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Abstract. In this paper, we develop Newton’s method for robust counterpart of an uncertain multiobjec-
tive optimization problem under an arbitrary finite uncertainty nonempty set. Here the robust counterpart
of an uncertain multiobjective optimization problem is the minimum of objective wise worst case, which
is the nonsmooth deterministic multiobjective optimization problem. To solve this robust counterpart
with the help of Newton’s method, a suproblem is constructed and solved to find a descent direction for
robust counterpart. An Armijo type inexact line search technique is developed to find a suitable step
length. With the help of the descent direction and step length, we present the Newton’s algorithm for the
robust counterpart. The convergence of the Newton’s algorithm for the robust counterpart is obtained un-
der some usual assumptions. We also prove that the algorithm converges with super linear and quadratic
rate under different assumptions. Finally, we verify the algorithm and compare with the weighted sum
method via some numerical problems.
Keywords. Line search techniques; Multiobjective optimization problem; Newton’s method; Robust
efficiency; Uncertainty; Robust optimization.

1. INTRODUCTION

Consider the deterministic unconstrained optimization problem

OP : min
x∈Rn

ϒ(x),

where ϒ : Rn→ R is the objective function. In real world applications, the objective function
may depend on uncertain parameters. Uncertainty in the objective function leads to parameter
uncertainty. Different types of uncertainty affect the solution of optimization problems [1, 2].
In order to handle such uncertainties, instead of OP the following parameterized family of
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problems can be considered:

OP(U) = {(OP(ξ )) : ξ ∈U},

where for any fixed ξ ∈U,

OP(ξ ) : min
x∈Rn

ϒ(x,ξ ), is a deterministic optimization problem.

On the other hand, an optimization problem which has more than one objective functions is
called multiobjective optimization problem. The multiobjective optimization problem (MOP)
can be defined as

MOP : min
x∈Rn

Ψ(x),

where Ψ : Rn → Rm, Ψ(x) = (Ψ1(x),Ψ2(x), . . . ,Ψm(x)), and Ψ j : Rn → R for all j ∈ Λ =
{1,2, . . . ,m}.

In multiobjective optimization problem, all objective functions cannot be optimize simulta-
neously. A point x∗ ∈ Rn is an efficient solution tothis MOP if there is no x ∈ Rn, x 6= x∗, such
that Ψ(x) ≤Ψ(x∗) and Ψ(x) 6= Ψ(x∗). Also a point x∗ ∈ Rn is an weakly efficient solution for
MOP if there is no x∈Rn such that Ψ(x)< Ψ(x∗). Clearly, every efficient solution is an weakly
efficient solution. The image of the solution of MOP is called nondominated point in objective
space. The meaning of “ < ” and “ ≤ ” in the above discussion is the vector ordering between
two vectors which can be understood in the following way: for any v,u ∈ Rn,

• v≥ u⇐⇒ v−u ∈ Rn
≥⇐⇒ v j−u j ≥ 0, for each j

• v > u⇐⇒ v−u ∈ Rn
>⇐⇒ v j−u j > 0, for each j,

where Rn = R× ...×R︸ ︷︷ ︸
n times

, R> = {x ∈ R : x > 0}, R≥ = {x ∈ R : x ≥ 0}, Rn
> = R>× ...×R>︸ ︷︷ ︸

n times

,

and Rn
≥ = R≥× ...×R≥︸ ︷︷ ︸

n times

.

Similar to uncertain single objective optimization problem, an uncertain multiobjective opti-
mization problem can be considered as

MOP(U) = {MOP(ξ ) : ξ ∈U},

where for any fixed ξ ∈U,

MOP(ξ ) = min
x∈Rn

Ψ(x,ξ ), is a deterministic multiobjective optimization problem.

In particular, if we take m = 1 in MOP(U), then the problem is uncertain single objective
optimization problem [1].

In literature, three types of scalarization methods are there to solve MOP [3, 4, 5]. With
the help of scalarization method, we can find the solution of robust counterpart of MOP(U)
which gives the proper robust efficient or proper robust weakly efficient or proper robust strictly
efficient solution. The choice of parameter in scalarization method is not known in advance,
which is the disadvantage of scalarization methods. Apart from these techniques, numerical
approximation techniques are also developed by many researchers to calculate the critical point
and weakly efficient solution or efficient solution or strictly efficient solution for unconstrained
MOP; see, e.g., [6, 7, 8, 9, 10]. To compute the critical point, descent type method are developed
for MOP that do not rely on scalarization approaches; see, e.g., [5, 11, 12, 13, 14, 15]. Two
main features of these methods at every iteration are as follows:
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(i) with the help of a tractable subproblem, a descent direction can be generated;
(ii) to find the feasible point which dominates the current one, a line search method is con-

ducted along the obtained direction.
Fliege and Svaiter [11] proposed a steepest descent method to find the critical point of MOP.

After that, Drummond et al. [5, 15] gave the idea to find the critical point for unconstrained
MOP with Newton’s method.

Motivated by the above literature we generalize the idea of Drummond et al. [5] of the critical
point for the robust counterpart of MOP(U), which gives the robust efficient or robust weakly
efficient or robust strictly efficient solution to MOP(U). For MOP(U), a solution x∗ is called

• robust weakly efficient if there is no x ∈ Rn−{x∗} such that ΨU(x)⊂ΨU(x∗)−Rk
>.

• robust efficient if there is no x ∈ Rn−{x∗} such that ΨU(x)⊂ΨU(x∗)−Rk
≥.

• robust strictly efficient if there is no x ∈ X−{x∗} such that ΨU(x)⊂ΨU(x∗)−Rk
=,

where ΨU(x) = {Ψ(x,ξ ) : ξ ∈U}. With the help of above definitions, we can easily understand
that

strictly efficient =⇒ robust efficient =⇒ robust weakly efficient.
As we mentioned above, to solve MOP(U), first we transform it into a deterministic multiob-

jective optimization problem, which is known as robust counterpart of MOP(U). Here we use
objective wise worst case (OWC) type robust counterpart which can be written as follows

min
x∈Rn

φ(x),

where φ(x) = (φ1(x),φ2(x), ...,φm(x)) and φ j(x) = maxξ Ψ j(x,ξ ). Therefore, it can be write as:

min
x∈Rn

φ(x) =
(

max
ξ∈U

Ψ1(x,ξ ),max
ξ∈U

Ψ2(x,ξ ), ...,max
ξ∈U

Ψm(x,ξ )
)
.

In this paper, we consider that the uncertainty set U is a finite subset of Rk containing p
elements i.e., U = {ξi : i ∈ Λ̄ = {1,2, . . . , p}} ⊂ Rk. From now on, we consider MOP(U) as
P(U) and its robust counterpart as RP respectively. So the problem becomes

P(U) = {P(ξi) : ξi ∈U, i ∈ Λ̄} (1.1)

such that P(ξi) := minx∈Rn Ψ(x,ξi), where Ψ(x,ξi) = (Ψ1(x,ξi),Ψ2(x,ξi), . . . ,Ψm(x,ξi)), Ψ :
Rn×U → Rm, ξi ∈U = {ξ1,ξ2, . . . ,ξp}.

RP : min
x∈Rn

φ(x) = (φ1(x),φ2(x), ...,φm(x)), (Robust counterpart)

where φ j(x) = maxi∈Λ̄
Ψ j(x,ξi), j = 1,2, . . . ,m. Therefore, P(U) is a uncertain multiobjective

optimization problem with finite uncertainty sets. To solve P(U), we solve RP with the help
of the Newton’s method. The solution of RP is the solution to P(U) i.e., the weakly efficient\
efficient\ strictly efficient solution for RP will be the robust weakly efficient\ robust efficient\
robust strictly efficient solution for P(U). RP is a specific type nonsmooth multiobjective opti-
mization problem. To solve this problem, we generalized the idea of Fliege et al. [5], which is
defined for smooth multiobjective optimization problems.

We organize this paper as follows. Some important results, basic definitions, and theorems
which are related to our problem are presented in section 2. We given the Newton’s direction
for finding subproblems and its solutions in subsection 3.1. After finding the Newton’s descent
direction in Section 3.1, which is a solution to Newton’s direction finding subproblem, we given
the Armijo type line search rule to find the suitable step length size in Subsection 3.2. With the
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step size, which satisfies the Armijo type line search rule, it is ensures that the function value
will decrease in the Newton’s descent direction. To find the critical point, we write the Newton’s
algorithm for RP in Subsection 3.3. With the help of this algorithm, we generate a sequence,
and in Subsection 3.4, we prove that the sequence converges to a critical point. In Subsection
3.5, we prove that, under some assumptions, the sequence generated by the Newton’s algorithm
converges with superlinear and quadratic rate. In Subsection 3.6, numerically, we verify the
Newton’s algorithm for RP with the help of suitable examples. In Section 4, we conclude with
some comments related to the presented algorithm.

2. PRELIMINARIES

In smooth MOP, a point x∗ is critical point for Ψ if R(DΨ(x∗))∩ (−Rm
>) = /0 (i.e., for all

v ∈ Rn, there exists a j0 ∈ Λ such that ∇Ψ j0(x
∗)T v ≥ 0). This is the necessary condition for

Pareto optimality for MOP (Fliege and Svaiter [11]). In other words, if x∗ is critical point for
G, then, for all v ∈ Rn, there exists j0 = j0(v) ∈ Λ such that ∇Ψ j0(x

∗)T v ≥ 0. In general, for
unconstrained smooth MOP, efficiency (Pareto optimality) is not equivalent to criticality (i.e.,
critical points need not be efficient solutions). Both (criticality and efficiency) are related as
follows;

(a) If x∗ ∈ Rn is weak efficient solution or efficient solution, then x∗ is a critical point for Ψ.
(b) If Ψ is Rm−convex and x∗ is critical point for G, then x∗ is a weak efficient solution.
(c) If Ψ is Rm twice continuously differentiable and for each j ∈ Λ and x ∈ Rn, ∇2Ψ j(x) is

positive definite, and if x∗ is critical point, then x∗ is an efficient solution.

In RP, generally, φ j(x) = maxi∈Λ̄
Ψ j(x,ξ ) is not differentiable. Then, the subdifferential of

φ j(x) is given by ∂φ j(x) = conv{∇Ψ j(x,ξi) : i ∈ I j(x)}, where Ψ j(x,ξi) is convex and continu-
ously differentiable function for each x and ξi [16]. Hessian of Ψ j(x,ξi) is given by ∇2Ψ j(x,ξi)

and ∇2Ψ j(x,ξi) is said to be positive definite if dT ∇2Ψ j(x,ξi)d > 0 for all 0 6= d ∈ Rn.

Definition 2.1. (Directional derivative) The directional derivative of f :Rn→R at x in direction
d is given as

f ′(x;d) = lim
q→0

f (x+qd)− f (x)
q

.

If f is differentiable, then f ′(x;d)=∇ f (x)T d. In particular, the directional derivative for φ j(x)=
maxi∈Λ̄

Ψ j(x,ξi) at x in direction v is given as φ ′j(x,v)=maxi∈I j(x)∇Ψ j(x,ξi)
T v, where Ψ j(x,ξi)

is continuously differentiable function for each x ∈ Rn, ξi ∈U , and I j(x) = {i ∈ Λ̄ : Ψ j(x,ξi) =
φ j(x)} denotes the set of active index for φ j.

Definition 2.2. [17] (Descent direction) Let f : Rn→ R be a continuously differentiable func-
tion. Then a vector v is said to be descent direction for f at x if f ′(x;v) = ∇ f (x)T v < 0. In
particular, for RP, a vector v is said to be descent direction for φ at x if

φ ′j(x,v) = max
i∈I j(x)

∇Ψ j(x,ξi)
T v < 0, ∀ j ∈ Λ,

i.e., ∇Ψ j(x,ξi)
T v < 0, ∀ j ∈ Λ and i ∈ I j(x),

equivalently, if v is a descent direction for φ(x) at x, then there exists ε > 0 such that

φ j(x+αv)< φ j(x) ∀ j ∈ Λ and α ∈ (0,ε].
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Definition 2.3. [18] A function φ :Rn→Rm is said to be Rm−convex\Rm−strctly convex\Rm−
strongly convex if each component of φ is convex \ strictly convex \ strongly convex.

Definition 2.4. [18] φ : Rn→Rm is Rm−strongly convex if and only if there exists ω > 0 such
that λmin(∇

2φ j(x))≥ω for all x ∈Rn and j = 1,2, ...,m, where λmin : Rn×Rn→R denotes the
minimum eigenvalue function.

Now we give the theorem which relates the solution of P(U) to the solution of RP. With help
of this theorem, instead of solving P(U) we solve RP.

Theorem 2.1. [19] Let P(U) be an uncertain multiobjective optimization problem with finite
uncertainty non empty set and RP be the robust counterpart of P(U). Then,

(a) if x∗ ∈Rn is a strictly efficient solution to RP, then x∗ is robust strictly efficient solution for
P(U);

(b) let x∗ be a weakly efficient solution to RP. If maxi∈Λ̄
Ψ j(x,ξi) exist for all j ∈ Λm and all

x ∈ Rn, then x∗ is robust weakly efficient solution for P(U).

3. THE NEWTON’S METHOD FOR RP

We solve RP with the help of the Newton’s method and assume that in RP the function φ :
Rn→ Rm is such that φ(x) = (φ1(x),φ2(x), . . . ,φm(x)), where φ j(x) = maxi∈Λ̄

Ψ j(x,ξi), j ∈ Λ

and Ψ j : Rn×U → R is a twice continuously differentiable and strictly convex function for
each x and ξi ∈U . First, we start by introducing the necessary condition for Pareto optimality
for φ . A point x∗ is critical point for φ if R(Conv{∪ j∈Λ∂φ j(x∗)})∩ (−Rm

>) = /0 i.e., for at
least one j0 ∈ Λ, we have ∇Ψ j0(x

∗,ξi)
T v ≥ 0 for all v ∈ Rn and for all i ∈ I j0(x). Here by

R(Conv{∪ j∈Λ∂φ j(x∗)}) we mean the range of Conv{∪ j∈Λ∂φ j(x∗)}. The above condition which
is satisfied by the critical point is called a necessary condition for Pareto optimality for φ . If x∗

is a critical point for RP, then there does not exists any v ∈ Rn such that ∇Ψ j(x∗,ξi)
T v < 0 ∀i ∈

I j(x) and j ∈ Λ.

Lemma 3.1. If x∗ is critical point for φ , then 0 ∈Conv{∪ j∈Λ∂φ j(x∗)}.

Proof. Since x∗ is critical point for φ , then there must exists d ∈ ∪ j∈Λ∂φ j(x∗) such that

vT d ≥ 0, ∀v ∈ Rn. (3.1)

On the contrary, if we assume 0 6∈Conv{∪ j∈Λ∂φ j(x∗)}, since Conv{∪ j∈Λ∂φ j(x∗)} and {0}
are closed and convex sets, then, with the help of the separation theorem, there exists v∈Rn and
b∈R such that vT 0≥ b and vT d < b ∀d ∈Conv{∪ j∈Λ∂φ j(x∗)}. Combining the two inequalities
contradicts (3.1). Hence, 0 ∈Conv{∪ j∈Λ∂φ j(x∗)}. �

From Lemma 3.1 above and the definition of critical points, it is clear that if x∗ is critical
point, then both condition (a) R(Conv{∪ j∈Λ∂φ j(x∗)})∩ (−Rm

>) = /0 i.e., for at least one j0 ∈Λ,
we have ∇Ψ j0(x,ξi)

T v≥ 0 for all v ∈Rn and, for all i ∈ I j0(x) and (b) 0 ∈Conv{∪ j∈Λ∂φ j(x∗)}
is satisfied. Thus, we can use both condition as necessary condition for Pareto optimality for φ

in RP.
The following theorem gives us necessary condition for Pareto optimality or efficiency for

RP.
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Theorem 3.1. Let Ψ j(x,ξi) be continuously differentiable and convex function for each j and
ξi ∈U. If x∗ is weakly efficient solution for RP, then 0 ∈Conv{∪ j∈Λ∂φ j(x∗)}.

Proof. Let x∗ be a weakly efficient solution to φ . We have to show 0 ∈ Conv{∪ j∈Λ∂φ j(x∗)}.
Since Ψ j(x,ξi) is continuously differentiable and convex for each j, and ξi ∈U , then Ψ j(x,ξi)
is locally Lipschitz continuous for all i ∈ Λ̄. Then, by [20, Theorem 4.3], one has

0 ∈Conv{∪ j∈Λ∂φ j(x∗)}.
Thus, this theorem gives us necessary condition for Pareto optimal for φ . �

In the following theorem, we see that the necessary condition is sufficient for φ if φ is Rm-
convex.

Theorem 3.2. Suppose φ is Rm-convex function (i.e., each φ j is convex) and if x∗ is critical
point for RP then x∗ is weak efficient solution.

Proof. Since Ψ j(x,ξi) is convex, then φ j =maxi∈Λ̄
Ψ j(x,ξi) is convex. Assume that x∗ is critical

point to φ , then, for at least one j0, we have φ ′j0(x
∗,d)≥ 0 ∀d ∈ Rn. Thus

∇Ψ j0(x,ξi)
T d ≥ 0 ∀d ∈ Rn, i ∈ I j0(x). (3.2)

By convexity of φ j and Ψ j(x,ξi), we obtain

Ψ j0(x,ξi)≥Ψ j0(x
∗,ξi)+∇Ψ j0(x,ξi)

T (x− x∗), ∀i ∈ I j0(x).

It follows from(3.2) that Ψ j0(x,ξi) ≥ Ψ j0(x
∗,ξi) for all i ∈ I j0(x), which implies φ j0(x) ≥

φ j0(x
∗), that is, x∗ is weakly efficient solution. �

Next, we solve a subproblem to find the Newton’s descent direction.

3.1. Subproblem to find a descent direction for RP. To find the Newton’s descent direction
for RP, we e consider the following real-valued minimization subproblem:

min
v∈Rn

max
j∈Λ

max
i∈Λ̄

{Ψ j(x,ξi)+∇Ψ j(x,ξi)
T v+

1
2

vT
∇

2
Ψ j(x,ξi)v−φ j(x)}. (3.3)

We assume that

ρ(t,v) = t = max
j∈Λ

max
i∈Λ̄

{Ψ j(x,ξi)+∇Ψ j(x,ξi)
T v+

1
2

vT
∇

2
Ψ j(x,ξi)v−φ j(x)}, (3.4)

and, for every j, ∇2Ψ j(x,ξi) is positive definite for all x ∈ Rn and i ∈ Λ̄.
Solution of subproblem (3.3): Since the given objective function in subproblem (3.3) is

strictly convex as being a maximum of strictly convex functions. Therefore, subproblem (3.3)
has a unique solution which is the Newton’s descent direction for RP. Let v(x) and θ(x) be the
optimal solution and optimal value of subproblem (3.3), respectively. Then

v(x) = arg min
v∈Rn

ρ(t,v)

θ(x) = ρ(t,v(x)).
Equivalently, (3.3) can be written as

P(x) : min
v∈Rn,t∈R

ρ(t,v)

s.t. Ψ j(x,ξi)+∇Ψ j(x,ξi)
T v+

1
2

vT
∇

2
Ψ j(x,ξi)v−φ j(x)≤ t, ∀i ∈ Λ̄ and j ∈ Λ.
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Give the constraints in the above problem satisfying the Slater’s constraints qualification con-
dition at t = 1 and v = (0,0, ...,0), so the solution of the given convex programming problem is
given by the KKT optimality condition. The Lagrangian function is given by

L(t,v,λ ) = t + ∑
j∈Λ

∑
i∈Λ̄

λi j(Ψ j(x,ξi)+∇Ψ j(x,ξi)
T v+

1
2

vT
∇

2
Ψ j(x,ξi)v−φ j(x)− t).

Then the KKT optimality conditions are

∑
j∈Λ

∑
i∈Λ̄

λi j = 1, (3.5)

∑
j∈Λ

∑
i∈Λ̄

λi j∇Ψ j(x,ξi)+ ∑
j∈Λ

∑
i∈Λ̄

λi j∇
2
Ψ j(x,ξi)

T v = 0, (3.6)

Ψ j(x,ξi)+∇Ψ j(x,ξi)
T v+

1
2

vT
∇

2
Ψ j(x,ξi)v−φ j(x)− t ≤ 0, ∀i ∈ Λ̄ and j ∈ Λ,

λi j ≥ 0, λi j(Ψ j(x,ξi)+∇Ψ j(x,ξi)
T v+

1
2

vT
∇

2
Ψ j(x,ξi)v−φ j(x)− t) = 0, ∀i ∈ Λ̄ and j ∈ Λ.

From (3.6), one has

v(x) =−
(

∑
j∈Λ

∑
i∈Λ̄

λi j∇
2
Ψ j(x,ξi)

)−1

∑
j∈Λ

∑
i∈Λ̄

λi j∇Ψ j(x,ξi). (3.7)

Since, for every j, ∇2Ψ j(x,ξi) is positive definite for all x ∈ Rn and i ∈ Λ̄, which ensures that
the existence of the inverse of ∇2Ψ j(x,ξi). Since x is not a critical point, there must exists at
least one λi j > 0 and hence the inverse of ∑

j∈Λ

∑
i∈Λ̄

λi j∇
2Ψ j(x,ξi) exists. Therefore, v(x) is well

defined. Then the optimal value of subproblem (3.3) is

θ(x) = max
j∈Λ

max
i∈Λ̄

{Ψ j(x,ξi)+∇Ψ j(x,ξi)
T v(x)+

1
2

v(x)T
∇

2
Ψ j(x,ξi)v(x)−φ j(x)}. (3.8)

In Theorem 3.3 below, we give the relation between critical point and v(x) and we also prove
that v(x) given in (3.7), is a descent direction.

Theorem 3.3. Let v(x) and θ(x) be the solution and optimal value of subproblem (3.3), respec-
tively. Then the following results will hold:

(1) v(x) is bounded on compact subset C of Rn and θ(x)≤ 0.
(2) The following conditions are equivalent:

(a) The point x is non-critical point.
(b) θ(x)< 0.
(c) v(x) 6= 0.
(d) v(x) is a descent direction for φ at x for the problem RP .

In particular, x is critical point iff θ(x) = 0.

Proof. (1) Let C be a compact subset of Rn. Since, for each j ∈ Λ, Ψ j(x,ξi) is twice con-
tinuously differentiable for all x ∈ Rn and ξi ∈U , then its first and second order derivative is
bounded on compact set C. Thus, for all x ∈ Rn, j ∈ Λ, ξi ∈U and by (3.7), v(x) is bounded
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on compact set C. Since t = 1 and v = 0̄ = (0,0, . . . ,0) ∈Rn lies in the feasible region, then we
have

θ(x)≤max
j∈Λ

{max
i∈Λ̄

Ψ j(x,ξi)+max
i∈Λ̄

∇Ψ j(x,ξi)
T 0̄+max

i∈Λ̄

1
2

0̄T
∇

2
Ψ j(x,ξi)0̄−max

i∈Λ̄

φ j(x)}= 0.

Hence θ(x)≤ 0.
(2): (a) =⇒ (b)
If x is not a critical point, then there exists v̄ such that ∇Ψ j(x,ξi)

T v̄ < 0 for all j ∈ Λ and
i ∈ I j(x). Since θ(x) is the optimal value for subproblem (3.3), then, for all δ > 0,

θ(x)≤max
j∈Λ

{max
i∈Λ̄

Ψ j(x,ξi)+max
i∈Λ̄

{∇Ψ j(x,ξi)
T (δ v̄)+

1
2
(̄δ v̄)T

∇
2
Ψ j(x,ξi)(δ v̄)}−max

i∈Λ̄

φ j(x)}}.

It follows that

θ(x)≤ δ

(
max
j∈Λ

max
i∈Λ̄

{∇Ψ j(x,ξi)
T v̄+δ

1
2

v̄T
∇

2
Ψ j(x,ξi)v̄}

)
.

For small enough δ > 0, the right-hand side of the inequality above is negative because of
∇Ψ j(x,ξi)

T v̄ < 0, 1
2 v̄T ∇2Ψ j(x,ξi)v̄ > 0 and also θ(x)≤ 0. Thus θ(x)< 0.

(b) =⇒ (c)
Since θ(x) is the optimal value of subproblem (3.3), it is from (b) strictly negative. We obtain

v(x) 6= 0. If v(x) = 0, then θ(x) is zero which is not possible from (b). Hence if θ(x)< 0, then
v(x) 6= 0.

(c) =⇒ (d)
Let v(x) 6= 0, so θ(x) 6= 0. Since θ(x)≤ 0 and v(x) 6= 0 then θ(x)< 0. Thus,

θ(x)≤max
j∈Λ

{max
i∈Λ̄

Ψ j(x,ξi)+max
i∈Λ̄

{∇Ψ j(x,ξi)
T v(x)+

1
2

vT (x)∇2
Ψ j(x,ξi)v(x)}−max

i∈Λ̄

φ(x)}< 0

=⇒ max
j∈Λ

max
i∈Λ̄

{∇Ψ j(x,ξi)
T v(x)+

1
2

vT (x)∇2
Ψ j(x,ξi)v(x)}< 0

=⇒ ∇Ψ j(x,ξi)
T v(x)< 0, ∀ j ∈ Λ and i ∈ Λ̄

=⇒ ∇Ψ j(x,ξi)
T v(x)< 0, ∀ j ∈ Λ and i ∈ I j(x)

=⇒ v(x) is a descent direction for φ at x for problem RP.

(d) =⇒ (a)
Since v(x) is a descent direction for φ at x, then

∇Ψ j(x,ξi)
T v(x)< 0, ∀ j ∈ Λ and i ∈ I j(x). Hence x is not a critical point.

Also if θ(x)< 0, then v(x) 6= 0; and if v(x) 6= 0, then θ(x)< 0. Thus, we have that x is critical
point if and only if θ(x) = 0. �

In Theorem 3.3, the characterization between the critical point and the descent direction can
be used as a stopping criteria in Newton’s algorithm. Next, we prove that θ(x) is continuous for
every x ∈ Rn.

Theorem 3.4. Let θ : Rn→R be a function which is defined in (3.8). Then, θ(x) is continuous.
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Proof. To prove the continuity of θ(x), it is suffice to prove that θ(x) is continuous in any
arbitrary compact subset C of Rn. Since, by Theorem 3.3, θ(x) ≤ 0, then, for every j ∈ Λ and
i ∈ Λ̄,

Ψ j(x,ξi)+∇Ψ j(x,ξi)
T v(x)+

1
2

v(x)T
∇

2
Ψ j(x,ξi)v(x)−φ j(x)≤ 0.

Since, at the active indices, Ψ j(x,ξi) attains its maximum value, i.e., Ψ j(x,ξi) = φ j(x). It
follows that ∇Ψ j(x,ξi)

T v(x)+ 1
2v(x)T ∇2Ψ j(x,ξi)v(x)≤ 0, which implies

1
2

v(x)T
∇

2
Ψ j(x,ξi)v(x)≤−∇Ψ j(x,ξi)

T v(x), for every j ∈ Λ, i ∈ Λ̄. (3.9)

Since, for every j ∈ Λ and i ∈ Λ̄, Ψ j(x,ξi) is twice continuously differentiable, and the Hessian
of that is positive definite for every x ∈ Rn. Also, C is a compact subset of Rn, and then
eigenvalues of Hessian of Ψ j(x,ξi) are bounded on C. So, there exists µ > 0 and µ̄ such that

µ̄ = max
x∈C, j∈Λ

max
i∈Λ̄

‖Ψ j(x,ξi)‖ (3.10)

and
µ‖w‖2 ≤ wT

∇
2
Ψ j(x,ξi)w, for every j ∈ Λ, i ∈ Λ̄ and ∀x ∈C. (3.11)

Now from (3.9), (3.10), (3.11), and Cauchy-Schwartz inequality, we have

µ‖v(x)‖2 ≤ ‖∇Ψ j(x,ξi)‖‖v(x)‖ ≤ µ̄‖v(x)‖ ∀y ∈C, j ∈ Λ and i ∈ Λ̄,

which implies that ‖v(x)‖ ≤ µ̄

µ
for all x ∈C i.e., v(x), the Newton’s directions are bounded on

C.
Now, for x ∈C, j ∈ Λ and i ∈ Λ̄, we define

Ex, j,i : C→ R

s.t. z→Ψ j(z,ξi)+∇Ψ j(z,ξi)v(x)+
1
2

v(x)T
∇

2
Ψ j(z,ξi)v(x)−φ j(z).

Thus the family {Ex, j,i}x∈C, j∈Λ,i∈Λ̄
is equicontinuous. Therefore, {∆x =max j∈Λ maxi∈Λ̄

Ex, j,i}x∈C
is also equicontinuous. Now if we take ε > 0, then there exists δ > 0 such that, for all u,w ∈C,

‖u−w‖< δ =⇒ |∆x(u)−∆x(w)|< ε,∀x ∈C.

Hence, for ‖u−w‖< δ ,

θ(w)≤Ψ j(w,ξi)+∇Ψ j(w,ξi)
T v(u)+ v(u)T

∇
2
Ψ j(w,ξi)

T v(u)−φ j(w)

= ∆u(w)

≤ ∆u(u)+ |∆u(w)−∆u(u)|
≤ θ(u)+ ε.

Thus we obtain θ(u)−θ(w)< ε; if we interchange u and w, then we obtain θ(u)−θ(w)>−ε .
Therefore, |θ(u)−θ(w)| < ε whenever ‖u−w‖ < δ , and then θ(x) is continuous in C. Since
C is any arbitrary compact subset of Rn, then θ(x) is continuous. �

Next, we establish the Armijo type inexact line search technique to find the step length size
for Newton’s method for RP.
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3.2. Calculation of step length size. By Theorem 3.3, we have θ(x)≤ 0, and we know

θ(x) = max
j∈Λ

max
i∈Λ̄

{Ψ j(x,ξi)+∇Ψ j(x,ξi)
T v(x)+

1
2

v(x)T
∇

2
Ψ j(x,ξi)v(x)−φ j(x)}.

To find the step length size, we assume an auxiliary function φ ′′∗j (x,αv), which is given by

φ
′′∗
j (x,αv) = max

i∈Λ̄

{Ψ j(x,ξi)+α∇Ψ j(x,ξi)
T v+

1
2

α
2vT

∇
2
Ψ j(x,ξi)

T v}−φ j(x)−φ
′
j(x,αv),

(3.12)
where α ∈ [0,ε] and ε < 1. For every j ∈ Λ, (3.12) can be written as

φ
′′∗
j (x,αv)+φ

′
j(x,αv)≤max

i∈Λ̄

Ψ j(x,ξi)+max
i∈Λ̄

{α∇Ψ j(x,ξi)
T v+

1
2

α
2vT

∇
2
Ψ j(x,ξi)

T v}−φ j(x)

and also

φ
′′∗
j (x,αv)+φ

′
j(x,αv)≤max

i∈Λ̄

{α∇Ψ j(x,ξi)
T v+

1
2

α
2vT

∇
2
Ψ j(x,ξi)

T v}. (3.13)

Since Ψ j(x,ξi) is upper uniformly twice continuously differentiable and convex, then there
exists k j

i > 0 such that

Ψ j(x+ v,ξi)≤Ψ j(x,ξi)+∇Ψ j(x,ξi)
T v+

1
2

vT
∇

2
Ψ j(x,ξi)

T v+
1
3!

k j
i ‖v‖

3.

Since the inequality above holds for every v ∈ Rn, one has

Ψ j(x+αv,ξi)≤Ψ j(x,ξi)+α∇Ψ j(x,ξi)
T v+

1
2

α
2vT

∇
2
Ψ j(x,ξi)

T v+
1
3!

k j
i ‖αv‖3

≤max
i∈Λ̄

{Ψ j(x,ξi)+α∇Ψ j(x,ξi)
T v+

1
2

α
2vT

∇
2
Ψ j(x,ξi)

T v+
1
3!

k j
i ‖αv‖3}

≤max
i∈Λ̄

{Ψ j(x,ξi)+α∇Ψ j(x,ξi)
T v+

1
2

α
2vT

∇
2
Ψ j(x,ξi)

T v}+ 1
3!

α
3K j‖v‖3,

where K j = max
i∈Λ̄

k j
i . Now, from equation (3.12), we have

Ψ j(x+αv,ξi)≤ φ
′
j(x,αv)+φ j(x)+φ

′′∗
j (x,αv)+

1
3!

α
3K j‖v‖3.

It holds for each i ∈ Λ̄. Therefore,

max
i∈Λ̄

Ψ j(x+αv,ξi)≤ φ
′
j(x,αv)+φ j(x)+φ

′′∗
j (x,αv)+

1
3!

α
3K j‖v‖3

and

φ j(x+αv)≤ φ
′
j(x,αv)+φ j(x)+φ

′′∗
j (x,αv)+

1
3!

α
3K j‖v‖3. (3.14)
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It follows from (3.13) that

φ
′′∗
j (x,αv)+φ

′
j(x,αv)

≤max
i∈Λ̄

{α∇Ψ j(x,ξi)
T v+

1
2

α
2vT

∇
2
Ψ j(x,ξi)

T v}

≤max
j∈Λ

max
i∈Λ̄

{αΨ j(x,ξi)+α∇Ψ j(x,ξi)
T v+

1
2

α
2vT

∇
2
Ψ j(x,ξi)

T v−αφ j(x)}

≤ α max
j∈Λ

max
i∈Λ̄

{Ψ j(x)+∇Ψ j(x,ξi)
T v+

1
2

vT
∇

2
Ψ j(x,ξi)v−φ j(x)}

+
α(α−1)

2
max
j∈Λ

max
i∈Λ̄

vT
∇

2
Ψ j(x,ξi)

T v

≤ αθ(x)+
1
2

α(α−1)max
j∈Λ

max
i∈Λ̄

{vT
∇

2
Ψ j(x,ξi)

T v}. (3.15)

Since x is not a critical point, we obtain by Theorem 3.3, (3.13), (3.14), and (3.15) that

φ j(x+αv)≤ φ j(x)+αθ(x)+
1
2

α(α−1)max
j∈Λ

max
i∈Λ̄

{vT
∇

2
Ψ j(x,ξi)

T v}+ 1
3!

α
3K j‖v‖3. (3.16)

Since ∇2Ψ j(x,ξi) is positive definite for all x ∈ Rn and i ∈ Λ̄, then vT ∇2Ψ j(x,ξi)
T v > 0, v(6=

0)∈Rn. Now, the third term of R.H.S of (3.16) is negative as α < 1. Then (3.16) can be written
as

φ j(x+αv)≤ φ j(x)+αθ(x)+α
3 1

3!
K j‖v‖3.

If α > 0 is sufficiently small, then α3 u 0. It follows that φ j(x+αv) ≤ φ j(x)+αθ(x). Since
θ(x) < 0, then, for some β ∈ (0,1), θ(x) < βθ(x). Since α is sufficiently small and positive,
we have

φ j(x+αv)≤ φ j(x)+αβθ(x). (3.17)
Equation (3.17) represents the step length size rule for Newton’s descent algorithm for the
RP. So, we obtain Newton’s descent direction v(x) at x and step length size given in (3.17).
Therefore, we are in position to write Newton’s algorithm for RP.

Algorithm 1 Newton’s algorithm for RP

Step 1. Choose ε > 0, β ∈ (0,1), and x0 ∈ Rn. Set k := 0
Step 2. Solve P(xk) for vk at xk.
Step 3. Compute θ(xk) = min

t∈R,v∈Rn
ρ(t,vk), where ρ(t,vk), is defined in (3.4) . If |θ(xk)|<

ε , then stop. Otherwise proceed to Step 4.
Step 4. Choose αk as largest α ∈ { 1

2r : r = 1,2,3, ...} such that

φ j(xk +αv)≤ φ j(xk)+αβθ(xk), (3.18)

where θ(xk)< 0.
Step 5. Set xk+1 := xk +αkvk, and go to step 2.

3.3. Newton’s algorithm for RP. The well-definedness of Algorithm 1 depends on Step 2,
Step 3, Step 4, and Step 5. In Step 2, we have to compute a minimizer of a function v 7→ t =
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ρ(t,v). As this function is strictly convex, evidently there exists one minimizer of it. Therefore,
at xk, vk always exists, and hence Step 2 is well defined. With the help of vk, we can find θ(xk),
and hence Step 3 is well defined. Note that, by Theorem 3.3, the stopping criteria ‖θ(xk)‖< ε

can be replaced by ‖vk‖< ε . It should be noted that if, at iteration k, Algorithm 1 does not reach
Step 4, i.e., if it stops at Step 3, then, by Theorem 3.3, xk is an approximately critical point for
φ . If Step 4 is reached at iteration k, we choose αk as the largest α ∈ { 1

2r : r = 1,2,3, . . .}
which satisfies (3.18). Also, note that, by equation (3.17), the objective function values always
decrease in the component-wise partial order, since xk is a noncritical point of φ , by Theorem
3.3., θ(xk) < 0. Therefore, from Step 4, we see that φ(xk+1) < φ(xk). Thus, Step 4 is well
defined. With the help of vk, αk, and current iteration point xk, we calculate xk+1 in Step 5.
Then, we go to Step 2. Repeating this process, until we reach the stoping criteria at Step 3.

In the following subsection, we discuss the convergence analysis of Newton’s algorithm for
RP.

3.4. Convergence analysis of Newton’s algorithm (Algorithm 1) for problem RP.

Lemma 3.2. For all k= 0,1,2, . . . and j∈Λ, we have ∑
k
r=0 αr|θ(xr)| ≤ β−1(φ j(x0)−φ j(xk+1)),

where φ j(x) = maxi∈Λ̄
Ψ j(x,ξi) .

Proof. By the Step 4 of Algorithm 1, one has φ j(xk+1)≤ φ j(xk)+αkβθ(xk) and

−αkθ(xk)≤ β
−1(φ j(xk)−φ j(xk+1)).

Thus −∑
k
r=0 αrθ(xr)≤ β−1(φ j(x0)−φ j(xk+1)), and then

k

∑
r=0

αrθ(xr)≥−β
−1(φ j(x0)−φ j(xk+1)). (3.19)

Since θ(xr)< 0, we find from equation (3.19) that

β
−1(φ j(x0)−φ j(xk+1))≥

k

∑
r=0

αrθ(xr). (3.20)

From (3.19) and (3.20), we conclude that ∑
k
r=0 αr|θ(xr)| ≤ β−1(φ j(x0)−φ j(xk+1)). �

Theorem 3.5. Let {xk} be a sequence which is produced by Algorithm 1. Then the accumulation
point of {xk} is a Pareto optimum for φ .

Proof. Let x∗ be an accumulation point of the sequence {xk}, which is generatd by Newton’s
descent Algorithm 1. Then there exists a subsequence {xkl} such that liml→∞ xkl = x∗. Us-
ing Lemma 3.2 with l = kl and taking the limit l → ∞ from the continuity of φ j, we have
∑

∞
l=0 αl‖θ(xl)‖< ∞. Therefore, limk→∞ αkθ(xk) = 0. In particular, we have

lim
l→∞

αkl θ(x
kl) = 0. (3.21)

If x∗ is a non-critical point, then

θ(x∗)< 0 and v(x)∗ 6= 0. (3.22)

Define
g : Rm→ R by g(u) = max

j∈Λ

u j.
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Using the definition of θ(.) and descent direction v(x)∗, we conclude that there exists a non
negative integer q such that g(φ(x∗+2−qv(x)∗)−φ(x∗))< β2−qθ(x∗). Since g(.) and θ(x) are
continuous, then liml→∞ vkl = v(x)∗ and liml→∞ θ(xkl) = θ(x∗). Also, for l large enough,

g(φ(xkl +2−qvkl)−φ(xkl))< σ2−q
θ(xkl), (3.23)

which implies

φ j(xkl +2−qvkl)−φ j(xkl)< σ2−q
θ(xkl). (3.24)

By Step 4 in Algorithm 1, we have

φ j(xkl +αkl v
kl)≤ φ j(xkl)+σαkl θ(x

kl). (3.25)

Since αkl is the largest of { 1
2n : n= 1,2,3, ....}, and σ ∈ (0,1), we find from (3.24) and (3.25) that

σαkl θ(x
kl)≤σ2−qθ(xkl), which implies αkl ≥ 2−q > 0 for l large enough. Hence liml→∞ αkl θ(x

kl)
> 0, which contradicts (3.21). Therefore, the condition of (3.22) is not true. Thus x∗ is a critical
point. Since φ is strictly convex, one sees that x∗ is a Pareto optimum. �

Theorem 3.6. Let x0 be in a compact level-set of φ , and {xk} be the sequence generated by
Algorithm 1. Then {xk} converges to a Pareto optimum x∗ ∈ Rn for φ for the problem RP.

Proof. Let γ0 be the φ(x0)-level set of φ , that is,

γ0 = {x ∈ Rn : φ(x)≤ φ(x0)}.

Since {φ(xk)} is Rm-decreasing , then xk ∈ γ0 for all k. Therefore {xk} is bounded, and all of its
accumulation points lie in γ0. By using the theorem above, we conclude that they are all Pareto
optima for φ . Since, for every xk ∈ γ0, we have φ(xk+1) ≤ φ(xk) for all k, we conclude by
[21, lemma 3.8] that, for any accumulation point x∗ of {xk}, φ(x∗)≤ φ(xk) and limk→∞ φ(xk) =
φ(x∗) and also φ(x) is constant in the set of accumulation point of {xk}. As φ is strongly convex,
i.e., strictly Rm-convex, we see that there exists one accumulation point of {xk} say x∗. Hence
the proof is complete. �

3.5. Rate of convergence of Algorithm 1. We investigate the convergence rate of any infinite
sequence which is generated by Algorithm 1. First, we assume a bound for v(x), where v(x)
is the descent direction for φ at x. Then we provide a bound for θ(xk+1) with the help of
information of former iteration point xk. Also, we show that full Newton’s steps are performed
when k is large enough, that is, αk = 1. After using this, we prove that {xk} is converge to
x∗ with superlinear rate. At the end under some additional assumptions, we prove that {xk} is
converge to x∗ with quadratic rate.

Lemma 3.3. If, for any k, there exists λi j such that ∑ j∈Λ ∑
i∈Λ̄

λi j = 1, then

θ(xk+1)≥− 1
2ω

∥∥∥∥∑
j∈Λ

∑
i∈Λ̄

λ
k
i j∇Ψ j(xk+1,ξi)

∥∥∥∥2

,

where ω > 0 and defined in 2.4.



798 S. KUMAR, M.A.T. ANSARY, N.K. MAHATO, D. GHOSH, Y. SHEHU

Proof. Observe that

θ(xk+1) = max
j∈Λ

max
i∈Λ̄

{Ψ j(xk+1,ξi)+∇Ψ j(xk+1,ξi)
T v(xk+1)+

1
2

v(xk+1)T
∇

2
Ψ j(xk+1,ξi)v(xk+1)

−φ j(xk+1)}.
On account of equation (3.5), we obtain

θ(xk+1) = ∑
j∈Λ

∑
i∈Λ̄

λ
k
i j max

j∈Λ

max
i∈Λ̄

{Ψ j(xk+1,ξi)+∇Ψ j(xk+1,ξi)
T v(xk+1)

+
1
2

v(xk+1)T
∇

2
Ψ j(xk+1,ξi)v(xk+1)−φ j(xk+1)}

≥ ∑
j∈Λ

∑
i∈Λ̄

λ
k
i j{∇Ψ j(xk+1,ξi)

T v(xk+1)+
1
2

v(xk+1)T
∇

2
Ψ j(xk+1,ξi)v(xk+1)}

≥ min
v∈Rn ∑

j∈Λ

∑
i∈Λ̄

λ
k
i j{∇Ψ j(xk+1,ξi)

T v+
1
2

vT
∇

2
Ψ j(xk+1,ξi)v}.

Therefore,
θ(xk+1)≥ min

v∈Rn ∑
j∈Λ

∑
i∈Λ̄

λ
k
i j
(
∇Ψ j(xk+1,ξi)

T v+
ω

2
‖v‖2). (3.26)

After solving minv∈Rn ∑
j∈Λ

∑
i∈Λ̄

λ k
i j
(
∇Ψ j(xk+1,ξi)

T v+ ω

2 ‖v‖
2), we arrive at

min
v ∑

j∈Λ

∑
i∈Λ̄

λ
k
i j
(
∇Ψ j(xk+1,ξi)

T v+
ω

2
‖v‖2)=− 1

2ω

∥∥∥∥∑
j∈Λ

∑
i∈Λ̄

λ
k
i j∇Ψ j(xk+1,ξi)

∥∥∥∥2

. (3.27)

From (3.26) and (3.27), we have the desired conclusion immediately. �

Theorem 3.7. Assume, for any x ∈ Rn,

‖v(x)‖2 ≤ 2
ω
| θ(x) |, (3.28)

where ω > 0 and is defined in 2.4. Let x0 be the initial point in compact level-set φ and the
sequence generated by Algorithm 1 is {xk}. Then {xk} converges to a Pareto optimum point x∗.
Moreover if αk = 1 for k large enough, then convergence rate of {xk} to x∗ is superlinear.

Proof. Let{xk} be the sequence which is generated by Algorithm 1 whose initial point x0 be-
longs to compact level set of φ . By Theorem 3.6, sequence {xk} converges to x∗. Next we prove
that {xk} converges to x∗ with the superlinear rate. Since x∗ is a critical point, then there is no
descent direction at x∗ by the definition, i.e., v(x∗) = 0. Since Ψ j(x,ξi) is twice continuously
differantiable for each x and ξi, one has

Ψ j(xk + vk,ξi)≤Ψ j(xk,ξi)+∇Ψ j(xk,ξi)
T vk +

1
2
(vk)T

∇
2
Ψ j(xk,ξi)(vk)+

ε

2
‖vk‖2

≤max
i∈Λ̄

{Ψ j(xk,ξi)+∇Ψ j(xk,ξi)
T vk +

1
2
(vk)T

∇
2
Ψ j(xk,ξi)(vk)+

ε

2
‖vk‖2}

≤max
i∈Λ̄

Ψ j(xk,ξi)+max
j∈Λ

max
i∈Λ̄

{Ψ j(xk,ξi)+∇Ψ j(xk,ξi)
T vk

+
1
2
(vk)T

∇
2
Ψ j(xk,ξi)(vk)−φ j(xk)}+ ε

2
‖vk‖2.
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Thus Ψ j(xk + vk,ξi)≤ φ j(xk)+θ(xk)+ ε

2‖v
k‖2 holds for each i. It follows that

max
i∈Λ̄

Ψ j(xk + vk,ξi)≤ φ j(xk)+θ(xk)+
ε

2
‖vk‖2

and

φ j(xk + vk)−φ j(xk)≤ θ(xk)+
ε

2
‖vk‖2.

By (3.28), one has

φ j(xk + vk)−φ j(xk)≤ σθ(xk)+(1−σ)θ(xk)+
ε

2
‖vk‖2

≤ σθ(xk)+(ε−ω(1−σ))
‖vk‖2

2
for all k ≥ kε ,

which demonstrates that if ε < ω(1−σ), then by Algorithm 1, in Step 4, αk = 1 is acceptable
for k≥ kε . For superlinear convergence, we suppose that ε < ω(1−σ). Using the Taylor’s first
order expansion of ∑ j∈Λ ∑i∈Λ̄

λ k
i j∇Ψ j(xk+1,ξi) and (3.6), we conclude that, for any k ≥ kε ,∥∥∥∥∑

j∈Λ

∑
i∈Λ̄

λ
k
i j∇Ψ j(xk+1,ξi)

∥∥∥∥= ∥∥∥∥∑
j∈Λ

∑
i∈Λ̄

λ
k
i j∇Ψ j(xk+1,ξi)

−
(

∑
j∈Λ

∑
i∈Λ̄

λ
k
i j∇Ψ j(x,ξi)+ ∑

j∈Λ

∑
i∈Λ̄

λ
k
i j∇

2
Ψ j(x,ξi)

T v
)∥∥∥∥

≤
∥∥∥∥∑

j∈Λ

∑
i∈Λ̄

λ
k
i j∇Ψ j(xk + vk,ξi)− (∑

j∈Λ

∑
i∈Λ̄

λ
k
i j∇Ψ j(xk,ξi)

+ ∑
j∈Λ

∑
i∈Λ̄

λ
k
i j∇

2
Ψ j(xk,ξi)

T vk)

∥∥∥∥
≤ ∑

j∈Λ

∑
i∈Λ̄

λ
k
i j‖εvk‖.

Thus
∥∥∥∥ ∑

j∈Λ

∑
i∈i∈Λ̄

λ k
i j∇Ψ j(xk+1,ξi)

∥∥∥∥≤ ε‖vk‖, which in turn implies that θ(xk+1)≥− 1
2ω

(ε‖vk‖)2

and

| θ(xk+1) |≤ 1
2ω

(ε‖vk‖)2. (3.29)

Since αk = 1 and xk+1 = xk + vk, from (3.28) and (3.29), we have ‖xk+1− xk+2‖ = ‖vk+1‖ ≤
ε

ω
‖vk‖. Thus if k ≥ kε and j ≥ 1, then

‖xk+ j− xk+ j+1‖ ≤
(

ε

ω

) j

‖xk− xk+1‖. (3.30)

To prove the superlinear convergence rate, take ζ ∈ (0,1) and define

ε
∗ = min

{
1−σ ,

ζ

1+2ζ

}
ω.
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If ε < ε∗ and k ≥ kε then, by (3.30) and the convergence of {xk},

‖x∗− xk+1‖ ≤
∞

∑
j=1
‖xk+ j− xk+ j+1‖ ≤

∞

∑
j=1

(
ζ

1+2ζ

) j

‖xk− xk+1‖.

Then

‖x∗− xk+1‖ ≤ (
ζ

1+ζ
)‖xk− xk+1‖. (3.31)

Now with the help of triangle inequality and (3.31), we obtain

‖x∗− xk‖ ≥ ‖xk− xk+1‖−‖xk+1− x∗‖

≥ ‖xk− xk+1‖− (
ζ

1+ζ
)‖xk− xk+1‖,

so

‖x∗− xk‖ ≥ (
1

1+ζ
)‖xk− xk+1‖. (3.32)

By (3.31) and (3.32), we conclude if ε < ε∗ and k ≥ kε , then ‖x∗− xk+1‖ ≤ ζ‖x∗− xk‖ and

‖x∗− xk+1‖
‖x∗− xk‖

≤ ζ .

Since ζ is arbitrary in (0,1), one has that the above quotient tends to zero and hence the proof
is complete. �

Next, we prove the quadratic convergence of the Newton’s algorithm, Algorithm 1).

Theorem 3.8. Let x0 ∈ Rn be the initial point in a compact level-set of φ . Let {xk} be the
sequence generated by Algorithm 1 and ∇2Ψ j(x,ξi) be Lipschitz continuous on Rn for each ξi

and j ∈ Λ. Then {xk} converges to x∗ with quadratic rate.

Proof. Since ∇2Ψ j(x,ξi) is Lipschitz continuous on Rn for each ξi j ∈ Λ, then

∑
j∈Λ

∑
i∈Λ̄

λ
k
l j∇

2
Ψ j(xk,ξi)

is also Lipschitz continuous. If we take αk = 1 for large k, then xk+1− xk = vk,

∑
j∈Λ

∑
i∈Λ̄

λ
k
i j∇Ψ j(xk,ξi)+ ∑

j∈Λ

∑
i∈Λ̄

λ
k
i j∇

2
Ψ j(xk,ξl)

T v = 0

∑
j∈Λ

∑
i∈Λ̄

λ
k
i j∇Ψ j(xk,ξi) =−∑

j∈Λ

∑
i∈Λ̄

λ
k
i j∇

2
Ψ j(xk,ξi)

T v

‖∑
j∈Λ

∑
i∈Λ̄

λ
k
i j∇Ψ j(xk,ξi)‖= ‖∑

j∈Λ

∑
i∈Λ̄

λ
k
i j∇

2
Ψ j(xk,ξi)

T v‖

≤ ∑
j∈Λ

∑
i∈Λ̄

λ
k
i j

L̄
2
‖vk‖2, where L̄ is Lipschitz constant

≤ L̄
2
‖vk‖2.
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So ∑ j∈Λ ∑i∈Λ̄
λ k

i j∇Ψ j(xk,ξi)≤ L̄
2‖v

k‖2. From Lemma 3.3, we have

θ(xk+1)≥− 1
2ω
‖∑

j∈Λ

∑
i∈Λ̄

λ
k
l j∇Ψ j(xk+1,ξi)‖2

−θ(xk+1)≤ 1
2ω
‖∑

j∈Λ

∑
i∈Λ̄

λ
k
l j∇Ψ j(xk+1,ξi)‖2

and

−θ(xk+1)≤ 1
2ω

(
L̄
2
‖vk‖2)2.

Thus

| θ(xk+1) |≤ 1
2ω

(
L̄
2
‖vk‖2)2. (3.33)

From (3.28), we have

‖v(xk+1)‖2 ≤ 2
ω
| θ(xk+1) | . (3.34)

Using (3.33) and (3.34), we have ‖v(xk+1)‖2 ≤ 1
ω2 (

L̄
2‖v

k‖2)2 and ‖v(xk+1)‖ ≤ L̄
2ω
‖vk‖2 for k

large enough. Take ζ ∈ (0,1). Since {xk} converges to x∗ with superlinear rate, then there
exists k0 such that k ≥ k0, and ‖x∗− xk+1‖ ≤ ζ‖x∗− xk‖. If we apply the triangle inequality in
‖x∗− xs‖ and ‖xs+1− xs‖ for s≥ k0, then

‖x∗− xs‖ ≤ ‖x∗− xs+1‖+‖xs− xs+1‖ ≤ ζ‖x∗− xs‖+‖xs− xs+1‖,

which implies
(1−ζ )‖x∗− xs‖ ≤ ‖xs− xs+1‖. (3.35)

Observe that

‖xs− xs+1‖ ≤ ‖x∗− xs‖+‖x∗− xs+1‖ ≤ ‖x∗− xs‖+ζ‖x∗− xs‖,

which in turn implies
‖xs− xs+1‖ ≤ (1+ζ )‖x∗− xs‖. (3.36)

From inequalities (3.35) and (3.36), we see that

(1−ζ )‖x∗− xs‖ ≤ ‖xs− xs+1‖ ≤ (1+ζ )‖x∗− xs‖. (3.37)

For s = k ≥ k0, we obtain from (3.36) that

‖xk− xk+1‖ ≤ (1+ζ )‖x∗− xk‖ (3.38)

and while using the inequality (3.35) for s = k+1 yields

(1−ζ )‖x∗− xk+1‖ ≤ ‖xk+1− xk+2‖= ‖vk+1‖.

In view of

(1−ζ )‖x∗− xk+1‖ ≤ ‖xk+1− xk+2‖= ‖vk+1‖ ≤ L̄√
2ω
‖vk‖2,

we have

(1−ζ )‖x∗− xk+1‖ ≤ L̄√
2ω
‖vk‖2 =

L̄√
2ω
‖xk+1− xk‖2.
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By (3.38), we have

(1−ζ )‖x∗− xk+1‖ ≤ L̄√
2ω

(1+ζ )2‖x∗− xk‖2. (3.39)

Since ζ ∈ (0,1) was arbitrary, we can find from (3.39) that {xk} converges to x∗ quadratically.
�

In the following subsection, we discuss some numerical examples.

3.6. Numerical examples. In this subsection, we provide some numerical examples and com-
pare with weighted sum method. Python code is written for Algorithm 1. The subproblem P(x)
is solved using cvxopt.solvers.qp. In our calculations, ‖vk‖< 10−4 or αk < 10−5 or maximum
iteration 5000 is considered as stopping criteria. The solutions of a multiobjective function are
not isolated minimum points but a set of efficient solutions. To generate a well distributed ap-
proximation of Pareto front, we e use the multi-start technique. Here 100 uniformly distributed
random points are chosen between lb and ub (where lb,ub ∈ Rn and lb < ub) and Algorithm 1
is executed separately. The nondominated set of the collection of critical points is considered
as an approximate Pareto front. We compare the approximate Pareto fronts obtained by Algo-
rithm 1 with the approximate Pareto fronts obtained by scalarization methods. In weighted sum
method, we solve the following single objective optimization problem

min
x∈Rn

(w1φ1(x)+w2φ2(x)+ · · ·+wmφm(x)) ,

where (w1,w2, . . . ,wm) = w ≥ 0, and w 6= 0 is based on the technique developed in [22] with
initial approximation x0 = 1

2(lb+ ub). For bi-objective optimization problems, we consider
weights (1,0), (0,1), and 98 random weights uniformly distributed in (0,0) and (1,1). For
three objective optimization problems, we consider weights (1,0,0), (0,1,0), (0,0,1) and 97
random weights uniformly distributed in (0,0,0) and (1,1,1).

In state of P(x), we solve the following subproblem in given examples:

P(x) : min
v∈Rn,t∈R

ρ(t,v) = t

s.t. Ψ j(x,ξi)+∇Ψ j(x,ξi)
T v+

1
2

vT
∇

2
Ψ j(x,ξi)v−φ j(x)≤ t, ∀i ∈ Λ̄ and j ∈ Λ

lb≤ x+ v≤ ub.
In Example 3.1, we explain the steps of Algorithm 1 by using one initial approximation, and
demonstrate that the sequence generated by Algorithm 1 converges to the approximate weak
efficient solution. At the end of the example, the comparison of approximate Pareto front
generated by Newton’s method (Algorithm 1) with the approximate Pareto front generated by
weighted sum method is demonstrated.

Example 3.1. (Two dimensional bi-objective convex problem under uncertainty set of two
elements) Consider the uncertain bi-objective optimization problem P(U) = {P(ξ ) : ξ ∈ U}
such that P(ξ ) : minx∈R2 Ψ(x,ξ ), where Ψ(x,ξ ) = (Ψ1(x,ξ ),Ψ2(x,ξ )), Ψ : R2×U →R2, ξ ∈
U = {(2,2), (0,4)} ⊂ R2, and Ψ(x,ξ ) = ((x1− ξ1)

2 +(x2 + ξ2)
2, and (ξ1x1 + ξ2x2)

2), where
ξ = (ξ1,ξ2). Here Ψ1(x,ξ ) = (x1−ξ1)

2 +(x2 +ξ2)
2 and Ψ2(x,ξ ) = (ξ1x1 +ξ2x2)

2.
The objective wise worst case cost type robust counterpart to P(U) is given by RP : minx∈R2 φ(x),

where φ(x) = (φ1(x),φ2(x)), φ1(x) = maxξ∈U Ψ1(x,ξ ) = maxξ∈U{(x1− 2)2 +(x2 + 2)2,x2
1 +
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(A) The Approximate Pareto front of Example 3.1
via the Newton’s Method (Algorithm 1).

(B) The Approximate Pareto front of Example 3.1
via the weighted sum method

FIGURE 1. The comparison of approximate Pareto fronts generated by ‘New-
ton’s method’ with ‘weighted sum method’ of the Example 3.1

(x2+4)2 }, and φ2(x) =maxξ∈U Ψ2(x,ξ ) =max{(2x1+2x2)
2,16x2

2}. Consider x0 = (2.522138
83, 4.24413089). Then Ψ1(x0,ξ1) = 41.30607718, Ψ1(x0,ξ2) = 74.3268784, Ψ2(x0,ξ1) =
183.12962 375, Ψ2(x0,ξ2) = 288.20235207, φ1(x0) = 74.3268784, φ2(x0) = 288.20235207,
and φ(x0) = (74.3268784,288.20235207). Also, we can observe that I1(x0) = {2} and I2(x0) =
{2}. The solution of P(x0) is obtained as v0 = (−1.52211667,−6.24402446)T , t0 =−41.30541
769. We see that α0 = 1 satisfies (3.17). Hence, next iterating point is x1 = x0 + α0v0 =
(1.00002216,−1.99989357)T . One can observe that φ(x1) = (5.00047007,63.99318849)T <
φ(x0) = (74.3268784,288.20235207). Using the stopping criteria ‖vk‖< 10−4, the final solu-
tion is obtained as x∗ = (1.00002216,−1.99989357)T after one iterations.

Next, we show that x∗ = (1.00002216, −1.99989357)T is a week efficient solution to this
problem. Observe that Ψ1(x∗,ξ1) = 1.18191374e−08, Ψ1(x∗,ξ2) = 5.00047007 and Ψ2(x∗,ξ1)
= 3.99897129, Ψ2(x∗,ξ2) = 63.9931885, and φ(x∗) = (5.00047007, 63.99318849). These
imply I1(x∗) = {2} and I2(x∗) = {2}. Hence,

∂φ1(x∗) = conv{∇ψ1(x,ξi) : i ∈ I1(x))}
= conv{∇ψ1(x,ξ2)}
= conv{(2.00004432, 4.00021286)T}

and
∂φ2(x∗) = conv{(0, 63.993187)T}.

Clearly, x∗ is a approximate critical point for RP. Thus, 0 is approximately lie in the convex
combination of ∂φ1(x∗) and ∂φ2(x∗). Hence, by Theorem 3.2, x∗ is a weak efficient solu-
tion φ(x). The comparison of approximate Pareto front generated by ‘Newton’s method’ with
‘weighted sum method’ of the Example 3.1 is given in Figure 1.

Example 3.2. (One dimensional bi-objective non-convex problem under uncertainty set of
two elements) Consider the uncertain bi-objective optimization problem P(U) = {P(ξ ) : ξ ∈
U} such that P(ξ ) : minx∈RΨ(x,ξ ), where Ψ(x,ξ ) = (Ψ1(x,ξ ),Ψ2(x,ξ )), Ψ : R×U → R2,
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(A) The Approximate Pareto front of Example 3.2
via the Newton’s method

(B) The Approximate Pareto front of Example 3.2
via the weighted sum method

FIGURE 2. The Comparison of approximate Pareto front generated by ‘New-
ton’s method’ with ‘weighted sum method’ of the Example 3.2

ξ ∈U = {−2,5} ⊂R, Ψ(x,ξ ) = ((x−ξ )2, −x2+ξ x), where ξ ∈U. Here Ψ1(x,ξ ) = (x−ξ )2

and Ψ2(x,ξ ) =−x2−ξ x. The objective wise worst case cost type robust counterpart to P(U) is
given by RP : minx∈R2 φ(x), where φ(x)= (φ1(x),φ2(x)), φ1(x)=maxξ∈U Ψ1(x,ξ )=max{(x+
2)2,(x− 5)2}, and φ2(x) = maxξ∈U Ψ2(x,ξ ) = max{−x2 + 2x,−x2− 5x}. The comparison of
approximate Pareto front generated by ‘Newton’s method’ with ‘weighted sum method’ of the
Example 3.2 is given in Figure 2.

Example 3.3. (Three dimensional three objective non-convex problem under uncertainty
set of three elements) Consider the uncertain three-objective optimization problem P(U) =
{P(ξ ) : ξ ∈U} such that P(ξ ) : minx∈R3 Ψ(x,ξ ), where Ψ(x,ξ )= (Ψ1(x,ξ ),Ψ2(x,ξ ),Ψ3(x,ξ )),
Ψ : R3 ×U → R3, ξ ∈ U = {(4,1), (0,2), (1,0)}, and Ψ(x,ξ ) = (x2

1 + (x2 − ξ1)
2 − ξ2x2

3,

ξ1x1 + ξ2x2
2 + x3 + 4ξ1ξ2, and ξ1x2

1 + 6x2
2 + 25(x3− ξ2x1)

2), where ξ = (ξ1,ξ2), Ψ1(x,ξ ) =
x2

1+(x2−ξ1)
2−ξ2x2

3, Ψ2(x,ξ )= ξ1x1+ξ2x2
2+x3+4ξ1ξ2, and Ψ3(x,ξ )= ξ1x2

1+6x2
2+25(x3−

ξ2x1)
2. The objective wise worst case cost type robust counterpart to P(U) is given by RP :

minx∈R3 φ(x), where φ(x) = (φ1(x), φ2(x),φ3(x)), φ1(x) = maxξ∈U Ψ1(x,ξ ) = max{x2
1 +(x2−

4)2 − x2
3, x2

1 + x2
2 − 2x2

3, x2
1 + (x2 − 1)2}, φ2(x) = maxξ∈U Ψ2(x,ξ ) = max{4x1 + x2

2 + x3 +

16, 2x2
2+x3, x1+x3}, and φ3(x) =maxξ∈U Ψ2(x,ξ ) = {4x2

1+6x2
2+25(x3−x1)

2,6x2
2+25(x3−

2x1)
2+x2

1+25x2
3}. The comparison of approximate Pareto front generated by ‘Newton’s method’

with ‘weighted sum method’ of the Example 3.3 is given in Figure 3.

Example 3.4. (Two dimensional three-objective non-convex problem under uncertainty set
of three elements) Consider the uncertain three objective optimization problem P(U) = {P(ξ ) :
ξ ∈U} such that P(ξ ) : minx∈R2 Ψ(x,ξ ), where Ψ(x,ξ ) = (Ψ1(x,ξ ),Ψ2(x,ξ ),Ψ3(x,ξ )), Ψ :
R2×U → R3, ξ ∈U = {(2,3), (4,5), (2,0)}, Ψ(x,ξ ) = (x2

1 + ξ1x4
2 + ξ1ξ2x1x2,5x2

1 + ξ1x2
2 +

ξ2x4
1x2,e−ξ1x1+ξ2x2 + x2

1 − ξ1x2
2), where ξ = (ξ1,ξ2). Here Ψ1(x,ξ ) = x2

1 + ξ1x4
2 + ξ1ξ2x1x2,

Ψ2(x,ξ ) = 5x2
1 +ξ1x2

2 +ξ2x4
1x2, and Ψ3(x,ξ ) = e−ξ1x1+ξ2x2 + x2

1−ξ1x2
2.

The objective wise worst case cost type robust counterpart to P(U) is given by RP : minx∈R2 φ(x),
where φ(x) = (φ1(x),φ2(x)), φ1(x) = maxξ∈U Ψ1(x,ξ ) = maxξ∈U{x2

1+2x4
2+6x1x2, x2

1+4x4
2+
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(A) The Approximate Pareto front of Example 3.3
via the Newton’s Method.

(B) The Approximate Pareto front of Example 3.3
via the weighted sum method

FIGURE 3. The comparison of approximate Pareto front generated by ‘Newton’s
method’ with ‘weighted sum method’ of Example 3.3

(A) The Approximate Pareto front of Example 3.4
via the Newton’s method

(B) The Approximate Pareto front of Example 3.4
via the weighted sum method

FIGURE 4. The comparison of approximate Pareto front generated by ‘Newton’s
method’ with ‘weighted sum method’ of the Example 3.4
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(A) The Approximate Pareto front of Example 3.5
via the Newton’s method

(B) The Approximate Pareto front of Example 3.5
via the weighted sum method

FIGURE 5. The Comparison of approximate Pareto front generated by ‘New-
ton’s method’ with ‘weighted sum method’ of Example 3.5

20x1x2, x2
1+2x4

2}, φ2(x)=maxξ∈U Ψ2(x,ξ )=max{5x2
1+2x2

2+3x4
1x2, 5x2

1+4x2
2+5x4

1x2, 5x2
1+

2x2
2}, φ3(x) = maxξ∈U Ψ3(x,ξ ) = max{e−2x1+3x2 + x2

1 − 2x2
2, e−4x1+5x2 + x2

1 − 4x2
2, e−2x1 +

x2
1− 2x2

2}. The comparison of approximate Pareto front generated by ‘Newton’s method’ with
‘weighted sum method’ of the Example 3.4 is given in Figure 4.

Example 3.5. (Two dimensional three objective convex problem under uncertainty set of
three elements) Consider the uncertain bi-objective optimization problem P(U) = {P(ξ ) : ξ ∈
U} such that P(ξ ) : minx∈R2 Ψ(x,ξ ), where Ψ(x,ξ ) = (Ψ1(x,ξ ),Ψ2(x,ξ )), Ψ : R2 ×U →
R3, ξ ∈ U = {(2,3), (1,2), (4,5)}, Ψ(x,ξ ) = (100ξ1(x2− x2

1)
2 + ξ2(1− x1)

2,(x2− ξ1)
2 +

ξ2x2
1, ξ1x2

1 +3ξ2x2
2), where ξ = (ξ1,ξ2), Ψ1(x,ξ ) = 100ξ1(x2− x2

1)
2 +ξ2(1− x1)

2, Ψ2(x,ξ ) =
(x2−ξ1)

2 +ξ2x2
1, and Ψ3(x,ξ ) = ξ1x2

1 +3ξ2x2
2. The objective wise worst case cost type robust

counterpart to P(U) is given by RP : minx∈R2 φ(x), where φ(x) = (φ1(x),φ2(x),φ3(x)), φ1(x) =
maxξ∈U Ψ1(x,ξ ) = max{200(x2 − x2

1)
2 + 3(1− x1)

2, 100(x2 − x2
1)

2 + 2(1− x1)
2, 400(x2 −

x2
1)

2 + 5(1− x1)
2}, φ2(x) = maxξ∈U Ψ2(x,ξ ) = max{(x2− 2)2 + 3x2

1, (x2− 1)2 + 2x2
1, (x2−

4)2+5x2
1}, and φ3(x)=maxξ∈U Ψ3(x,ξ )=max{2x2

1+9x2
2, x2

1+6x2
2, 4x2

1+20x2
2}. The compar-

ison of approximate Pareto front generated by ‘Newton’s method’ with ‘weighted sum method’
of the Example 3.5 is given in Figure 5.

Example 3.6. (Two dimensional bi-objective convex problem under uncertainty set of two
elements) Consider the uncertain bi-objective optimization problem P(U) = {P(ξ ) : ξ ∈ U}
such that P(ξ ) : minx∈R2 Ψ(x,ξ ), where Ψ(x,ξ ) = (Ψ1(x,ξ ),Ψ2(x,ξ )), Ψ : R2×U →R2, ξ ∈
U = {(1,2,2), (1,3,0)} ⊂ R3, and Ψ(x,ξ ) = (ξ1x2

1 + ξ2x2
2 + ξ1x1 + ξ1ξ3x2, (ξ1 + ξ2x2)

2 +

ξ1x1 + x2 + 10(x1 + ξ3x2) + e(1+ξ1x1+ξ2x2)
2
, where ξ = (ξ1,ξ2,ξ3), Ψ1(x,ξ ) = ξ1x2

1 + ξ2x2
2 +
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(A) The Approximate Pareto front of Example 3.6
via the Newton’s method

(B) The Approximate Pareto front of Example 3.6
via the weighted sum method

FIGURE 6. The Comparison of approximate Pareto front generated by ‘New-
ton’s method’ with ‘weighted sum method’ of Example 3.6

ξ1x1 + ξ1ξ3x2, and Ψ2(x,ξ ) = (ξ1 + ξ2x2)
2 + ξ1x1 + x2 + 10(x1 + ξ3x2)+ e(1+ξ1x1+ξ2x2)

2
. The

objective wise worst case cost type robust counterpart to P(U) is given by RP : minx∈R2 φ(x),
where φ(x) = (φ1(x),φ2(x)) and

φ1(x) = max
ξ∈U

Ψ1(x,ξ ) = max
ξ∈U
{x2

1 +2x2
2 + x1 +2x2, x2

1 +3x2
2 + x1}

and
φ2(x) = max

ξ∈U
Ψ2(x,ξ )

= max
ξ∈U
{(1+2x2)

2 + x1 + x2‘+10(x1 +2x2)+ e(1+x1+2x2)
2
,(1+3x2)

2 +11x1 + x2 + e(1+3x1)
2
}.

The comparison of approximate Pareto front generated by ‘Newton’s method’ with ‘weighted
sum method’ of the Example 3.6 is given in Figure 6.

With the help of the figures presented above, we observe that the Newton’s method (Algo-
rithm 1) generates a good approximate Pareto front for both convex and non-convex problems
whereas the weighted sum method fails to generate good approximate Pareto front for the non-
convex problem.

4. CONCLUSIONS

In this paper, we solved a deterministic nonsmooth multiobjective optimization problem RP,
which is a robust counterpart to the uncertain multiobjective optimization problem (1.1) namely
P(U) with finite uncertainty sets. We investigated the critical point for RP, which is a non-
smooth multiobjective optimization problem. To do that, we developed a Newton’s algorithm
and solved a subproblem whose solution gives us the Newton’s descent direction, and then we
developed the Armijo type inexact line search technique for step length sizes. With the help of
Newton’s algorithm (Algorithm 1), we defined a sequence that converges to a critical point, and
that point is the weakly efficient solution or efficient solution to RP, and robust efficient solution
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to P(U). Under some assumptions, we proved that sequence generated by Newton’s algorithm
(Algorithm 1) converges to a critical point with a superlinear and quadratic rates. At the end of
this paper, we verified the Newton’s algorithm (Algorithm 1) with the help of some numerical
examples, and also we compared the approximate Pareto front generated by Newton’s method
(Algorithm 1) with the weighted sum method. It is observed that Newton’s method (Algorithm
1) generates a good approximate Pareto front for both convex and non-convex problems whereas
the weighted sum method fails to generate good approximate Pareto front for the non-convex
problem.
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