useful 
as a G-connection can then serve as a tool to determine if a G-action on X can be lifted to a G-action on 
EH . In fact, the authors of [3] and [4] have studied G-equivariant structure on a principal H-bundle over 
a connected complex manifold from a connection theoretic perspective. Inspired by their work, our aim in 
this article is to study the relative aspect of such G-equivariant structure on a family of principal H-bundles 
using relative G-connections.

In section 3, we consider the group AutS(EH) of relative automorphisms of EH over X/S. Let

GS ⊂ G

be the subset consisting of all g ∈ G such that for every s ∈ S the pulled back principal H-bundle τ∗gE
H
νg(s)

is isomorphic to EH
s .

Let GS denote the space of all pairs of the form (θ, g) where g ∈ GS , and θ : EH −→ EH is a holomorphic 
automorphism such that for every s ∈ S, θs : EH

s → EH
νg(s) is an isomorphism over τg : Xs → Xνg(s). 

Under the assumption that π : X → S is G-invariant, we show that the Lie algebra of GS is canonically 
identified with the Lie algebra H0(X, AtτS(EH)) (see Proposition 3.1). We also show that the holomorphic 
principal H-bundle EH admits a tautological relative holomorphic GS-connection. The relative curvature of 
this relative holomorphic GS-connection on EH vanishes identically (see Proposition 3.3).

In section 4, we define the relative equivariant structure on the principal H-bundle EH with respect to 
the given group G. We denote the action of G on EH by σE (see (4.1)), and relative equivariant structure by 
the pair (EH , σE). When π : X → S is G-invariant, we show that for a given relative equivariant structure 
(EH , σE) over X/S, EH admits a tautological relative holomorphic G-connection and the relative curvature 
of this relative holomorphic G-connection vanishes identically (see Proposition 4.1). Under the assumption 
that π : X → S is G-invariant, and that G is a semisimple and simply connected affine algebraic group 
defined over C, we also show that (see Theorem 4.3), if EH �−→ X

π−→ S admits a relative holomorphic 
G-connection h, then EH admits a relative equivariant structure σE : G ×EH −→ EH .
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2. Relative Atiyah sequence and group action

2.1. Relative Atiyah exact sequence of a principal H-bundle

Let X and S be two complex manifolds of dimensions m and n respectively. Let

π : X −→ S (2.1)
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be a holomorphic surjective submersion of relative dimension l = m − n such that the fibres are connected, 
that is, X is a complex analytic family of connected complex manifolds of dimension l parametrised by S
[8]. For every point s ∈ S, we denote π−1(s) by Xs.

Let H be a connected complex Lie group. We denote by h its Lie algebra.
By a family of holomorphic principal H-bundles parametrised by S, we mean a holomorphic principal 

H-bundle

� : EH −→ X (2.2)

over X such that for every s ∈ S the restriction

�|Xs
: EH

s := EH |Xs
−→ Xs (2.3)

is a holomorphic principal H-bundle over Xs. Note that H acts on both X and S trivially.
Let dπ : TX −→ π∗TS be the differential of π in (2.1), where TX and TS be the holomorphic tangent 

bundles of X and S respectively. The subbundle

TX/S := Ker(dπ) ⊂ TX

is called the relative tangent bundle for π. Thus we have a short exact sequence of vector bundles

0 −→ TX/S
ı−→ TX

dπ−→ π∗TS −→ 0 (2.4)

over X.
Consider the composition

π ◦� : EH −→ S. (2.5)

Let

d(π ◦�) : TEH −→ (π ◦�)∗TS (2.6)

be the differential of π ◦� in (2.5), where TEH is the holomorphic tangent bundle of EH . Its kernel

TEH/S := Ker(d(π ◦�))

is known as relative tangent bundle for π ◦�. Moreover, the restriction of the differential

d� : TEH −→ �∗TX

of � in (2.2) to TEH/S gives a morphism of bundles

d�′ := (d�)|TEH/S
: TEH/S −→ �∗TX/S (2.7)

over EH . We denote its kernel by

TEH/X/S := Ker((d�)|TEH/S
).

So, we get a short exact sequence of vector bundles
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0 −→ TEH/X/S
ı−→ TEH/S

d�′
−→ �∗TX/S −→ 0 (2.8)

over EH .
Note that we also have relative bundle for � denoted as TEH/X := Ker(d�). Moreover,

TEH/X ⊂ TEH/S , (2.9)

and

TEH/X/S
∼= TEH/X . (2.10)

Let

σ : EH ×H −→ EH (2.11)

be the action of H on EH . Note that the action of H on each fibre of � is free and transitive. The differential 
of σ in (2.11) induces a homomorphism from the trivial vector bundle on EH with fibre h

EH × h −→ TEH ,

and we have an isomorphism

TEH/X/S
∼= EH × h (2.12)

of vector bundles over EH .
The action σ in (2.11) induces an action of H on the total space of relative tangent bundle TEH/S . The 

quotient

AtS(EH) := (TEH/S)/H (2.13)

is a holomorphic vector bundle over X/S, which is known as relative Atiyah bundle (see [1], [5]).
There is an adjoint action of H on its Lie algebra h, which will induce an action of H on the vector 

bundle EH × h. Consider the quotient

ad(EH) := EH ×H h = EH × h/H (2.14)

which is known as adjoint vector bundle associated to EH . From the identification (2.12), we have

ad(EH) = TEH/X/S/H.

Thus, after taking the quotient by H, the short exact sequence in (2.8) gives a short exact sequence of 
holomorphic vector bundles

0 −→ ad(EH) ι−→ AtS(EH) d̃�−→ TX/S −→ 0 (2.15)

over X, which is known as relative Atiyah exact sequence [5], where d̃� is given by d�′ in (2.7).
A relative holomorphic connection on EH is a holomorphic splitting of the relative Atiyah exact sequence 

in (2.15).
Tensoring the short exact sequence in (2.15) by the relative cotangent bundle Ω1

X/S, we get the following 
short exact sequence
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0 −→ Ω1
X/S ⊗ ad(EH) ι−→ Ω1

X/S ⊗ AtS(EH) d̃�−→ EndOX
(TX/S) −→ 0 (2.16)

The above short exact sequence (2.16) of OX -modules gives a long exact sequence of C-vector spaces

· · · → H0(X, Ω1
X/S ⊗ AtS(EH)) → H0(X, EndOX

(TX/S)) δ−→ H1(X, Ω1
X/S ⊗ ad(EH)) → · · · , (2.17)

where δ is the connecting homomorphism. Now, the extension class of the relative Atiyah exact sequence is 
defined by

atS(EH) := δ(1TX/S
) ∈ H1(X, Ω1

X/S ⊗ ad(EH)), (2.18)

which is also known as relative Atiyah class of the bundle EH .

Lemma 2.1. Let EH �−→ X
π−→ S be a holomorphic principal H-bundle. Then, the followings are equivalent.

(1) EH admits a relative holomorphic connection.
(2) The relative Atiyah exact sequence for EH in (2.15) splits.
(3) The relative Atiyah class atS(EH) vanishes.

Proposition 2.2 (Family of holomorphic connections). Suppose that EH admits a relative holomorphic con-
nection. Then, we have a family of holomorphic connections on {EH

s }s∈S.

Proof. The proof easily follows from the following commutative diagram

0 ad(EH)

rs

ι AtS(EH)

rs

d̃�
TX/S

rs

0

0 ad(EH
s )

ιs At(EH
s )

d̃�s

TXs
0

(2.19)

where rs denotes the corresponding restriction map for every s ∈ S, and the bottom exact sequence is the 
Atiyah exact sequence for the principal H-bundle EH

s over Xs (see [1]). The holomorphic splitting of the 
top exact sequence in (2.19) will induce a holomorphic splitting of the bottom exact sequence in (2.19). �
2.2. Relative Atiyah bundle for group action

Let G be a connected complex Lie group acting holomorphically on X and S such that the holomorphic 
map π : X → S in (2.1) is G-invariant.

Let

τ : G×X → X (2.20)

denote the action of G on X from left. Let g denote the Lie algebra of G.
Since π : X → S is G-invariant, the differential of τ in (2.20) induces an OX -linear morphism of vector 

bundles

d′τ : X × g −→ TX/S (2.21)

over X, where X × g is the trivial vector bundle with fibre g over X and OX is the sheaf of holomorphic 
functions on X. Note that the image of d′τ need not be a subbundle of TX/S.
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Define a holomorphic homomorphism of vector bundles

μ : AtS(EH) ⊕ (X × g) −→ TX/S (2.22)

over X by

μ(u, v) = d̃�(u) − d′τ(v), (2.23)

where d̃� and d′τ are as given in equations (2.15) and (2.21) respectively. Since d̃� is surjective, μ is 
surjective.

Define an OX -submodule

AtτS(EH) := μ−1(0) ⊂ AtS(EH) ⊕ (X × g), (2.24)

which is in fact a subbundle, because d̃� is surjective.
In view of definition of AtτS(EH) in (2.24), we have two holomorphic homomorphisms

ι0 : ad(EH) −→ AtτS(EH), u 	→ (ι(u), 0), (2.25)

where ι is defined in (2.15), and

q : AtτS(EH) −→ X × g, (u, v) 	→ v, (2.26)

where u ∈ AtS(EH) and v ∈ X × g.
Note that q in (2.26) is surjective because d̃� is surjective.
Thus, we have a short exact sequence of holomorphic vector bundles over X

0 −→ ad(EH) ι0−→ AtτS(EH) q−→ X × g −→ 0 (2.27)

A relative holomorphic G-connection on the principal H-bundle EH is a holomorphic splitting of (2.27), 
that is, there exists a holomorphic homomorphism of vector bundles

h : X × g −→ AtτS(EH)

such that

q ◦ h = 1X×g.

Remark 2.3. It is easy to observe that the surjectivity of the map, d′τ : X × g −→ TX/S , is a necessary 
condition for a (relative) G-connection to be a (relative) holomorphic connection. But, this is not a sufficient 
condition. However, a (relative) G-connection corresponds to a (relative) holomorphic connection if d′τ is 
an isomorphism; for instance, when the action τ : G × X → X is free and the dimensions of G and 
Xs are equal. When d′τ is an isomorphism, there is an isomorphism φ : AtS(EH) → AtτS(EH) defined 
by φ(u) = (u, (d′τ)−1d̃�(u)). The inverse of φ has the simple formula, φ−1(u, v) = u. Moreover, given a 
splitting ητ of (2.27), we have a splitting η of the relative Atiyah sequence (2.15) given by

η(y) := φ−1(ητ (d′τ)−1(y)) .
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Let V denote the trivial vector bundle X × g over X. Let

atS(EH)τ ∈ H1(X, V ∗ ⊗ ad(EH))

be the extension class of the short exact sequence (2.27) and we call it the relative G-Atiyah class of the 
principal H-bundle EH for the action τ .

Lemma 2.4. Let G acts on X and S such that the morphism π : X → S is G-invariant. Let EH �−→ X
π−→ S

be a holomorphic principal H-bundle. Then, the followings are equivalent.

(1) EH admits a relative holomorphic G-connection.
(2) The relative Atiyah exact sequence for EH in (2.27) splits.
(3) The relative G-Atiyah class atS(EH)τ vanishes.

Proposition 2.5 (Family of holomorphic G-connections). Let π : X → S be G-invariant. Then, a relative 
holomorphic G-connection on EH induces a family of holomorphic G-connections on {EH

s }s∈S.

Proof. The proof is an easy consequence of the following commutative diagram

0 ad(EH)

rs

ι0 AtτS(EH)

rs

q
X × g

rs

0

0 ad(EH
s )

ι0s Atτ (EH
s )

qs
Xs × g 0

(2.28)

where rs denotes the corresponding restriction map for every s ∈ S, and the bottom exact sequence is the 
Atiyah exact sequence of EH

s for the G action on Xs (see [4]). The holomorphic splitting of the top exact 
sequence in (2.28) will induce a holomorphic splitting of the bottom exact sequence in (2.28). �
2.3. Sufficient condition for the existence of relative holomorphic connections

We will give sufficient condition for the existence of relative holomorphic connections on EH and rela-
tive holomorphic G-connections on EH . In view of Proposition 2.2, it is clear that a relative holomorphic 
connection on the principal H-bundle EH gives a family of holomorphic connections. But the converse of 
Proposition 2.2 need not be true.

Theorem 2.6. Let EH �−→ X be a holomorphic principal H-bundle. Suppose that for every s ∈ S, there is 
a holomorphic connection on the principal H-bundle �|EH

s
: EH

s −→ Xs, and

H1(S, π∗(Ω1
X/S ⊗ ad(EH))) = 0 .

Then, EH admits a relative holomorphic connection.

Proof. Consider the relative Atiyah exact sequence for the principal H-bundle in (2.15). Tensoring it by 
Ω1

X/S produces the exact sequence

0 −→ Ω1
X/S ⊗ ad(EH) −→ Ω1

X/S ⊗ AtS(EH) q−→ Ω1
X/S ⊗ TX/S −→ 0 , (2.29)

where q = 1Ω1 ⊗ d̃�.

X/S
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Note that OX · 1TX/S
⊂ End(TX/S) = Ω1

X/S ⊗ TX/S . Define

Ω1
X/S(At′S(EH)) := q−1(OX · 1TX/S

) ⊂ Ω1
X/S ⊗ AtS(EH) ,

where q is the projection in (2.29). So we have the short exact sequence of sheaves

0 −→ Ω1
X/S ⊗ ad(EH) −→ Ω1

X/S(At′S(EH)) q−→ OX −→ 0 (2.30)

on X, where Ω1
X/S(At′S(EH)) is constructed above. Let

Φ : H0(X, OX) −→ H1(X, Ω1
X/S ⊗ ad(EH)) (2.31)

be the connecting homomorphism in the long exact sequence of cohomologies associated to the exact se-
quence in (2.30). The relative Atiyah class atS(EH) (see (2.18)) coincides with Φ(1) ∈ H1(X, Ω1

X/S ⊗
ad(EH)). Therefore, from Lemma 2.1 it follows that EH admits a relative holomorphic connection if and 
only if

Φ(1) = 0 . (2.32)

To prove the vanishing statement in (2.32), first note that H1(X, Ω1
X/S ⊗ ad(EH)) fits in the five terms 

exact sequence (Leray spectral sequence in low degrees)

0 → H1(S, π∗(Ω1
X/S ⊗ ad(EH))) β1−→ H1(X, Ω1

X/S ⊗ ad(EH))
q1−→ H0(S, R1π∗(Ω1

X/S ⊗ ad(EH))) q2−→ H2(S, π∗Ω1
X/S ⊗ ad(EH)) q3−→ H2(X, Ω1

X/S ⊗ ad(EH)), (2.33)

where π is the projection of X to S. We use only first three terms in the above exact sequence.
The given condition that for every s ∈ S, there is a holomorphic connection on the holomorphic principal 

H-bundle �|EH
s

: EH
s −→ Xs, implies that

q1(Φ(1)) = 0 ,

where q1 is the homomorphism in (2.33). Therefore, from the exact sequence in (2.33) we conclude that

Φ(1) ∈ β1(H1(S, π∗(Ω1
X/S ⊗ ad(EH)))) .

Finally, the given condition that H1(S, π∗(Ω1
X/S ⊗ad(EH))) = 0 implies that Φ(1) = 0. Since (2.32) holds, 

the principal H-bundle EH admits a relative holomorphic connection. �
Next, consider the case of relative holomorphic G-connections on principal H-bundle EH �−→ X

π−→ S. 
Under the assumption that the holomorphic map π : X → S is G-invariant, from Proposition 2.5, a relative 
holomorphic G-connection on EH gives a family of holomorphic G-connections on {EH

s }s∈S . Again, the 
converse of the Proposition 2.5 need not be true.

Theorem 2.7. Let EH �−→ X
π−→ S be a holomorphic principal H-bundle. Suppose that π : X → S is 

G-invariant. Let V denote the trivial vector bundle X × g over X, where g is the Lie algebra of G. Suppose 
that for every s ∈ S, there is a holomorphic G-connection on the principal H-bundle �|EH

s
: EH

s −→ Xs, 
and

H1(S, π∗(V ∗ ⊗ ad(EH))) = 0 ,

where V ∗ denotes the dual of V . Then, EH admits a relative holomorphic G-connection.
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Proof. The proof is exactly similar to the proof of Theorem 2.6. �
Example 2.8. Let S be a Stein manifold. Let π : X → S be an analytic family of compact connected Riemann 
surfaces. Let H be a connected reductive linear algebraic group over C. Let EH be a holomorphic principal 
H-bundle over X. Suppose that for every s ∈ S, the principal H-bundle EH

s → Xs admits a holomorphic 
connection (see [2, Theorem 4.1] for the criterion of existence of holomorphic connection on EH

s ). Since S
is Stein, and π∗(Ω1

X/S ⊗ ad(EH)) is a coherent analytic sheaf, we have H1(S, π∗(Ω1
X/S ⊗ ad(EH))) = 0. 

Hence by Theorem 2.6, EH admits a relative holomorphic connection.
A similar reasoning can be given for the existence of relative holomorphic G-connection on EH . In 

particular, let G be the complex torus of dimension two, Xs be a fixed smooth toric surface under G-
action, and H = GL(r, C). Then it follows from [6, Section 2.3, Example 4] that G-equivariant principal 
H-bundles over Xs are classified by families of filtrations of Cr, each family being indexed by the torus 
invariant divisors of Xs. One can take S to be a suitable parameter space of such families isomorphic to the 
affine space with trivial G-action, and X = Xs × S. This produces a nontrivial family EH of G-equivariant 
principal H-bundles over X/S. By Theorem 2.7, and [3, Theorem 3.1] or [4, Lemma 4.1], EH admits a 
relative G-connection.

Example 2.9. We give an example of existence of relative holomorphic G-connection on EH , where the 
complex Lie group H is abelian. Let F be a rank n + 1 holomorphic vector bundle over Pk. Then, in the 
notations of Theorem 2.7,

π : X = P (F ) → Pk = S

is a holomorphic flat morphism, which is a Pn-bundle. Assume that the complex Lie group H is abelian. 
Then, the adjoint vector bundle ad(EH) is a trivial vector bundle over X = P (F ). For every s ∈ S = Pk, 
EH

s admits a holomorphic G-connection (follows from the criterion [4, Lemma 2.2]), because (see [9, p. 5])

H1(Pn, ad(EH
s )) = 0,

which follows from the fact that ad(EH
s ) is trivial.

Next, since π is flat, the sheaf π∗(V ∗ ⊗ ad(EH)) is a trivial vector bundle over Pk, and hence we get

H1(Pk, π∗(V ∗ ⊗ ad(EH))) = 0.

Therefore, from Theorem 2.7, EH admits a relative holomorphic G-connection.

2.4. Curvature of relative holomorphic G-connection

Let EH �−→ X
π−→ S be a holomorphic principal H-bundle and as in section 2.2, G acts on X and S

such that π is G-invariant. Note that the sheaf of holomorphic sections of the vector bundle AtS(EH) has 
the Lie algebra structure. Therefore, we get a Lie algebra structure on the sheaf of holomorphic sections of 
the vector bundle AtτS(EH), because

AtτS(EH) := μ−1(0) ⊂ AtS(EH) ⊕ (X × g)

and g is the Lie algebra of G. Also, the morphisms ι0 and q in (2.27) are compatible with the Lie bracket 
operations on the sections of ad(EH) and AtτS(EH), respectively.

Let ∇ : X × g −→ AtτS(EH) be a splitting of the short exact sequence in (2.27), that is, ∇ is a relative 
holomorphic G-connection on EH . Let U ⊂ X be an open subset and let α and β be any two sections of 
X × g over U . Consider
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R(∇)(α, β) := [∇(α),∇(β)] −∇([α, β]) ∈ Γ(U,AtτS(EH)).

Note that q(R(∇)(α, β)) = 0, because q in (2.27) is compatible with the Lie algebra structures. Hence 
R(∇)(α, β) lies in the image of ad(EH) over U . We also have following equalities

(1) R(∇)(fα, β) = fR(∇)(α, β), where f is a holomorphic function on U .
(2) R(∇)(α, β) = −R(∇)(β, α).

Altogether, we get that

R(∇) ∈ H0(X, ad(EH) ⊗
2∧
V ∗) = H0(X, ad(EH)) ⊗

2∧
g∗, (2.34)

where V = X × g.
The section R(∇) is called the relative curvature of the relative holomorphic G-connection ∇ on EH .
Now, we describe the induced relative connection and curvature for the holomorphic homomorphism of 

complex Lie groups.
Let φ : G1 −→ G be a holomorphic homomorphism of complex Lie groups. Then, G1 acts on X as follows

τ1 : G1 ×X −→ X, (g, x) 	→ τ(φ(g), x) (2.35)

where τ is the holomorphic action of G on X in (2.20). Let g1 denote the Lie algebra of G1. The differential 
of the morphism φ gives a homomorphism

dφ : g1 −→ g (2.36)

of Lie algebras.
Note that for G action on X and S such that π : X → S is G-invariant, the action τ1 in (2.35) induces 

an action of G1 on S such that π is G1-invariant. Hence, we have a relative Atiyah bundle Atτ1S (EH) over 
X as in (2.24). Since the action G1 on X and S are given in terms of action of G using the map φ, from 
the construction of AtτS(EH) we have

Atτ1S (EH) = {(u, v) ∈ AtτS(EH) ⊕ (X × g1) | q(u) = (1X × dφ)(v)}, (2.37)

where q is given in (2.27).
An easy observation is stated as follows.

Proposition 2.10. A relative holomorphic G-connection ∇ on EH induces a relative holomorphic G1-
connection ∇1 on EH . The relative curvature R(∇1) coincides with the image of R(∇) under the ho-
momorphism

H0(X, ad(EH)) ⊗
2∧
g∗ −→ H0(X, ad(EH)) ⊗

2∧
g∗1 (2.38)

induced by the dual homomorphism (dφ)∗ : g∗ −→ g∗1.

3. Relative connection and lifting of an action

As in the previous section, let G be a complex Lie group, π : X −→ S equipped with the G-equivariant 
action, and � : EH → X be the family of principal H-bundles parametrised by S.
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Henceforth, we will also assume that X is compact.
Let Aut(EH) be the group of all automorphisms of EH over the identity map of X/S. Because of the 

commutativity of the desired diagram, given any θ ∈ Aut(EH), we have an automorphism θs : EH
s → EH

s

over the identity map of Xs for every s ∈ S.
Let

ν : G× S → S (3.1)

denote the action of G on S such that for any g ∈ G we have

π ◦ τg = νg ◦ π,

where νg : S −→ S is an automorphism. Then for every s ∈ S, we have an isomorphism

τg : Xs −→ Xνg(s). (3.2)

Let AutS(EH) be the set of relative automorphisms, that is, AutS(EH) consists of those holomorphism 
automorphisms θ : EH −→ EH such that for every s ∈ S, θs : EH

s → EH
νg(s) is an isomorphism over 

τg : Xs → Xνg(s).
For any g ∈ G, we have an automorphism

τg : X → X. (3.3)

Let

GS ⊂ G (3.4)

be the subset consisting of all g ∈ G such that for every s ∈ S the pulled back principal H-bundle τ∗gE
H
νg(s)

is isomorphic to EH
s .

Note that if π : X → S is G-invariant, then for every s ∈ S, we get a subset Gs of G, consisting of all 
g ∈ G such that τ∗gEH

s
∼= EH

s .
Let GS denote the space of all pairs of the form (θ, g) where g ∈ GS , and θ : EH −→ EH is a holomorphic 

automorphism such that for every s ∈ S, θs : EH
s → EH

νg(s) is an isomorphism over τg : Xs → Xνg(s).
Again, if π : X → S is G-invariant, then for every s ∈ S, we get a space Gs consisting of all pairs of 

the form (θ, g), where g ∈ Gs and θ : EH
s → EH

s is a holomorphic automorphism over the automorphism 
τg : Xs → Xs.

Note that GS is equipped with the group operation defined as follows

(θ′, g′) · (θ, g) = (θ′ ◦ θ, g′g) (3.5)

while the inverse is the map (θ, g) 	→ (θ−1, g−1). Thus, GS fits into the following short exact sequence of 
groups

0 → Aut(EH) α−→ GS
β−→ GS → 0, (3.6)

where β(θ, g) = g and α(θ) = (θ, e), where e is the identity of GS .
There is a complex Lie group structure on GS which is uniquely determined by the condition that (3.6)

is a sequence of complex Lie groups.
We already see that the sheaf of sections of AtτS(EH) admits a Lie algebra structure, and hence induces 

a Lie algebra structure on H0(X, AtτS(EH)).
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Proposition 3.1. Suppose that π : X → S is G-invariant. Then, the Lie algebra of GS is canonically identified 
with the above Lie algebra H0(X, AtτS(EH)).

Proof. Let gS denote the Lie algebra of GS . We shall produce a natural homomorphism from gS to 
H0(X, AtτS(EH)). Note that the group GS acts on EH naturally which commutes with the action H on 
EH . In fact, this action gives a map from GS to AutS(EH). Consequently, we get a homomorphism of 
complex Lie algebras

η : gS −→ H0(X, AtS(EH)). (3.7)

Next define

η1 : gS → H0(X, AtτS(EH)), v 	→ (η(v), dβ(v)) ∈ H0(X, AtS(EH)) ⊕ g, (3.8)

where dβ : gS → Lie(GS) ↪→ g is the homomorphism of Lie algebras associated to β in (3.6). It is easy 
to verify that (η(v), dβ(v)) ∈ H0(X, AtτS(EH)) ⊂ H0(X, AtS(EH)) ⊕ g (see (2.24) for the definition of 
AtτS(EH)). Clearly, η1 in (3.8) is an injective homomorphism of complex Lie algebras. Since X is compact, 
using the similar statements as in [4, Proposition 3.1], we can show that η1 is surjective. �

Observe that there is a natural action of GS on X defined as follows

χ : GS ×X → X ((θ, g), x) 	→ τ(g, x), x ∈ X, (3.9)

where τ is the action in (2.20). Then, we have a vector bundle AtχS(EH) over X as constructed in (2.24).

Proposition 3.2. There is a natural isomorphism of vector bundles

AtχS(EH) −→ ad(EH) ⊕ (X × H0(X, AtτS(EH))) (3.10)

where X × H0(X, AtτS(EH)) is a trivial vector bundle on X with fibre H0(X, AtτS(EH)).

Proof. Note that we have a natural projection p1 : AtχS(EH) → X × gS from the short exact sequence as 
in (2.27) for the group GS . From previous Proposition 3.1, gS is identified with H0(X, AtτS(EH)), therefore 
we have

p1 : AtχS(EH) −→ X × H0(X, AtτS(EH)).

Further, the action of GS on X factors through the action of G on X, therefore from (2.37) we have another 
description of AtχS(EH) as subbundle of AtτS(EH) ⊕ (X × gS). Thus, we have a natural projection

p′ : AtτS(EH) ⊕ (X × gS) = AtτS(EH) ⊕ (X × H0(X, AtτS(EH))) −→ AtτS(EH)

which sends (a, (x, η)) 	→ a − η(x), where x ∈ X, a ∈ AtτS(EH)x and η ∈ H0(X, AtτS(EH)). From (2.37), it 
follows that

q ◦ (p′|AtχS(EH)) = 0,

where q is the projection in (2.27). Therefore, the restriction p′|AtχS(EH) produces a homomorphism of vector 
bundles



14 M. Poddar, A. Singh / Differential Geometry and its Applications 90 (2023) 102041
p2 : AtχS(EH) −→ ker (q) = ad(EH). (3.11)

From p1 and p2, we get a homomorphism

p1 ⊕ p2 : AtχS(EH) −→ ad(EH) ⊕ (X × H0(X, AtτS(EH))),

which is an isomorphism. �
Proposition 3.3. The holomorphic principal H-bundle EH admits a tautological relative holomorphic GS-
connection. The relative curvature of this relative holomorphic GS-connection on EH vanishes identically.

Proof. Using the morphism p2 in (3.11), Proposition easily follows. �
4. Relative equivariant bundles and relative connections

In this section, we introduce the notion of relative equivariance structure (see [3] for the absolute case). 
Let π : X → S is G-equivariant map, where G acts on X and S via the actions τ in (2.20) and ν in (3.1)
respectively.

Let EH �−→ X
π−→ S be a holomorphic principal H-bundle over X/S.

A relative equivariance structure on the principal H-bundle EH is a holomorphic action of G on the total 
space EH

σE : G×EH −→ EH (4.1)

such that the following diagrams commute.
(1)

G× EH

1G×�

σE

EH

�

G×X

1G×π

τ
X

π

G× S
ν

S

where � and τ are maps defined in (2.2) and (2.11)
(2)

G× EH ×H

1G×σ

σE×1H

EH ×H

σ

G× EH

1G×�

σE

EH

�

G×X

1G×π

τ
X

π

G× S
ν

S
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where σ is defined in (2.11).

A relative equivariant principal H-bundle is a principal H-bundle over X/S with a relative equivariant 
structure.

Further, if π : X → S is G-invariant, then for every s ∈ S, the principal H-bundle EH
s over Xs has a 

equivariant structure, that is, we have a family {EH
s }s∈S of equivariant principal H-bundle parametrised 

by S.

Proposition 4.1. Suppose π : X → S is G-invariant. Let (EH , σE) be a relative equivariant principal H-
bundle over X/S. Then, EH has a tautological relative holomorphic G-connection. The relative curvature 
of this relative holomorphic G-connection vanishes identically.

Proof. Observe that for every g ∈ G, we have a holomorphic automorphism

σE
g : EH −→ EH

such that for every s ∈ S, the map

σE
g,s : EH

s −→ EH
νg(s), z 	→ σE(g, z), z ∈ EH

s

is an isomorphism over τg : Xs −→ Xνg(s) in (3.2). Thus, in this case

GS = G,

where GS is defined in (3.4). In fact, we get a group homomorphism

βE : GS = G −→ GS

defined by g 	→ (g, σE
g ) such that

β ◦ βE = 1G,

where β is the homomorphism in (3.6). In view of Proposition 3.3, we have a tautological relative holomorphic 
GS-connection and we consider this. Next, using the above group homomorphism βE and Proposition 2.10, 
we get a relative holomorphic G-connection on EH . Again from Proposition 3.3 and Proposition 2.10, 
the relative curvature of this relative holomorphic G-connection vanishes identically. This completes the 
proof. �

The following is the converse of Proposition 4.1.

Proposition 4.2. Suppose that π : X → S is G-invariant. Let h : X×g −→ AtτS(EH) be a relative holomorphic 
G-connection on EH such that the relative curvature vanishes identically. Assume that G is simply connected. 
Then, there exists a relative equivariant structure

σE : G× EH −→ EH

such that the relative holomorphic G-connection associated to it as in Proposition 4.1 coincides with h.
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Proof. Since π : X → S is G-invariant, from Proposition 3.1, we have

Lie(GS) = gS = H0(X, AtτS(EH)).

Let

h∗ : g = H0(X, X × g) −→ H0(X, AtτS(EH)) = gS

be the C-linear map induced by h. Since, the relative curvature of the relative holomorphic G-connection 
h vanishes identically, it follows that h∗ is a homomorphism of Lie algebras. Further, since G is simply 
connected, there is a unique holomorphic homomorphism of complex Lie groups

ε : G −→ GS

such that the differential

dε(1) : g −→ gS

coincides with h∗, where 1 denotes the identity element of G. Recall that GS acts naturally on EH , and using 
the above holomorphic homomorphism ε of complex Lie groups, we produce a relative equivariant structure 
σE on EH . Now, observe that the corresponding relative holomorphic G-connection given by Proposition 4.1
coincides with h. �
Theorem 4.3. Suppose that π : X → S is G-invariant. Assume that G is a semisimple and simply connected 
affine algebraic group defined over C. Let EH �−→ X

π−→ S be a holomorphic principal H-bundle that admits 
a relative holomorphic G-connection h. Then, EH admits a relative equivariant structure

σE : G×EH −→ EH .

Proof. In view of Proposition 4.2, it is enough to show that EH admits a relative holomorphic G-connection 
such that the relative curvature vanishes. Now, consider a part of long exact sequence

δ : gS = H0(X, AtτS(EH)) −→ H0(X, X × g) = g (4.2)

associated to the short exact sequence (2.27). Now, consider the homomorphism

h∗ : g = H0(X, X × g) −→ H0(X, AtτS(EH)) = gS (4.3)

associated to the relative holomorphic G-connection h on EH . Since EH admits a relative holomorphic 
G-connection h, we have

δ ◦ h∗ = 1g,

and hence the Lie algebra homomorphism δ is surjective. As G is semisimple, there exists a Lie subalgebra

h ⊂ H0(X, AtτS(EH))

such that the restriction

δ̂ := δ|h : h −→ g = H0(X, X × g)
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is an isomorphism [7, p. 91, Corollaire 3]. We fix a subspace h as above. Define h̃∗ to be the following 
composition

g = H0(X, X × g) δ̂−1

−−→ h ↪→ H0(X, AtτS(EH)) = gS ,

which is a Lie algebra homomorphism, and hence the relative curvature of the relative holomorphic G-
connection induced from h̃∗ on EH vanishes identically. This completes the proof. �
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