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In this paper, we study the shape optimization problem for the first eigenvalue 
of the p-Laplace operator with the mixed Neumann-Dirichlet boundary conditions 
on multiply-connected domains in hyperbolic space. Precisely, we establish that 
among all multiply-connected domains of a given volume and prescribed (n − 1)-th 
quermassintegral of the convex Dirichlet boundary (inner boundary), the concentric 
annular region produces the largest first eigenvalue. We also derive Nagy’s type 
inequality for outer parallel sets of a convex domain in the hyperbolic space.
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1. Introduction

The study of isoperimetric type inequalities for the eigenvalues of elliptic operators remains one of the 
most attracted areas in spectral theory after a famous conjecture by Lord Rayleigh stating that: among all 
domains of the given volume, the ball minimizes the first eigenvalue λ1 of the Dirichlet Laplacian, i.e.,

λ1(Ω) ≥ λ1(B), (1)

for all domains Ω such that Vol(Ω)=Vol(B). Here B represents the ball. This conjecture was proved by 
Faber [9] for planar Euclidean domains, and later Krahn [18] generalized it to higher dimensions. Inequality 
(1) is known as the Rayleigh-Faber-Krahn inequality. Similar results also hold for domains in Riemannian 
manifolds and for Robin boundary conditions; see [4,6,17] for instance. We refer to the monographs [14,15]
for various such isoperimetric type problems.

In this article, we focus on the first eigenvalue of the p-Laplace operator with the mixed Neumann-
Dirichlet boundary conditions on domains in the hyperbolic space. Let Hn denote the n-dimensional hyper-
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bolic space with constant sectional curvature −1. Let Ω ⊂ Hn be a bounded domain with ∂Ω = ΓD � ΓN . 
For 1 < p < ∞, the p-Laplace operator is defined as Δpu = div(|∇u|p−2∇u). Here ∇ denotes the hyperbolic 
gradient. For p = 2, the p-Laplace operator coincides with the classical Laplace-Beltrami operator. We 
consider the following eigenvalue problem of the p-Laplace operator:

−Δpu = τ |u|p−2u in Ω,

u = 0 on ΓD,

∂u

∂η
= 0 on ΓN ,

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (P)

where τ ∈ R and η is the outward unit normal vector to ΓN . A real number τ is said to be an eigenvalue 
of (P) if there exists φ ∈ W 1,p

ΓD
(Ω) \ {0} satisfying the following∫

Ω

|∇φ|p−2 〈∇φ,∇w〉dVg = τ

∫
Ω

|φ|p−2φw dVg, ∀ w ∈ W 1,p
ΓD

(Ω),

where dVg is the volume element induced by the hyperbolic metric g and W 1,p
ΓD

(Ω) is the space of all Sobolev 
functions that vanishes on ΓD, i.e.,

W 1,p
ΓD

(Ω) = {u ∈ W 1,p(Ω) : u|ΓD
= 0}.

It is well known that (P) admits a least positive eigenvalue τ1(Ω) (cf. [13]) whose variational characterization 
is given by

τ1(Ω) = inf
u∈W 1,p

ΓD
(Ω)\{0}

{∫
Ω |∇u|pdVg∫
Ω |u|pdVg

}
(2)

and τ1(Ω) is simple.
Let Wn−1(C) denote the (n − 1)-th quermassintegral (see Section 2.1 for precise definition) of a convex 

domain C. In this article, we choose the following types of domains:

Ω = ΩN \ ΩD, where ΩD,ΩN are two smooth, bounded domains in

Hn such that ΩD is simply connected and ΩD ⊂ ΩN .

AΩ = BR \Br, where BR, Br are two concentric open geodesic balls

of radius R, r (0 < r < R) respectively in Hn such that

|Ω| = |AΩ| and Wn−1(Br) = Wn−1(ΩD).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(D)

Assume that ΓD := ∂ΩD and ΓN := ∂ΩN . Here ΓD and ΓN , respectively, represent the Dirichlet and 
Neumann boundary, i.e., we consider the inner Dirichlet-outer Neumann boundary condition for (P).

Now we state some existing isoperimetric bounds of τ1(Ω) for domains in the Euclidean space. Suppose Ω
and AΩ are domains in Rn as defined in (D). For Ω ⊂ R2, Hersch [16] studied problem (P) for the classical 
Laplace operator and proved that AΩ maximizes the first eigenvalue of (P), i.e.,

τ1(Ω) ≤ τ1(AΩ).

The above inequality is known as the reverse Faber-Krahn inequality for the mixed eigenvalue problem. 
Note that in the planar case, the quermassintegral constraint, imposed on the Dirichlet boundary, reduces 
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to the perimeter constraint (see Section 2.1). In [1, Theorem 1.2], Anoop and Ashok extended Hersch’s 
result for the p-Laplacian and to the higher dimensions under the assumptions that ΩD is a ball. Later, 
in [8, Theorem 1.1], the authors extended this result to the case when ΩD is convex. The proof given by 
Hersch [16] is based on the “method of interior parallels” for planar domains. Hersch’s idea was to construct 
a test function whose level sets are the parallel sets to the Dirichlet boundary. The key step for applying 
this method is the Nagy’s inequality [26] for outer parallel sets of a planar domain, which is as follows:

Let K ⊂ R2 be a bounded, simply connected domain and δ > 0. Let Kδ denote the set of all points in R2

that are at a distance (Euclidean) at most δ from K. Suppose K# is an open ball in R2 of same perimeter 
as K, i.e., P (K) = P (K#). Then Sz. Nagy [26] proved that

P (Kδ) ≤ P (K#
δ ). (3)

In [1], the authors derive an analogue of the above inequality for multiply connected domains in higher 
dimensions under the assumption that ΩD is a ball. However, a rigorous version of Nagy’s type inequality 
(3) for convex domains in Rn (n ≥ 3) has been proved in [2, Corollary 3.4]. It is worth mentioning that 
Nagy’s type inequality has its own importance as it can be applied to obtain several bounds for the first 
eigenvalue of Laplacian and torsional rigidity; see [21,22], for instance. To the best of our knowledge, the 
analogue of Hersch’s result and Nagy’s type inequality for the outer parallel sets are not available in the 
hyperbolic space. Indeed, the reverse Faber-Krahn inequality is not available even for the Laplacian (p = 2) 
in the hyperbolic space.

A Similar reverse type isoperimetric inequality is also proved for the first Robin eigenvalue of the Laplacian 
on an exterior of a convex set by Krejčiřík and Lotoreichik [19]. They established that among all exterior of 
planar convex sets with fixed perimeter or area, the first Robin eigenvalue is maximized by the exterior of 
a disk. Later, they extended this result (without convexity constraint) to the class of exterior of a compact 
set in [20].

The main objective of this article is to prove Hersch’s result in the hyperbolic space Hn. Moreover, we 
establish a hyperbolic version of Nagy’s inequality (3). To state the main results, we need the following 
definitions.

Definition 1.1 (Outer parallel set). Let K ⊂ Hn and δ > 0. Then the Outer parallel body of K at a distance 
δ > 0 is defined as

Kδ = {x ∈ Hn : dH(x,K) ≤ δ},

where dH is the hyperbolic distance function. The boundary ∂Kδ is called as the Outer parallel set of K at 
a distance δ.

Next, we recall the definition of h-convex (or horoconvex) domains in the hyperbolic space; cf. [11, Section 
2]. For more details, see Section 2.2.

Definition 1.2 (h-convex domain). A domain K ⊂ Hn is said to be h-convex if all the principal curvatures 
of ∂K are bounded below by 1, i.e., if κi, 1 ≤ i ≤ n − 1, are the principal curvatures of ∂K, then 
κi ≥ 1, ∀ 1 ≤ i ≤ n − 1.

Let P (A) := |∂A| denote the perimeter of a set A ⊂ Hn. Now we state the first main result of this article 
which is an analogue of Sz. Nagy’s inequality for outer parallel sets of a domain in the hyperbolic space.

Theorem 1.3 (Nagy’s inequality). Let K ⊂ Hn be a smooth, bounded, convex domain and δ > 0. Let K∗ be 
an open geodesic ball in Hn such that Wn−1(K) = Wn−1(K∗). Then the followings hold:
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(i) If n = 2, then P (Kδ) ≤ P (K∗
δ ). Further, equality holds if and only if K is a geodesic ball.

(ii) If n ≥ 3 and K is h-convex, then P (Kδ) ≤ P (K∗
δ ). Further, equality holds if and only if K is a geodesic 

ball.

The main ingredients to prove Theorem 1.3 are (i) the Steiner formula for convex domains in Hn, and 
(ii) classical hyperbolic isoperimetric inequality (for n = 2) and a version of Alexandrov-Fenchel inequality 
involving the quermassintegrals due to Wang and Xia [28] (for n ≥ 3). First, we express the perimeter of 
outer parallel sets of a convex domain in terms of a polynomial in δ using the Steiner formula. Then we 
derive an isoperimetric type inequality between Wi(K) and Wi(K∗), which gives the desired result upon 
substituting in the Steiner formula. At this point, it is necessary to mention that for n = 2, we are able to get 
Nagy’s type estimate for the convex domains, thanks to the classical hyperbolic isoperimetric inequality that 
holds for any domain. However, for n ≥ 3, we need a stronger assumption than convexity, called h-convexity. 
This assumption is necessary to apply a class of Alexandrov-Fenchel inequalities (Proposition 2.8) which 
are not available for convex domains in the hyperbolic space. The extension of Theorem 1.3 for general 
domains in the hyperbolic space seems a challenging open problem.

Then by applying the Nagy’s inequality (Theorem 1.3), we prove the reverse Faber-Krahn inequality for 
domains in the hyperbolic space. More precisely, we obtain the following result.

Theorem 1.4 (Reverse Faber-Krahn inequality). Let Ω, AΩ be as defined in (D) and τ1 be the first eigenvalue 
of (P). Assume that ΩD is convex for n = 2 and ΩD is h-convex for n ≥ 3. Then

τ1(Ω) ≤ τ1(AΩ).

Moreover, equality occurs only when Ω = AΩ.

To prove Theorem 1.4, we apply the method of interior parallels in the hyperbolic space with the help of 
Nagy’s type inequality (Theorem 1.3) for outer parallel sets. Namely, we produce a test function on Ω using 
the first eigenfunction of AΩ that remains constant on the outer parallel sets to ΩD. Indeed, the construction 
of the test function on Ω is done in such a way that its gradient norm coincides with the first eigenfunction 
of AΩ, whereas its p-norm increases. We would like to mention that the analogue of Theorem 1.4 for the 
case when ΩD is a non-convex domain remains completely open (see Section 4).

The rest of this article is organized as follows. In Section 2, we discuss a few geometric tools related to 
the convex domains in the hyperbolic space and mention some facts about the h-convexity. The proofs of 
Theorem 1.3 and Theorem 1.4 are given in Section 3. Finally, in Section 4, we mention some open problems 
related to Nagy’s type inequality and reverse Faber-Krahn inequality.

2. Preliminaries

In this section, we first discuss the notion of quermassintegrals (or mixed volumes) for a convex domain in 
Hn. Then we state a few well known facts about the h-convex domains. We complete this section by providing 
some isoperimetric inequalities in the hyperbolic space, which will be used in later sections. Throughout 
the article, we denote the boundary of a set A ⊂ Hn by ∂A. Also, P (A) stands for the perimeter of A, i.e., 
P (A) = |∂A|.

2.1. Quermassintegrals & curvature integrals

Let K ⊂ Hn be a bounded, convex domain. Then the Quermassintegrals Wj(K), for 1 ≤ j ≤ n − 1, is 
defined (cf. [23,28]) as
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Fig. 1. Equidistants in the hyperbolic plane.

Wj(K) = (n− j)ωj−1 · · ·ω0

nωn−2 · · ·ωn−j−1

∫
Lj

χ(Lj ∩K)dLj , (4)

where Lj is a j-dimensional totally geodesic subspace, Lj is the space of all totally geodesic subspaces of 
dimension j, dLj is the natural measure on Lj , ωi denotes the i-dimensional Hausdorff measure of the 
i-dimensional unit sphere and χ is the characteristic function acting as χ(A) = 1, if A = ∅ and χ(A) = 0, 
if A = ∅. As a convention, we assume W0(K) = Vol(K) and Wn(K) = ωn−1

n . Also we observe that 
W1(K) = P (K)

n ; cf. [23].
Let κ1, κ2, . . . , κn−1 be the principal curvatures of ∂K and Hj , for 0 ≤ j ≤ n − 1, denote the normalized 

elementary symmetric functions of principal curvatures of ∂K. Then the Curvature integrals are defined by

Vn−j−1(K) =
∫
∂K

HjdS, for j = 0, 1, . . . , n− 1, (5)

where dS is the volume element on ∂K induced from Hn. Now by [25, Proposition 7], curvature integrals 
and quermassintegrals are related by the following formula:

Vn−j−1(K) = n

(
Wj+1(K) + j

n− j + 1Wj−1(K)
)
, for 0 ≤ j ≤ n− 1. (6)

2.2. Horoconvexity (h-convexity) in the hyperbolic space

We first define h-convexity in the hyperbolic plane via λ-geodesics and state some of its properties. Then 
we give the definition of h-convexity in higher dimensions. For more details, see [12].

Definition 2.1 (Equidistants or λ-geodesics). The curves which are equidistant to geodesics are called Equidis-
tants. A λ-geodesic is an equidistant that meets the infinity line with angle α such that | cosα| = λ.

Remark 2.2. For λ = 0(α = 90◦), equidistants are geodesics and for λ = 1, they are horocycles. The geodesic 
curvature of a λ geodesic is ±λ. Some equidistants in the hyperbolic plane have been drawn in Fig. 1.

The following lemma shows the relation between positions of different λ geodesics.

Lemma 2.3. Given any two points p and q in the hyperbolic plane and 0 < λ ≤ 1, there are exactly two λ-
geodesics passing through them. These λ-geodesics are symmetric with respect to the geodesic passing through 
p and q and lie in the region bounded by the two horocycles passing through these points.
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Now we define λ-convexity of a set in the hyperbolic plane, h-convexity is the particular case of this.

Definition 2.4. For given λ ∈ [0, 1], a set Ω in the hyperbolic plane is said to be λ-convex if for every p, q ∈ Ω, 
the λ-geodesics joining them lie inside Ω. 1-convex sets are also called h-convex sets.

Lemma 2.5. A compact domain Ω with C2-boundary is λ-convex if and only if the geodesic curvature kg of 
the boundary satisfies kg ≥ λ (kg ≤ −λ, in case of opposite orientation).

Remark 2.6. If a domain is λ0-convex then it is λ-convex for all λ ≤ λ0. In particular, every h-convex set is 
convex but converse is not true. For example, consider convex polygon.

In higher dimensions, h-convexity can be defined in the similar way. We define h-convexity of domains 
in n-dimensional hyperbolic space Hn in terms of horospheres.

A horoball is the limit of a sequence of increasing balls sharing a tangent hyperplane and its point of 
tangency. A horosphere is the boundary of a horoball.

Definition 2.7. A domain Ω ⊂ Hn is said to be horoconvex (or h-convex) if, for every point p ∈ ∂Ω, there 
exists a horosphere passing through the point p such that the domain Ω lies entirely in the horoball bounded 
by the horosphere.

2.3. Steiner formula & Alexandrov–Fenchel inequality

Let K ⊂ Hn be a smooth, bounded, convex domain and δ > 0. Then by Steiner formula (cf. [23, Chapter 
18, Section 4]), the volume of Kδ is given by

Vol(Kδ) := |Kδ| = Vol(K) +
n−1∑
j=0

(
n

j

)
Vj(K)

δ∫
0

coshj(t) sinhn−j−1(t)dt. (7)

Therefore, the perimeter P (Kδ) := |∂Kδ| of Kδ has the following expansion:

P (Kδ) = d

dδ
(Vol(Kδ)) =

n−1∑
j=0

(
n

j

)
Vj(K)

⎛⎝ d

dδ

δ∫
0

coshj(t) sinhn−j−1(t)dt

⎞⎠ . (8)

Now using (6), we restate (8) in terms of the quermassintegrals of K:

P (Kδ) =
n−2∑
j=0

n

(
n

j

){
Wn−j(K) + n− j − 1

j + 2 Wn−j−2(K)
}⎛⎝ d

dδ

δ∫
0

coshj(t) sinhn−j−1(t)dt

⎞⎠
+ n2W1(K)

⎛⎝ d

dδ

δ∫
0

coshn−1(t)dt

⎞⎠ . (9)

Hyperbolic Isoperimetric inequality: Let γ be a closed curve in H2 and K be the domain enclosed by γ. 
Then the hyperbolic isoperimetric inequality (cf. [24]) states that

P (K)2 ≥ 4π|K| + |K|2, (10)

where |K| is the area of K and P (K) is the length of γ. Furthermore, equality occurs if and only if γ is a 
circle.
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Next, we state an isoperimetric inequality between the quermassintegrals of an h-convex domain in 
hyperbolic space obtained by Wang and Xia [28, Theorem 1.1].

Proposition 2.8 (Alexandrov–Fenchel inequality in Hn). Let K ⊂ Hn be a smooth, h-convex, bounded do-
main. Also let fm : [0, ∞) �−→ R+ be defined by fm(r) = Wm(Br), where Br is the geodesic ball of radius r. 
Then for 0 ≤ i < j ≤ n − 1,

Wj(K) ≥ fj ◦ f−1
i (Wi(K)).

The equality occurs if and only if K is a geodesic ball.

3. Main results

In this section, we first give a proof of Theorem 1.3.

Proof of Theorem 1.3. (i) Since n = 2, we have P (K) = P (K∗), i.e., W1(K) = W1(K∗). Therefore, by 
isoperimetric inequality (10), we have |K| ≤ |K∗|, i.e., W0(K) ≤ W0(K∗). Hence from Steiner formula (9), 
we get

P (Kδ) ≤ 2
{
W2(K∗) + 1

2W0(K∗)
}⎛⎝ d

dδ

δ∫
0

sinh(t)dt

⎞⎠ + 4W1(K∗)

⎛⎝ d

dδ

δ∫
0

cosh(t)dt

⎞⎠
= P (K∗

δ ).

The equality case follows immediately from the isoperimetric inequality (10).
(ii) Given that

Wn−1(K) = Wn−1(K∗). (11)

Let 0 ≤ j < n − 1. Since K is h-convex, applying Proposition 2.8 for j and n − 1 and using (11), we get

fn−1 ◦ f−1
j (Wj(K)) ≤ Wn−1(K) = Wn−1(K∗) = fn−1 ◦ f−1

j (Wj(K∗)).

Thus

fn−1 ◦ f−1
j (Wj(K)) ≤ fn−1 ◦ f−1

j (Wj(K∗)). (12)

Now from (4), we observe that if r1 < r2, then Wi(Br1) < Wi(Br2), for all 0 ≤ i ≤ n − 1. Thus the function 
r �−→ fi(r) is a strictly increasing function for all 0 ≤ i ≤ n −1. Therefore inequality (12) immediately gives 
that

Wj(K) ≤ Wj(K∗), for all 0 ≤ j < n− 1. (13)

Also the equality occurs in (13) only when K is a geodesic ball (by Proposition 2.8). Thus using (13) in (9), 
we have

P (Kδ) ≤
n−2∑
j=0

n

(
n

j

){
Wn−j(K∗) + n− j − 1

j + 2 Wn−j−2(K∗)
}⎛⎝ d

dδ

δ∫
coshj(t) sinhn−j−1(t)dt

⎞⎠

0
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+ n2W1(K∗)

⎛⎝ d

dδ

δ∫
0

coshn−1(t)dt

⎞⎠
= P (K∗

δ ).

Hence P (Kδ) ≤ P (K∗
δ ). Now the equality case follows from (13). This completes the proof. �

Remark 3.1. Note that for n = 2, Wn−1(K) = Wn−1(K∗) implies that P (K) = P (K∗) (see Section 2.1). 
However, if n ≥ 3, then P (K) < P (K∗).

Next, we prove an auxiliary result which is needed to prove our main result. Let us start with a notational 
set up. Let Ω and AΩ be as stated in (D), i.e., Ω = ΩN \ΩD and AΩ = BR \Br. Also, we have Wn−1(ΩD) =
Wn−1(Br), i.e., Ω∗

D = Br. Define

B(δ) = ∂ΩDδ
∩ Ω, L(δ) = |B(δ)|, for δ > 0,

δ0 = sup{δ > 0 : B(δ) = ∅}.

Note that L(δ) ≤ P (ΩDδ
), ∀ δ > 0. We set L̃(δ) := P (Brδ ) for simplicity. For p ∈ (1, ∞), we construct M

and M̃ as follows:

M(δ) =
δ∫

0

1
L(r)p′−1 dr, M̃(δ) =

δ∫
0

1
L̃(r)p′−1

dr, (14)

where p′ = p
p−1 is the holder conjugate of p.

Remark 3.2.

(i) Note that, both δ �−→ M(δ) and δ �−→ M̃(δ) are strictly increasing functions on [0, δ0] and [0, R − r], 
respectively. Moreover, M(δ0) can be infinite also.

(ii) Observe that, by Theorem 1.3, L(δ) ≤ L̃(δ) for all δ > 0. Therefore, by the definitions of M and M̃ , we 
immediately have M̃(δ) ≤ M(δ) for all δ > 0.

The euclidean version of the following lemma has been proved in [1, Lemma 2.7] when ΩD ⊂ Rn is a 
ball, and in [2, Lemma 5.2] when ΩD ⊂ Rn is convex. We generalize these results for ΩD ⊂ Hn using the 
hyperbolic analogue of Nagy’s inequality.

Lemma 3.3. Suppose Ω, AΩ, M and M̃ are as mentioned above. Assume that ΩD is convex for n = 2 and 
ΩD is h-convex for n ≥ 3. Then the followings hold:

(i) R− r ≤ δ0, with equality occurs only when Ω is a concentric annular region.
(ii) Define

G(β) = L(M−1(β)), for β ∈ [0,M(δ0)]

and G̃(β) = L̃(M̃−1(β)), for β ∈ [0, M̃(R− r)].

Then G(β) ≤ G̃(β), for all β ∈ [0, M̃(R − r)] and equality holds if and only if Ω is a concentric 
annulus. Furthermore, if Ω is not a concentric annulus, then G(β) < G̃(β) on [β′, M̃(R− r)], for some 
β′ ∈ [0, M̃(R− r)].
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Proof. (i) If possible, let R− r > δ0. Now by Theorem 1.3, we have L(δ) ≤ L̃(δ). Therefore,

|AΩ| =
R−r∫
0

L̃(δ)dδ ≥
δ0∫
0

L(δ)dδ +
R−r∫
δ0

L̃(δ)dδ = |Ω| +
R−r∫
δ0

L̃(δ)dδ > |Ω|,

which is a contradiction as |Ω| = |AΩ| (by assumption). Hence R− r ≤ δ0. Now if δ0 = R− r, then

R−r∫
0

L̃(δ)dδ =
δ0∫
0

L(δ)dδ =⇒
R−r∫
0

(L̃(δ) − L(δ))dδ = 0.

Observe that both L and L̃ are continuous function and hence L(δ) = L̃(δ), for all δ ∈ [0, R − r]. Further, 
by applying Theorem 1.3 for ΩD, we get

L(δ) ≤ P (ΩDδ
) ≤ P (Brδ) = L̃(δ), for all δ ∈ [0, R− r].

Thus we have P (ΩDδ
) = P (Brδ ). Therefore, by Theorem 1.3, it follows that ΩD must be a geodesic ball. 

Also since δ0 = R− r, ΓN has to be a geodesic sphere. Hence Ω must be a concentric annulus.
(ii) Let M∗ = M(δ0) and M̃∗ = M̃(R−r). Then using (i) and Remark 3.2, we have M̃∗ ≤ M∗. Therefore,

M−1(β) ≤ M̃−1(β), for all β ∈ [0, M̃∗].

Since δ �−→ L̃(δ) is an strictly increasing function on [0, R− r], we get

G(β) = L(M−1(β)) ≤ L̃(M−1(β)) ≤ L̃(M̃−1(β)) = G̃(β).

Moreover, if G(β) = G̃(β), then L(δ) = L̃(δ), for all δ ∈ [0, R − r]. Thus the equality case follows 
immediately from (i). Now if Ω is not a concentric annulus, then by (i), there exists δ′ ∈ [0, R − r] such 
that L(δ′) < L̃(δ′). Thus M̃(δ′) < M(δ′) and hence M̃(δ) < M(δ) for all δ′ ≤ δ ≤ R− r. Now substituting 
β′ = M(δ′) gives the desired conclusion. �

Now we state few properties of a first eigenfunction of (P) associated to τ1.

Proposition 3.4. Let Ω be as mentioned in (D) and τ1(Ω) be the first eigenvalue of (P) on Ω. Suppose that 
u is an eigenfunction associated to τ1(Ω). Then

(i) u has constant sign;
(ii) u ∈ C1(Ω);
(iii) if v is an eigenfunction associated to τ1(AΩ), v is radially constant and radially increasing.

Proof. (i) Notice that, if u is a minimizer for (2), then |u| is so. Since τ1(Ω) is simple, there exists c ∈ R

such that |u| = cu. Hence the conclusion follows.

(ii) Proof follows along the same line as [3, Theorem 1.3] or [27].

(iii) Let v be a positive eigenfunction associated to τ1(AΩ) such that ||v||pp =
∫
AΩ

|v|pdVg = 1. Also let H be 
a geodesic hyperplane passing through the center of AΩ and σH denotes the reflection through H. Define, 
w = v◦σH . Then it is easy to observe that w ∈ W 1,p

ΓD
(AΩ), 

∫
AΩ

|w|pdVg = 1, and 
∫
AΩ

|w|pdVg =
∫
AΩ

|v|pdVg. 
Therefore, w is also an eigenfunction associated to τ1(AΩ). Hence by the simplicity of τ1(AΩ), there exists 
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c > 0 such that w = cv. Using ||w||p = ||v||p, we get c = 1. Since H is arbitrary, we conclude that v is 
symmetric with respect to any geodesic hyperplane passing through the center of AΩ. Hence v is radial.

Recall that AΩ = BR\Br, where Br, BR are two concentric open geodesic balls of radius r, R (0 < r < R), 
respectively, in Hn. Since v is radial, we can write v(x) = f(s), where s = |x| (Hyperbolic norm), for some 
function f : [r, R] → R. Now f satisfies the following ordinary differential equation associated to (P):

−
(
|f ′(s)|p−2f ′(s)sn−1)′ = τ1(AΩ)sn−1f(s)q−1 for s ∈ (r,R),

f(r) = 0 ; f ′(R) = 0.

Since f is positive (as v is so) in (r, R), we get 
(
|f ′(s)|p−2f ′(s)sn−1)′ < 0 for s ∈ (r, R). Therefore, 

|f ′(s)|p−2f ′(s)sn−1 is strictly decreasing and hence using the boundary condition at R, we get

|f ′(s)|p−2f ′(s)sn−1 > 0 for s ∈ (r,R).

Hence f ′ > 0 in (r, R). �
Now we give a proof of Theorem 1.4. To prove our result, we adapt the ideas used in [1,2,16] to the 

hyperbolic space.

Proof of Theorem 1.4. Let v be an eigenfunction of (P) associated to τ1(AΩ). Then by Proposition 3.4, v
is radial and it can be chosen positive in AΩ, i.e., v > 0 and v(x) = v(dH(x, ∂Br)), for all x ∈ AΩ, where 
dH is the hyperbolic distance function. Let M̃ be as defined in (14). Now we represent v in terms of M̃ in 
the following way:

v(x) = v(dH(x, ∂Br)) = (v ◦ M̃−1)(M̃(dH(x, ∂Br))), ∀ x ∈ AΩ.

Let f = v ◦ M̃−1. Then v(x) = (f ◦ M̃)(dH(x, ∂Br)), ∀ x ∈ AΩ. If M∗ = M(δ0) and M̃∗ = M̃(R− r), then 
M̃∗ ≤ M∗. Recall that ΓD = ∂ΩD. Now define u : Ω −→ R as

u(x) =
{

(f ◦M)(dH(x,ΓD)), if M(dH(x,ΓD)) ∈ [0, M̃∗],
f(M̃∗), if M(dH(x,ΓD)) ∈ (M̃∗,M∗].

Note that dH(·, ΓD) is a Lipschitz function. Also f is C1 as v is so (by Proposition 3.4-(ii)). Thus u ∈
W 1,p(Ω). Further, u(x) = 0 for all x ∈ ΓD. Hence u ∈ W 1,p

ΓD
(Ω). Now using the fact that |∇dH(x, ΓD)| =

1, ∀ x ∈ Ω and by the Coarea formula [10, Theorem 3.1], we get∫
Ω

|∇u(x)|pdVg =
∫
Ω

|∇u(x)|p|∇dH(x,ΓD)|dVg

=
M−1(M̃∗)∫

0

( ∫
{x∈Ω: dH(x,ΓD)=δ}

|∇u(x)|pdS
)

dδ

=
M−1(M̃∗)∫

0

(
|f ′(M(δ))|p|M ′(δ)|p

)( ∫
B(δ)

dS
)

dδ

=
M−1(M̃∗)∫ (

|f ′(M(δ))|p|M ′(δ)|p
)
L(δ)dδ
0
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=
M−1(M̃∗)∫

0

|f ′(M(δ))|p
L(δ)p′−1 dδ =

M̃∗∫
0

|f ′(β)|pdβ,

where we make a change of variable M(δ) = β in the last step. Thus

∫
Ω

|∇u(x)|pdVg =
M̃∗∫
0

|f ′(β)|pdβ. (15)

Also ∫
Ω

|u(x)|pdVg

=
M−1(M∗)∫

0

( ∫
{x∈Ω: dH(x,ΓD)=δ}

|u(x)|pdS
)

dδ

=
M−1(M̃∗)∫

0

( ∫
{x∈Ω: dH(x,ΓD)=δ}

|u(x)|pdS
)

dδ +
δ0∫

M−1(M̃∗)

( ∫
{x∈Ω: dH(x,ΓD)=δ}

|u(x)|pdS
)

dδ

=
M̃∗∫
0

f(β)pL(M−1(β))p
′
dβ + f(M̃∗)p

M∗∫
M̃∗

L(M−1(β))p
′
dβ. [putting M(δ) = β]

Therefore,

∫
Ω

|u(x)|pdVg =
M̃∗∫
0

f(β)pG(β)p
′
dβ + f(M̃∗)p

M∗∫
M̃∗

G(β)p
′
dβ, (16)

where G is as defined in Lemma 3.3-(ii). By similar methods, we can show that

∫
AΩ

|∇v(x)|pdVg =
M̃∗∫
0

|f ′(β)|pdβ, (17)

∫
AΩ

|v(x)|pdVg =
M̃∗∫
0

f(β)pG̃(β)p
′
dβ. (18)

Observe that, by Proposition 3.4-(iii), v attains its maxima on ∂BR and hence we have f(β) ≤ f(M̃∗) for 
all β ∈ [0, M̃∗]. Thus from (16), (18) and using Lemma 3.3-(ii), we get∫

AΩ

|v(x)|pdVg −
∫
Ω

|u(x)|pdVg

≤ f(M̃∗)p
M̃∗∫
0

(
G̃(β)p

′ −G(β)p
′
)
dβ − f(M̃∗)p

M∗∫
˜

G(β)p
′
dβ
M∗
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= f(M̃∗)p
M̃∗∫
0

G̃(β)p
′
dβ − f(M̃∗)p

M∗∫
0

G(β)p
′
dβ

= f(M̃∗)p
M̃∗∫
0

(
L̃(M̃−1(β))

)p′

dβ − f(M̃∗)p
M∗∫
0

(
L(M−1(β))

)p′

dβ

= f(M̃∗)p
R−r∫
0

L̃(δ)dδ − f(M̃∗)p
δ0∫
0

L(δ)dδ = f(M̃∗)p
(
|AΩ| − |Ω|

)
.

Since by assumption |Ω| = |AΩ|, we have∫
AΩ

|v(x)|pdVg ≤
∫
Ω

|u(x)|pdVg, (19)

where equality occurs only when Ω is a concentric annular region (by Lemma 3.3-(ii)). Now the assertion 
follows substituting (15), (17) and (19) in the variational characterization (2) of τ1. Further, equality case 
immediately comes from the equality case in (19). This completes the proof. �
Thermal insulation problem: Let Ω = ΩN \ΩD be a smooth, doubly connected domain in Hn as defined in 
(D). For p ∈ (1, ∞), let us consider the following boundary value problem on Ω:

−Δpu = 0 in Ω,

u = 1 on ΩD,

|∇u|p−2 ∂u

∂η
+ β|u|p−2u = 0 on ∂ΩN ,

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (T )

where β > 0 is a real parameter and η is the outward unit normal to ∂ΩN . Then the energy functional 
E(ΩD, Ω) associated to (T ) is given by

E(ΩD,Ω) = inf
v∈W 1,p(ΩN ),v≡1 in ΩD

⎧⎨⎩
∫
Ω

|∇v|p + β

∫
∂ΩN

|v|p
⎫⎬⎭ . (20)

These types of problems arise in the study of thermal insulation, where a body ΩD of constant temperature 
remains surrounded by an insulating material ΩN \ΩD and E(ΩD, Ω) represents the energy of the system; we 
refer to the book [5] for an overview of such problems. Now it is natural to look for the critical configurations 
of ΩD and ΩN so that the energy E(ΩD, Ω) is optimized. For planar Euclidean domains, in [7, Theorem 
3.1], authors proved that

E(ΩD,ΩD + δB1) ≤ E(Ω#
D,Ω#

D + δB1),

where δ > 0, Ω#
D is an open ball with the same perimeter as ΩD, and B1 is the open Euclidean ball of 

radius one centered at the origin. Here ΩD + δB1 := {x + δy : x ∈ ΩD, y ∈ B1}. The similar result holds 
in higher dimensions also if ΩD is convex and Ω#

D is replaced by Ω∗
D, where Ω∗

D is the open Euclidean ball 
centered at the origin such that Wn−1(Ω∗

D) = Wn−1(ΩD); cf. [7, Theorem 4.1]. We would like to stress that 
the hyperbolic analogue of these results can be proved using a similar method developed in this article. To 
be precise, we can prove the following result.
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Theorem 3.5. Let ΩD ⊂ Hn be a smooth, simply connected domain and ΩN = ΩD + δB1, for some δ > 0, 
i.e., Ω = (ΩD + δB1) \ ΩD. Let E(ΩD, Ω) be the energy associated to (T ) as defined in (20). Then the 
following holds:

(i) if n = 2 and ΩD is convex, then E(ΩD, Ω) ≤ E(Ω#
D, Ω#

D + δB1), where Ω#
D is an open geodesic ball with 

same perimeter as ΩD.
(ii) if n ≥ 2 and ΩD is h-convex, then E(ΩD, Ω) ≤ E(Ω∗

D, Ω∗
D + δB1), where Ω∗

D is an open geodesic ball 
with same (n − 1)-th quermassintegral as ΩD.

Moreover, equality occurs in both the above cases when ΩD is an open geodesic ball in Hn.

4. Final comments and open problems

Remark 4.1. We conclude this article by introducing some immediate open questions.

(i) As pointed out in Remark 3.1, for n ≥ 3, K∗ has a larger perimeter than K. It is not known whether 
Theorem 1.3-(ii) will hold or not if K∗ is replaced by K#, where K# is an open geodesic ball such 
that P (K) = P (K#).

(ii) For n = 2, we have established the reverse Faber-Krahn inequality (Theorem 1.4) under the assumption 
that ΩD is a convex (geodesically) domain in Hn. This assumption is necessary to apply the hyperbolic 
Steiner formula (7). Therefore, our approach of proofs is not applicable if ΩD is not convex. Of course, 
it could be an interesting problem to study when ΩD is a non-convex domain. However, this seems to 
be a challenging problem at this moment.

(iii) For n ≥ 3, we proved Theorem 1.4 when ΩD is a h-convex domain in Hn. Such assumption is essential 
in order to use the hyperbolic Alexandrov-Fenchel inequality (Theorem 2.8) which is a crucial tool in 
proving Nagy’s type inequality (Theorem 1.3-(ii)). To the best of our knowledge, a similar version of 
Alexandrov-Fenchel inequality is not available in Hn if the domain is not h-convex.
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