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Abstract  The simulation of field conditions for 
seismically induced slope failures incorporates 
model uncertainties, which account for the difference 
between simulated and observed slope behaviour. 
The quantification of this uncertainty is mandatory 
to understand the field response of the geotechnical 
system and make decisions for geotechnical systems. 
Previous studies have partially studied uncertainty 
for slope systems under seismic loading. To this aim, 
this study proposes a methodology based on proba-
bilistic back analysis to estimate uncertainties in soil 
parameters considering the observed slope response 
under seismic loading. The proposed method involves 
support vector regression (SVR) model to map the 
relationship between soil parameters and seismically 
induced slope displacement. The SVR model is gen-
erated using the data from the numerical simulation 

of slope system under seismic loading using FLAC 
2D. Further, the developed SVR model is used for 
probabilistic back analysis using Markov Chain 
Monte Carlo (MCMC) simulation. The Noto Hanto 
earthquake in 2007 and the subsequent slope failure 
along Noto Yuryo Road, Japan, are considered as a 
case study to validate the proposed methodology. 
The results of the case study show that the updated 
or inferred soil parameters have less variability than 
the prior distribution. Further, the uncertainties in the 
slope system influence the inferred soil parameters. 
Hence, a parametric study is conducted to investi-
gate the effect of model uncertainty on the posterior 
statistics of soil parameters. The study results facili-
tate a better understanding of the slope deformation 
mechanism and the effect of model uncertainty on the 
updated statistics of soil parameters.

Keywords  Probabilistic back analysis · MCMC 
simulation · Model uncertainty · Seismically induced 
slope displacement

1  Introduction

Slope failures due to seismically induced instabilities 
pose risk to infrastructure, environment, and lives in 
earthquake-prone mountainous regions (Gratchev 
and Towhata 2011; Huang et  al. 2016; Wang and Li 
2021). The seismic slope displacement is an important 
measure to determine the severity of landslide hazard 
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and risk. To this aim, numerical models are commonly 
used to simulate the field conditions of slope under 
seismic loading using non-linear dynamic analysis 
(Bray et al. 2018; Arab Khaburi and Mortazavi 2019; 
Wang and Li 2021). However, the input parameters for 
numerical models, such as soil parameters, incorporate 
inherent uncertainties due to non-homogeneous and 
variable soil (Abbaszadeh et  al. 2011; Metya and 
Bhattacharya 2016; Cheng and He 2020; Rana and 
Sivakumar Babu 2023). These uncertainties lead 
to divergence between simulated behaviour using 
numerical models and observed behaviour of slope in 
the field.

The inherent uncertainties in soil parameters 
involve measurement, testing, and observational 
uncertainties (Abbaszadeh et  al. 2011; Tietje 
et  al. 2014; Kong et  al. 2022). These uncertain 
parameters form the basis of further decisions 
for geotechnical systems and planning. Hence, 
the accurate quantification of these parameters 
with inherent uncertainties is necessary for risk 
management (Alitabar et  al. 2021). The accurate 
estimation of these parameters is not feasible 
through testing (Abdulai and Sharifzadeh 2019), 
which led to rise of back or inverse analysis in 
study of geotechnical systems. The back analysis 
is conducted using deterministic and probabilistic 
approach. The deterministic approach utilises one set 
of parameters with respect to one observation (Feng 
et  al. 2004). On the other hand, the probabilistic 
approach facilitates the estimation of uncertainties 
in the input parameters in terms of variability for a 
given observation of geotechnical system (Gilbert 
et al. 1998). Therefore, probabilistic back analysis is 
widely utilised to assess accurate soil parameters with 
uncertainties. The probabilistic back analysis uses 
the observed response of the geotechnical system 
(i.e., the factor of safety or slope displacement) to 
infer multiple sets of input parameters with different 
likelihoods responsible for the observed response 
(Zhang et al. 2010; Wang et al. 2013; Ng et al. 2014; 
Ering and Sivakumar Babu 2016; Contreras and 
Brown 2019; Jiang et  al. 2020). Several methods, 
such as Bayesian, least squares, and maximum 
likelihood, are utilised for probabilistic back analysis 
of geotechnical systems. The Bayesian method is 
used to infer the input parameters and the uncertainty 
of input parameters with the available observations 
(Gilbert et al. 1998; Miranda et al. 2009; Zhang et al. 

2010; Li et  al. 2016; Ering and Sivakumar Babu 
2016; Rana and Sivakumar Babu 2022a, b).

Probabilistic back analysis of geotechnical systems 
is also conducted using Markov Chain Monte Carlo 
(MCMC) simulation (Zhang et  al. 2010; Juang et  al. 
2013; Wang et  al. 2013; Wu et  al. 2017; Contreras 
and Brown 2019). Juang et  al. (2013) proposed a 
method for probabilistic back analysis to update the 
statistics of uncertain soil parameters using MCMC 
simulation in conjunction with the Bayesian theorem 
for multi-staged braced excavation. The study results 
suggest that the proposed method efficiently reduces 
the uncertainty involved in soil parameters. Zhang 
et  al. (2010) proposed a probabilistic approach to 
back analyse soil parameters for slope using MCMC 
simulation and response surface method (RSM). 
The field performance of slope, i.e., safety factor, is 
utilised to update soil parameters. They concluded 
that the correlation between input soil parameters 
does not influence the posterior distribution. However, 
the type of prior distribution significantly affects the 
posterior distribution. Wang et  al. (2013) utilised 
MCMC simulation and the maximum likelihood 
method to back analyse the anchor force and strength 
parameters for slope failure in Taiwan. They concluded 
that improved knowledge of these parameters better 
explains the slope failure mechanism and forms the 
basis for remedial measures.

Large-scale projects require extensive computational 
resources to conduct non-linear dynamic analysis using 
numerical models for probabilistic back analysis. There-
fore, several researchers have adopted surrogate models 
to replicate the numerical models for back analysis (Feng 
et al. 2004; Xu et al. 2013; Dilip and Sivakumar Babu 
2013; Li et al. 2016; Contreras and Brown 2019). Feng 
et al. (2004) and Zhao and Yin (2009) used the support 
vector machine (SVM) model as a surrogate model to 
replace the numerical model for back analysis of the 
soil parameter values for given observations. Li et  al. 
(2016) proposed a method for probabilistic back analy-
sis of high-cut rock slope. This method involves a multi-
output SVM model as a surrogate model for numerical 
simulation and Bayesian analysis for back analysis of 
slope displacement. The study results suggested that 
back-calculated values of geomechanical parameters 
closely match the practical values of parameters with 
associated uncertainty. Wu et  al. (2017) presented a 
polynomial chaos expansion-based MCMC simulation 
for probabilistic back analysis of rainfall-induced slope 
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failure. The polynomial chaos expansion acts as a sur-
rogate model to replicate the coupled hydromechanical 
model for unsaturated slope material under rainfall and 
makes the method faster and more efficient. However, 
there is limited research on the probabilistic back analy-
sis of seismically induced slope failures. The seismically 
induced slope displacement requires investigation to elu-
cidate the slope failure mechanism and to estimate vari-
ability in soil parameters. The accurate statistics of these 
parameters form the basis of the provision of remedial 
measures and reliability-based analysis.

The numerical models used for probabilistic back 
analysis replicate the field conditions, incorporating 
model uncertainties (Cheung and Tang 2005). The neg-
ligence of model uncertainties may lead to biased geo-
technical decisions as model uncertainties affect the 
predicted values of geotechnical parameters. These geo-
technical parameters are further used for geotechnical 
decisions. Hence, the quantification of the model uncer-
tainties is essential for understanding the soil parameters 
and their effect on the slope systems. The geotechnical 
predictions made without considering model uncertain-
ties do not accurately estimate failure probabilities for 
slope systems (Zhang et al. 2009, 2015).

Huang et  al. (2012) proposed a Bayesian network 
to determine the model uncertainty of a geotechni-
cal system considering uncertainties associated with 
input parameters. They concluded that ignoring model 
uncertainty may lead to underestimating or overestimat-
ing the reliability index. Zhang et al. (2012) presented a 
methodology based on Bayesian analysis to characterise 
the model uncertainty for the geotechnical model. This 
method considers the uncertainty in input parameters and 
error in the observed data. Model uncertainty parameters 
are considered as random variables and estimated using 
the observed data and input parameters using Bayesian 
analysis. The updated posterior statistics of model uncer-
tainty determine the characteristics of model uncertainty. 
Li et al. (2021) proposed a methodology for probabilistic 
back analysis based on MCMC simulation, considering 
model bias, parameter uncertainty, and observation error. 
They concluded that the proposed method efficiently 
reduces the prediction uncertainty and accurately pre-
dicts the geosystem’s performance. However, the effect 
of model uncertainty on the updated posterior statistics 
of input parameters is partially studied.

The present study aims to propose a methodology 
for probabilistic back analysis of seismically induced 
slope displacement to infer the posterior statistics of 

input parameters for observed seismically induced 
slope displacement. The proposed method adopts the 
SVR model as a surrogate model to map the relation-
ship between input parameters, i.e., soil parameters, 
and response variable, i.e., seismically induced slope 
displacement. The SVR model is trained using the 
obtained data from slope simulation under seismic 
loading using the finite difference method (FDM). 
The trained model is further used to estimate the 
posterior distribution of input parameters utilising 
the MCMC simulation based on the Bayes theorem. 
A slope failure in 2007 due to the Noto Hanto earth-
quake along the Noto Yuryo Road, Japan is used as 
a case study to validate the proposed methodology. 
Results of the case study suggest that posterior sta-
tistics of the input parameter show less variability 
than prior statistics. The numerical model utilised 
in this study also incorporates model uncertainty, 
defined as the difference between the simulated and 
field responses of the slope system. The effect of the 
model uncertainty on the estimated posterior distribu-
tion is investigated using a parametric study, which 
facilitate the understanding of model uncertainty. The 
results of the probabilistic back analysis can be used 
for further design of remedial measures for slope and 
reliability-based slope design.

2 � Methods

2.1 � Support Vector Regression (SVR) Algorithm

The SVR algorithm is a commonly used model to 
map a non-linear relationship between input parame-
ters and the response variable of geotechnical systems 
(Feng et al. 2004; Zhao and Yin 2009; Li et al. 2016). 
The SVR algorithm projects input data into higher 
dimensional space. The set of sample data is {xi,yi}, 
where xi ∈ Rn, yi ∈ R and i = 1,2,…….,m for a non-lin-
ear problem f(x). The support vectors (f(x)) are calcu-
lated by solving the following optimisation problem.
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where C is a regularisation parameter that decides the 
trade-off between overfitting and excess error ε. αi 
and αi

* are lagrangian multipliers. K(xi.xj) is a kernel 
function defined as

where Φ is the formulation of non-linear mapping. 
The kernel function K(xi.xj) is generally used in three 
forms (a) Polynomial kernel, (b) Sigmoid kernel, and 
(c) Radial basis function kernel.

The regression function can be obtained as follows.

where b is an offset.

2.2 � Methodology for Probabilistic Back Analysis

Probabilistic displacement back analysis is performed 
using the SVR algorithm and MCMC simulation. The 
SVR model is used as a surrogate model to efficiently 
replicate the numerical (simulation) model, which 
substantially reduces effort and computational time. 
The SVR algorithm mapped the relationship between 
input soil parameters and slope displacement. Bayes 
theorem is exploited to back-calculate the posterior 
distribution of input parameters and the uncertainties 
associated with these parameters for a given value 
of displacement. The MCMC simulation is used to 
obtain the samples from the updated posterior input 
parameters.

2.2.1 � Mapping of Soil Parameters and Displacement

The SVR model is used to map the relationship 
between the observed slope displacement and soil 
parameters, i.e., cohesion, internal friction angle, and 
maximum shear modulus. The relationship is defined 
as
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(5)SVR(X) ∶ Rn
→ R

(6)y = SVR(X)

where X = (x1, x2, …..xn) is a vector which incorpo-
rates values of soil parameters, i.e., cohesion, internal 
friction angle, and maximum shear modulus. y is a 
vector of observed displacements. This study uses the 
polynomial kernel to develop the SVR model.

The SVR model is data-driven. Hence, a known 
dataset was required to train the SVR model. To 
generate a known dataset, soil parameters were 
considered as random variables with specified 
mean and standard deviation. Several realisations 
of these random variables were generated using 
the Latin hypercube method. For each realisation 
of soil parameters, numerical model using 
the finite difference method was developed to 
calculate displacement at a point on the slope 
surface. The calculated slope displacement and the 
corresponding realisation of soil parameters formed 
the training dataset. The SVR model was trained 
using this training dataset to further use the trained 
SVR model to predict slope displacement for an 
unknown set of soil parameters.

2.2.2 � Back analysis Based on Bayes Theorem 
and the MCMC Simulation

Bayes theorem utilises the observed information 
along with the prior knowledge of input parameters to 
update the posterior distribution of input parameters. 
This study uses the Bayes theorem for back 
analysis of seismically induced slope displacement. 
The estimation of slope displacement involves 
uncertainties, defined as the difference between 
observed displacement and predicted displacement by 
the model.

where y represents the observed slope displacement. 
h(θ) denotes the predicted value of slope displacement 
by the SVR model. θ and ε represent vectors of uncer-
tain input parameters and model correction factor, 
respectively. The model correction factor (ε) character-
ises the model and measurement uncertainty involved in 
the slope stability model. ε is assumed to follow normal 
distribution and have mean με and standard deviation σε. 
The likelihood function (L) is defined as the conditional 
probability density function (pdf) of θ for known με and 
σε; and the observed value of slope displacement (Y).

(7)y = h(�) + �
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where Φ is the pdf of standard normal variable. 
The likelihood function represents the chance of 
the predicted slope displacement being equal to the 
observed slope displacement.

According to Bayes theorem, the posterior 
distribution of θ is defined as

where k is a normalisation constant. f(θ) represents 
the distribution of prior knowledge of uncertain input 
parameters. Hence, the updated distribution of uncer-
tain input parameters can be obtained by introduc-
ing the likelihood function and solving Eq.  (9). The 
updated distribution (or posterior distribution) reflects 
the change in the input parameters, which led to the 
observed slope displacement.

The present study used the MCMC simulation to 
determine the posterior distribution using Eq. (9). The 
MCMC simulation draws samples from a random dis-
tribution. The drawn sample in the MCMC simulation 
depends on the previously drawn sample, which leads 
to the formation of the Markov chain. These samples 
finally converge to a given target distribution. Several 
algorithms, i.e., Gibbs sampler, Metropolis–Hastings 
algorithm, Slice sampler etc., are used to build Markov 
chains. The Metropolis–Hastings algorithm is the most 
used algorithm as it does not require knowledge of the 
shape of the target distribution.

The Metropolis–Hastings algorithm can be 
described as the following steps.

1.	 Initialise θ0 as the starting point of the Markov 
chain. It can be randomly chosen from the 
starting prior distribution.

2.	 Sample a candidate state θ* from the proposal 
distribution or jumping distribution g(θ*/θi−1). 
θ* is dependent on the previously drawn sample 
θi−1.

3.	 Draw a sample u from the uniform distribution 
U(0,1).

4.	 Estimate the probability of acceptance of Ө*
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where P(Ө) is the target density function and is 
defined as

5.	 If u ≤ A(�*/ � i−1), accept the candidate state θ* 
and assign θi = θ*, otherwise reject the candidate 
state and assign θi = θi−1.

6.	 Repeat all the previously described steps to 
obtain the required number of samples.

The abovementioned Metropolis–Hastings 
algorithm is governed by two factors: the selected 
proposal distribution and the burn-in period. The 
burn-in period is the required number of runs for 
Markov chain to reach a stationary density, making 
the candidate state follow the target distribution. In 
the present study, the proposal distribution is assumed 
to follow the normal distribution, and the probability 
of move is estimated using Eq. (11).

3 � Case Study

The Noto Hanto earthquake (magnitude 6.9 on the 
Richter scale) in 2007 led to many slope failures 
along the Noto Yuryo road, Japan (Hamada et  al. 
2007). One of these slope failures is considered as a 
case study for the proposed methodology. The input 
parameters for slope simulation, such as slope geom-
etry and soil properties, are taken from the previous 
study by Lu et al. (2015) (Table 1). The slope geom-
etry is shown in Fig.  1. The slope is formed of two 
materials, i.e., overlain soil and bedrock. The overlain 
material is sandy loamy soil. This benched slope is 
28.5  m in height and 78  m in length. The accelera-
tion time history for the Noto Hanto earthquake, 2007 
was obtained from the CESMD database (Center 

(11)P(�) = Φ

(

h(�) + �
�
− Y

�
�

)

f (�)

Table 1   Properties of the slope soil mass

Sr. No Properties Soil Bedrock

1 Unit weight (kN/m3) 17.5 20
2 Cohesion(kPa) 6.8 8
3 Internal friction angle 28.5 30
4 Shear Modulus (MPa) 30.5 174.5
5 Poisson’s ratio 0.3 0.35
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for strong motion data by USGS, CGS, and ANSS) 
https://​stron​gmoti​oncen​ter.​org (Fig.  2). This earth-
quake caused permanent deformation of soil slope.

3.1 � Numerical Simulation of Slope Displacement

The slope was simulated using 2D non-linear 
dynamic analysis in finite difference code FLAC 2D. 
The permanent horizontal slope displacement was 
observed at a point on the surface of the slope (Fig. 1). 
The acceleration time history was baseline corrected 
and applied at the base of the slope. The frequency 
content of the acceleration time history governs the 
mesh size of the model, as the mesh should facilitate 
accurate wave transmission. The mesh size was 

chosen for the overlain material having element sizes 
of 1–2.08 to 2.85–2  m. A different element size of 
2.85–2 m was adopted for bedrock material. The free 
field boundary condition was applied along the left 
and right boundary of the model. The quiet boundary 
condition was applied at the base of the model to 
decrease the effect of reflected waves.

The Mohr–Coulomb elastoplastic model was utilised 
in dynamic analysis to model the slope material. The 
non-associative flow rule was used for shear failure, and 
the associative flow rule was utilised for tension failure. 
Rayleigh damping was provided to take into account the 
energy dissipation. The shear modulus reduction and 
damping ratio variation with shear strain was considered 
from Seed and Idriss (1970) (Fig. 3). Static analysis was 
conducted prior to dynamic analysis to establish the ini-
tial stress condition in the model. The safety factor was 
estimated for the slope prior to earthquake loading. The 
calculated safety factor was 1.03, consistent with the 
safety factor of 1.06 calculated by Lu et al. (2015).

The acceleration time history was applied at the 
base of the slope for dynamic analysis. The slope dis-
placement was noted at a point on the slope surface 
as the output or response of the dynamic analysis. 
The noted slope displacement using dynamic analysis 
was 0.0429 m, comparable to the slope displacement 
of 0.045 m calculated by Lu et al. (2015). The state 
of stress after dynamic loading is shown in Fig.  4. 
Hence, the developed dynamic model accurately 
simulated the seismically induced slope displacement 
and can be used for further analysis.

For soil slopes under seismic loading, the slope 
material does not behave as a rigid block and deforms 
continuously with seismic loading. It may act as 

Fig. 1   The outline of slope 
geometry considered for 
case study

Fig. 2   Acceleration time history of applied at the base of the 
slope

https://strongmotioncenter.org
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debris flow due to the change in soil shear strength 
parameters under seismic loading (Kokusho and Ishi-
zawa 2007). Hence, soil shear strength and stiffness 
parameters (i.e., cohesion, internal friction angle, and 
maximum shear modulus) are considered for proba-
bilistic back analysis of seismically induced slope 
displacement.

3.2 � Mapping of Input and Output Parameters

The displacement back analysis is an effective 
approach for accurately estimating soil param-
eters and associated uncertainties as the soil is a 

non-homogeneous and anisotropic material. In the 
present study, Bayes theorem-based MCMC simula-
tion was utilised to conduct displacement back analy-
sis, which required mapping uncertain soil parameters 
to permanent slope displacement. The relationship 
between uncertain soil parameters and permanent 
slope displacement was established using the SVR 
model, which involves training the SVR model. The 
overlain soil material parameters were considered as 
input parameters for displacement back analysis as 
the deformation occurred in the overlain soil material. 
Li et al. (2016) generated 50 input parameters to train 
the machine learning model for displacement back 
analysis. In the present study, 40 sets of input param-
eters (cohesion, internal friction angle, and maximum 
shear modulus) were generated using the Latin hyper-
cube method, considering the values of the coefficient 
of variation (COV) summarised in Table 2. The COV 
of cohesion and friction were taken from Sivakumar 
Babu and Murthy (2005). The COV of maximum 
shear modulus was taken from Tran et  al. (2020). 
The slope displacement for each set of input param-
eters was estimated using the developed numerical 
dynamic model.

The dataset was assembled, incorporating input 
parameters and the corresponding permanent hori-
zontal slope displacement, calculated by non-lin-
ear dynamic analysis. This dataset was utilised for 
training the SVR model using Eq.  (6). To validate 
the trained SVR model, additional 20 sets of input 
parameters were also generated, and the correspond-
ing permanent horizontal slope displacement was 
estimated using the developed dynamic model. This 
additional dataset (called the testing dataset) was used 
to determine the accuracy of the trained SVR model. 
The accuracy of the trained SVR model was deter-
mined using the regression error characteristic (REC) 
curve (proposed by Bi and Bennett (2003)). The REC 
curves were plotted for training and testing datasets 
(Fig.  5). The area between the REC curve and the 
left Y-axis indicates the mean absolute error, which 
was very small (1.15e-4). The prediction loss for the 
trained SVR model was also estimated and found as 
2.99e-08, which was also very small.

The predicted slope displacement by the trained 
SVR model was also compared with the calculated 
slope displacement by the dynamic model (Fig.  6). 
It was observed that the testing samples shows more 
variability as compared to training samples. However, 

Fig. 3   a Shear modulus reduction (G0/ Gmax) with shear 
strain and b damping ratio variation with shear strain for 
sandy loamy soils (Seed and Idriss 1970). Gmax and G0 repre-
sent maximum shear modulus and small strain shear modulus, 
respectively
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the mean absolute error and prediction loss were 
very small for both training as well as testing data-
sets, which suggests that the trained SVM model effi-
ciently predicted slope displacement values. Hence, it 

Fig. 4   Shear strain response of slope after the earthquake

Table 2   Prior statistics of soil parameters

Sr no Parameter Mean value COV (%)

1 Cohesion 6.8 kPa 10
2 Internal friction angle 28.5 10
3 Shear Modulus 30.5 MPa 52

Fig. 5   Regression error characteristics (REC) curve for the 
trained SVM model

Fig. 6   Comparison of predicted displacement by SVM model 
and calculated displacement by slope simulation for, a training 
samples and b testing samples
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can be used to further estimate updated statistics of 
soil parameters using the MCMC simulation.

4 � Results

4.1 � Results of MCMC Simulation

In the present study, the MCMC simulation based 
on the Bayes theorem was conducted to determine 
posterior statistics of soil parameters. The selection 
of the proposal or jumping distribution was one 
of the crucial factors in the MCMC simulation (as 
mentioned in step 2 of the Metropolis–Hastings 
algorithm). A multivariate lognormal distribution was 
chosen as the jumping distribution in this study. The 
current point in the Markov chain acted as the mean 
point of the proposal distribution. The covariance 
of the proposal distribution was equal to ζCӨ. ζ and 
CӨ represent the scaling factor and covariance of 
uncertain input parameters (cohesion, internal friction 
angle, and maximum shear modulus), respectively.

The scaling factor (ζ) governs the movement speed 
of the Markov chain from one side to the other side 
of the posterior space. The scaling function should 
be selected so that the Markov chain does not spend 
too much time standing still and should not take 
exceptionally long to move from one side to the 
other side of the posterior space. The scaling func-
tion also controls the acceptance ratio, defined as the 
ratio of accepted samples and total samples. Gelman 
et  al. (1995) suggested that an acceptance ratio of 

20 to 40% is sufficient for the Markov chain to move 
actively in the posterior space. In the present study, 
the scaling factor was chosen as 2, which provided 
acceptance ratio of 29%.

The model correction factor (ε) accounts for 
uncertainties involved in the developed model. The 
mean of ε was assumed to be zero with an unknown 
standard deviation (σε). Since σε was not known, it 
was treated as an additional unknown in the Bayesian 
analysis with weakly informative prior distribution. It 
was inferred jointly with the parameters of the slope. 
In this study, this weakly informative distribution was 
selected as uniform distribution with a lower value 
equal to zero and a higher value equal to the observed 
displacement of the slope. In other words, the COV 
of the model uncertainty ranged from a minimum 
of zero to a maximum of 100%. This range of COV 
incorporated most of the model uncertainties esti-
mated using field data. In this study, thirty Markov 
chains with different initial states were run to deter-
mine the posterior statistics of input parameters. With 
the first half of samples rejected as it was assumed 
to belong to the burn-in phase, it was observed that 
the estimated posterior statistics were similar for all 
chains for large number of drawn samples. The pos-
terior statistics for different numbers of drawn sam-
ples are summarised in Table 3. It was noted that the 
variability of posterior statistics for different Markov 
chains was minimal. Hence, 100,000 samples were 
enough to determine robust posterior statistics. The 
prior and posterior distribution of input parameters 
were plotted in Fig.  7. The standard deviation of 

Table 3   Posterior statistics 
of input parameters for 
different number of drawn 
samples

Sr. no Parameter No. of samples Mean value Standard 
deviation

1 Cohesion (kPa) 10,000 6.83 0.69
20,000 6.81 0.68
50,000 6.71 0.66
100,000 6.70 0.66

2 Internal friction angle (degree) 10,000 30.35 2.80
20,000 28.52 2.78
50,000 27.74 2.76
100,000 27.51 2.75

3 Shear Modulus (MPa) 10,000 29.87 14.86
20,000 28.51 14.68
50,000 24.91 14.19
100,000 24.56 14.15
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cohesion and internal friction angle is slightly reduced 
by 3% and 1.78%, respectively. The mean of cohesion 
and internal friction angle is slightly reduced. At the 
same time, the mean of maximum shear modulus is 
decreased considerably (Table  4), and the standard 

deviation of maximum shear modulus is reduced by 
10.62%. Hence, maximum shear modulus governs the 
mechanism of seismic slope displacement as the sta-
tistics of maximum shear modulus showed the maxi-
mum variation after back analysis.

Garevski et  al. (2013) proposed an advanced 
methodology to estimate seismic slope instability and 
evaluated the effect of different uncertain parameters 
on slope stability using sensitivity analysis. They 
concluded that the shear modulus influences the slope 
deformation significantly. Kumar et al. (2017) studied 
the dynamic behaviour of soil at high strains using 
experimental study. They concluded that strain level 
or soil deformation significantly affects the shear 
modulus. The results of this study are consistent with 
the findings of these previous studies as statistics of 
maximum shear modulus are changed considerably 
after updating using MCMC simulation in this study, 
which suggests that the permanent slope displacement 
is more influenced by shear modulus than cohesion 
and internal friction angle.

The updated values of shear strength parameters 
are further validated by simulating the slope under 
seismic loading using updated values of these 
parameters. The obtained value of slope displacement 
is 0.045 m, which is very close to the obtained slope 
displacement by Lu et al. (2015). Hence, the obtained 
values of shear strength parameters are successfully 
validated and can be used to plan remedial measures. 
These values can also be further utilised for the 
reliability-based design of slopes.

Several studies are conducted to determine the 
posterior statistics of input parameters using MCMC 
simulation based on the Bayes theorem. These stud-
ies consider model uncertainties as the difference 
between actual performance and model prediction. 
The model uncertainties, considered using the model 
correction factor (ε), affect the estimation of poste-
rior statistics using MCMC simulation. The model 

Fig. 7   Prior and Posterior distribution of soil parameters, a 
cohesion, b internal friction angle, and c maximum shear mod-
ulus

Table 4   Prior and posterior 
statistics of soil parameters

Parameters Cohesion Internal friction angle Maximum 
shear 
modulus

Prior Mean 6.8 kPa 28.5 degree 30.5 MPa
Standard deviation 0.68 2.85 15.86

Posterior Mean 6.7 kPa 27.5 degree 24.5 MPa
Standard deviation 0.65 2.75 14.15
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uncertainties are considered normally distributed 
in the present study. According to previous studies, 
there is limited research on the effect of model uncer-
tainties on posterior statistics. Hence, in the present 
study, the standard deviation of the model correction 
factor (ε) is considered a variable to investigate its 
influence on posterior statistics. This knowledge will 
facilitate a better understanding of the back analysed 
model correction factor and its impact on the poste-
rior distribution of parameters.

4.2 � Effect of Model Uncertainties on Posterior 
Statistics

To observe the influence of model uncertainty on 
the posterior characteristics of soil parameters, the 
back analysis was performed for permanent slope 
displacement considering different variability 
of model uncertainty. For simplicity, the model 
uncertainty was considered to have zero mean, and 
the investigation was conducted for different values 
of fixed and known values of standard deviation. In 
this parametric study, the standard deviation of the 
model uncertainty was varied in multiples of the 
observed slope displacement (i.e., displacement/5, 
displacement/4, displacement/3, displacement/2, 
displacement, displacement × 2, displacement × 3, 
displacement × 4, displacement × 5), i.e., COV 
ranging from 20 to 500%.

Figure  8 shows the posterior mean of the cohe-
sion with increasing COV of the model uncertainty. 
It can be seen that the mean value decreases exponen-
tially with an increase in COV of model uncertainty 
till a value of 200% is reached, after which it remains 
constant. However, the posterior standard deviation 
of cohesion first decreases, attaining a minimum 
at COV of 33%, after which it increases to COV of 
200% and remains approximately constant, as evident 
from Fig.  8. The posterior mean of internal friction 
angle of soil decreases exponentially with increasing 
COV of model uncertainty (Fig. 9), showing similar 
behaviour to that of cohesion. However, the standard 
deviation of internal friction angle shows an expo-
nential increase and subsequently constant value 
with increasing COV of model uncertainty (Fig.  9). 
Similar behaviour of shear modulus is observed, i.e., 
exponential decrease and subsequently constant value 
at COV of 200% (Fig.  10). The posterior standard 
deviation of shear modulus decreases exponentially to 

reach a minimum at model uncertainty COV of 33% 
and marginally increased to achieve a constant value 
at COV of 200% (Fig. 10). The variation of calculated 
displacement using the updated values of soil param-
eters considering different values of COV of model 
uncertainty is also plotted in Fig.  11. It was noted 
from Fig. 11 that the noted displacement did not show 
a specific pattern with increasing standard COV of 
model uncertainty model uncertainty is a dynamic 
parameter and controlled by multiple factors. The 
variation shown in Fig. 11 is specific to the case study 
considered in the present study.

It should be noted that the posterior COV of soil 
parameters also shows a similar variation as the 
standard deviation of the posteriors. The posterior 
standard deviation of cohesion and internal friction 
angle becomes approximately equal to the prior 
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standard deviation after 300% COV of model 
uncertainty. However, the posterior standard 
deviation of the shear modulus is less than the prior 
standard deviation for higher COV.

The parametric study results suggest that the 
mean value of all soil parameters decreases with 
increased variability of model uncertainty. The 
variability of soil parameters has shown different 
patterns with the increase in the variability of model 
uncertainty. As the variability or standard deviation 
of model uncertainty increases, the observed 
information regarding the output becomes less 
informative, resulting in less efficacy in updating 
the variability of soil parameters (Zhang et  al. 
2009). This might be the reason for the different 

behaviour of standard deviation of soil parameters 
with model uncertainty.

5 � Concluding Remarks

The estimation of soil parameters in field conditions 
is a challenging task due to inherent uncertainties 
and the natural variability of the soil. Further, 
this task becomes more tedious for slopes under 
seismic conditions due to dynamic loading. To this 
aim, a framework for probabilistic back analysis 
is proposed to determine the soil parameters with 
inherent uncertainties for slope systems under seismic 
loading. The proposed methodology adopts Markov 
Chain Monte Carlo (MCMC) simulation based on 
the Bayes theorem. This method utilises the SVR 
algorithm to map the relationship between uncertain 
soil parameters and slope displacement. The SVR 
algorithm was trained using the data obtained by 
simulation of slope under seismic loading using the 
FDM model, considering input parameters as random 
variables. The efficiency of the trained SVR model 
was determined using the REC curve. The obtained 
SVR model was utilised in probabilistic back analysis 
using the Bayes theorem to update the statistics of 
uncertain input parameters. The MCMC simulation 
was adopted to draw samples from updated input 
parameters.

The results of probabilistic back analysis provide 
updated statistics of soil parameters. The variability 
of cohesion and internal friction angle is slightly 
reduced after updating using the Bayes theorem. 
The variability of maximum shear modulus is 
considerably reduced. The same pattern is observed 
for the mean of these parameters, i.e., the slight 
reduction in mean of cohesion and internal friction 
angle; and considerable reduction in mean of 
maximum shear modulus. Hence, the results of 
the study suggest that maximum shear modulus is 
greatly influenced by deformation or induced strain 
under seismic loading, which is consistent with the 
results of the previous studies conducted by Garevski 
et  al. (2013) and Kumar et  al. (2017). However, the 
numerical simulations utilised in the present study 
incorporate model uncertainty. The estimation of the 
model uncertainty is a challenging task as it depends 
on the values of other uncertainties, such as testing 
and measurement uncertainty. However, the decisions 
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made for geotechnical systems without considering 
model uncertainties could be biased. Hence, 
understanding the model uncertainty for numerical 
simulations is necessary to make appropriate 
decisions for geotechnical systems.

In the present study, the effect of model 
uncertainties on the updated statistics of input 
parameters is determined by conducting a parametric 
study. The parametric study involves probabilistic 
back analysis considering a constant value of zero 
for the mean of model error and the variable standard 
deviation of model uncertainty. The standard 
deviation of model error ranges from 20 to 500% of 
slope displacement in the field. The mean of all the 
soil parameters (cohesion, internal friction angle, 
and maximum shear modulus) showed similar 
behaviour, i.e., exponential decrease till a certain 
value of standard deviation and then constant value. 
On the other hand, the standard deviation of cohesion 
and maximum shear modulus first decreased until a 
certain standard deviation of model uncertainty and 
then increased. The variability of internal friction 
angle was increased exponentially. The results of 
the parametric study facilitate the understanding 
of model uncertainty for seismically induced slope 
displacement.
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