
CHAPTER-3

An investigation on coupled thermoelastic interactions in a

thick plate due to axi-symmetric temperature distribution

under an exact heat conduction with a delay

3.1 Introduction

Recently, Quintanilla and Racke (2006) have explained the stability of the approximated two phase-

lag heat conduction model given by Tzou (1995a,b). In the frame of dual phase-lag thermoelastic

model, an alternative extension of GN-III model is introduced by Roychoudhuri (2007a) which is

called as three phase-lag model. With a detailed discussion regarding the stability of this model

as well as the mathematical consistency of three phase-lag and dual-lag model, Quintanilla (2011)

has recently proposed to re-formulate the three phase-lag heat conduction model and suggested

an alternative heat conduction theory with a single delay term. Quintanilla (2011) has further

considered the Taylor series approximation in the thermal gradient part of the proposed constitutive

law. In the previous chapter, the comparative study of four different thermoelastic models with

respect to a thick plate problem has been carried out. The main purpose of this chapter is to examine

the effects of the single phase-lag parameter/delay term on wave propagation inside a thick plate

due to the thermoelastic interactions caused by thermo-mechanical loading applied at the boundary

surface of the plate. In order to investigate the effects of the single delay time parameter, we have

considered two versions of the new model by taking the first three and two terms of Taylor series

approximation. We call them as new model-I (Quintanilla-I) and new model-II (Quintanilla-II) for

our study.
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We consider a coupled dynamical thermoelastic problem of an infinitely extended thick plate and

present a complete analysis of the effects of single delay term on the wave propagation inside the

medium. The lower and upper surfaces of the plate are considered to be stress free and are subjected

to a given axi-symmetric temperature distribution. The nature of distributions of different fields

inside the thick plate under this temperature distribution are investigated. We firstly write the unified

basic governing equations in the contexts of four models, namely new model-I, new model-II,

model of type GN-III and Lord-Shulman (LS) model. The problem under LS-model which also

includes one thermal relaxation time parameter was investigated by Sherief and Hamza (1994).

We make an attempt to compare the results in the present context with the results under LS-model

reported in Sherief and Hamza (1994) and present a complete analysis on the wave propagation

and nature of discontinuities of different fields under different models as mentioned above. In the

last section, we present numerical solution of the problem and illustrate the behavior of different

fields like, temperature, displacement and stresses in the middle plane of the plate. Results are

displayed graphically. Analysis of the results obtained under new models along with a comparison

of the respective results obtained in other models including LS-model is presented. We observe

a significant difference in the analytical as well as numerical results predicted by the present new

models and the LS-model. However, we note some similarities in the results predicted by the present

model and GN-III model. Therefore, the findings in the present work are believed to bring out some

lights concerning the new heat conduction model that involves a single delay parameter.

3.2 Governing equations

The equations involving the stress, displacement and thermal fields in the absence of external body

forces in a homogeneous and isotropic medium can be written as

σi j, j = ρ üi (3.1)
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σi j = λ eδi j +2µei j− γ(T −T0)δi j (3.2)

ei j =
1

2
(ui, j +u j,i) (3.3)

The heat conduction equation in the absence of heat source under GN-III model can be written as

[K∗+K
∂

∂ t
]∇2T = (ρ ceT̈ + γ T0ë) (3.4)

We consider the corresponding heat conduction equation in the context of new model-I (see

Quintanilla (2011)) as

[K∗(1+ τ
∂

∂ t
+

τ2

2

∂ 2

∂ t2
)+K

∂

∂ t
]∇2T = (ρ ceT̈ + γ T0ë) (3.5)

The corresponding heat conduction equation in the context of new model-II (see Quintanilla (2011))

is given by

[K∗(1+ τ
∂

∂ t
)+K

∂

∂ t
]∇2T = (ρ ceT̈ + γ T0ë) (3.6)

The heat conduction equation in the context of LS-model is given by

K ∇2T = (1+ τ0
∂

∂ t
)(ρ ceṪ + γ T0ė) (3.7)

In above equations, T and T0 are the absolute temperature and reference temperature, respectively.

τ0 is a constant with the dimension of time that acts as the thermal relaxation time parameter

under LS-model, while τ is the delay time as described by Quintanilla (2011). K and K∗ are the

thermal conductivity and the rate of thermal conductivity, respectively. ui’s are the components of

the displacement field. γ = (3λ +2µ)αt , where αt is the coefficient of linear thermal expansion

parameter and e is the dilatation which is expressed as

e = eii (3.8)
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After combining the heat conduction equations given by Eqs. (3.4-3.7), the resultant equation can

be rewritten in a unified way under above four models as

[

[δ1k

{

K∗(1+ τ
∂

∂ t
+ τ1

∂ 2

∂ t2
)+K

∂

∂ t

}

+Kδ2k]

]

∇2T

=

[

δ1k

∂

∂ t
+δ2k(1+ τ0

∂

∂ t
)

]

[

ρ ceṪ + γ T0ė
]

(3.9)

where, τ1 =
τ2

2

Then, we can find individual heat conduction equation under different models by putting different

values of the delay time and values of k in the Kronecker delta δik (i = 1, 2) as given below:

• GN-III model: k = 1, τ = 0, K∗ > 0

• New model-I: k = 1, τ 6= 0, τ1 6= 0, K∗ > 0

• New model-II: k = 1, τ 6= 0, τ1 = 0, K∗ > 0

• LS model: k = 2, τ0 6= 0

Therefore, GN-III model, new model-I, new model-II and LS model can be studied simultaneously

by considering the field equations given by (3.1-3.3) and Eq. (3.9) for ui and T .

3.3 Formulation of the problem

Let us consider a problem of homogeneous, isotropic and infinitely extended thick plate of thickness

2l which is in an undisturbed state and initially at uniform temperature T0. The z-axis is taken to

be the axis of symmetry and the middle point between the lower and upper surfaces of the plate

is taken to be the origin of the cylindrical polar coordinates (r, θ , z). Then for the medium in the

region R defined by

R = {(r, θ , z) : 0≤ r ≤ ∞, 0≤ θ ≤ 2π,−l ≤ z≤ l}
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The displacement components in the r and z directions are denoted by u= u(r, z, t) and w=w(r, z, t),

respectively.

Therefore, Eq. (3.1) can be written as

∂σrr

∂ r
+

∂σrz

∂ z
+

σrr−σθθ

r
= ρ

∂ 2u

∂ t2
(3.10)

∂σrz

∂ r
+

∂σzz

∂ z
+

σrz

r
= ρ

∂ 2w

∂ t2
(3.11)

We introduce the following non-dimensional quantities:

c2
1 = λ+2 µ

ρ , r′ = c1η r, u′ = c1η u, t ′ = c2
1ηt, τ ′1 = c4

1η2τ1, τ ′0 = c2
1ητ0, a2 = γ

K η , a0 = K∗

K c2
1η
,

ξ = c1η a, λ1 =
λ
µ , β = a1

µ1
, τ ′ = c2

1ητ, T ′ = T−T0

T
, σ ′rr =

σrr

µ , σ ′θθ = σθθ
µ , µ1 =

µ
λ+2 µ , a1 =

γ T0

(λ+2 µ)

For the convenience, we drop the prime notations from all the quantities. Therefore, the dimension-

less stress components derived from Eq. (3.2) are given by

σrr = 2err +λ1e−β T (3.12)

σθθ = 2eθθ +λ1e−β T (3.13)

σzz = 2ezz +λ1e−β T (3.14)

σrz = 2erz (3.15)

where, non-dimensional strain components can be written as

err =
∂u

∂ r
, eθθ =

u

r
, ezz =

∂w

∂ z
, erz =

1

2
(
∂u

∂ z
+

∂w

∂ r
)
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Equations (3.9-3.11) can be written in the following non dimensional forms:

[

δ1k

{

a0(1+ τ
∂

∂ t
+ τ1

∂ 2

∂ t2
)+

∂

∂ t

}

+δ2k

]

∇2T

=

[

δ1k

∂

∂ t
+δ2k(1+ τ0

∂

∂ t
)

]

[

Ṫ +a2ė
]

(3.16)

µ1∇2u−µ1
u

r2
+(1−µ1)

∂e

∂ r
−a1

∂T

∂ r
=

∂ 2u

∂ t2
(3.17)

µ1∇2w+(1−µ1)
∂e

∂ z
−a1

∂T

∂ z
=

∂ 2w

∂ t2
(3.18)

where,

∇2 = (
∂ 2

∂ r2
+

1

r

∂

∂ r
+

∂ 2

∂ z2
)

We use Helmholtz decomposition to find the displacement components u and w in the forms:

u =
∂φ

∂ r
+

∂ 2ψ

∂ r∂ z
(3.19)

w =
∂φ

∂ z
− ∂ 2ψ

∂ r2
− 1

r

∂ψ

∂ r
(3.20)

Here, the potential functions φ and ψ are representing the dilatation and rotational part of displace-

ment vector. We also find

e = ∇2φ (3.21)

In view of Eqs. (3.19-3.21) and (3.16-3.18), we constitute a system of equations involving the

displacement potentials φ and ψ and the temperature field T as
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{[δ1k{a0(1+ τ
∂

∂ t
+ τ1

∂ 2

∂ t2
)+

∂

∂ t
}+δ2k]∇

2− [δ1k

∂

∂ t
+δ2k(1+ τ0

∂

∂ t
)]

∂

∂ t
}T

= a2[δ1k

∂

∂ t
+δ2k(1+ τ0

∂

∂ t
)]

∂

∂ t
∇2φ (3.22)

∇2φ − ∂ 2φ

∂ t2
= a1T (3.23)

∇2ψ− 1

µ1

∂ 2ψ

∂ t2
= 0 (3.24)

Eqs. (3.22-3.24) clearly indicate that φ and T are coupled together while ψ does not depend on φ

and T . This implies that Eq. (3.24) represents the shear motion which is not affected by the thermal

field and it is purely elastic in nature. However, Eqs. (3.22-3.23) represent the field functions φ and

T included in the coupled thermoelastic motion.

3.4 Boundary conditions

Our assumptions regarding the present problem formulation show that both the upper and lower

planes of the plate are traction free which implies that the mechanical boundary conditions are taken

to be as

σzz(r,±l, t) = 0, σrz(r,±l, t) = 0 (3.25)

We assume that the temperatures of the lower and upper surfaces of the plate suddenly increases

at time t = 0 such that the temperature of a circular region r ≤ a of both the upper and lower

boundaries receive a fixed value C0. That is, we assume

T (r,±l, t) =C0H(a− r)H(t) (3.26)
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where, H(t) is the Heaviside unit step function.

3.5 Solution of the problem

3.5.1 Laplace and Hankel transforms

In a similar way like the previous chapter, we firstly apply Laplace and Hankel transform technique

to obtain the solution of the problem.

Therefore, assuming homogeneous initial conditions and applying the Laplace and Hankel trans-

forms to Eqs. (3.22-3.24), we get

{[δ1k{a0(1+ τ p+ τ1 p2)+ p}+δ2k](
∂ 2

∂ z2
−α2)− [δ1k p+δ2k(1+ τ0 p)]p}T̄ ∗

= a2[δ1k p+δ2k(1+ τ0 p)]p(
∂ 2

∂ z2
−α2)φ̄∗ (3.27)

(
∂ 2

∂ z2
−α2− p2)φ̄∗ = a1T̄ ∗ (3.28)

(
∂ 2

∂ z2
−α2− 1

µ1
p2)ψ̄∗ = 0 (3.29)

where the over-headed bar notation and super-scripted * notation are used to denote the Laplace

and Hankel transform of a function respectively. p and α are representing the Laplace and Hankel

transform parameters, respectively.

Now, removing T̄ ∗ from (3.27) and (3.28), we get the equation having φ̄∗ in the following form:

(
∂ 2

∂ z2
−m2

1)(
∂ 2

∂ z2
−m2

2)φ̄
∗ = 0 (3.30)

In the above equation, ±m1 and ±m2 are the roots of the following equation:
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A(p)m4−{2A(p)α2 +A(p)p2 +(1+ ε)B(p)}m2 +α2(α2 + p2)A(p)+{(1+ ε)α2 + p2}B(p) = 0 (3.31)

where,

A(p) = δ1k{a0(1+ τ p+ τ1 p2)+ p}+δ2k

B(p) = [δ1k p+δ2k(1+ τ0 p)]p

ε = a1a2 =
γ2T0

ρ2cvc2
1

Here, ε represents the thermoelastic coupling constant.

Since the problem is taken to be symmetric, T and u are even function of z while w is an odd

function of z. Thus from Eqs. (3.19-3.20), we obtain that φ and ψ are the even and odd functions of

z, respectively. The expressions for φ̄∗, ψ̄∗ and T̄ ∗ are therefore given by the following forms:

φ̄∗ =
2

∑
i=1

Ai cosh(miz) (3.32)

ψ̄∗ =C sinh(qz) (3.33)

a1T̄ ∗ =
2

∑
i=1

(m2
i −α2− p2) Ai cosh(miz) (3.34)

where, q2 = α2 + 1
µ1

p2

In Eqs. (3.32−3.34), A1,A2 and C are arbitrary constants which depend on both p and α but they

are independent of z.

With the help of Eqs. (3.14-3.15), (3.19-3.20) and (3.32-3.34), we obtain the stresses σ̄∗zz and σ̄∗rz in
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the following forms:

σ̄∗zz = (
1

µ1
p2 +2α2)φ̄∗+2α2 ∂ψ̄∗

∂ z
(3.35)

σ̄∗rz = h̄(
∂

∂ r
(2

∂ φ̄

∂ z
+(2

∂ 2

∂ z2
− p2

µ1
)ψ̄)) (3.36)

The boundary conditions (3.25) and (3.26) along with Eqs. (3.32-3.36) imply

2

∑
i=1

(
1

µ1
p2 +2α2)A cosh(mil) =−2α2qC cosh(ql) (3.37)

2

∑
i=1

mi Asinh(mil) =
1

2
(

p2

µ1
−2q2)C sinh(ql) (3.38)

2

∑
i=1

(m2
i −α2− p2)Ai cosh(mil) =

aa1C0

α p
J1(αa) (3.39)

Therefore, the constants A1, A2 and C are found from Eqs. (3.37-3.39) in the following forms:

A1 =−a1(4α2qm2µ2
1 tanh(m2l)−(2α2µ1+p2)2tanh(ql))

pX cosh(m1l)(2α2µ1+p2)2 tanh(ql)
θ ∗0 (α),

A2 =
a1(4α2qm1µ2

1 tanh(m1l)−(2α2µ1+p2)2tanh(ql))

pX cosh(m2l)(2α2µ1+p2)2 tanh(ql)
θ ∗0 (α),

C = 2a1µ1(m2 tanh(m2l)−m1 tanh(m1l))
pX (2α2µ1+p2)sinh(ql)

θ ∗0 (α),

where, θ ∗0 (α) = aC0

α J
1
(αa) and

X = m2
1−m2

2 +
4α2qµ2

1

(2α2µ1+p2)2 tanh(ql)
[m1(m

2
2−α2− p2) tanh(m1l)−m2(m

2
1−α2− p2) tanh(m2l)]

This completes the solution in the transform domain.

3.5.2 Inversion of the Hankel Transform

Now, we define the inverse Hankel transform in the following manner

f
′
(r) = h̄−1[ f ∗(α)] =

ˆ ∞

0

f ∗(α)α J0(αr)dα (3.40)
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Applying the inverse Hankel transform to Eqs. (3.32-3.34), we get

a1 T̄ (r, z, p) =

ˆ ∞

0

α J0(αr)
2

∑
i=1

Ai(m
2
i −α2− p2)cosh(miz)dα (3.41)

φ̄ (r, z, p) =

ˆ ∞

0

α J0(αr)
2

∑
i=1

Ai cosh(miz)dα (3.42)

ψ̄ (r, z, p) =

ˆ ∞

0

α J0(αr)C sinh(qz)dα (3.43)

Further, by using Eqs. (3.41-3.43) into the Eqs. (3.17-3.20), we obtain the solutions for the

displacement components in the Laplace transform domain as

ū(r, z, p) =−
ˆ ∞

0

α2J1(αr) [
2

∑
i=0

Ai cosh(miz)+C qcosh(qz)]dα (3.44)

w̄(r, z, p) =

ˆ ∞

0

α J0(αr) [
2

∑
i=1

mi Ai sinh(miz)+C α2 sinh(qz)]dα (3.45)

Now, taking the Laplace transform to both sides of Eqs. (3.12-3.14) and with the help of the

solutions given by Eqs. (3.41-3.45), the stress components are obtained in the Laplace transform

domain as

σ̄rr =
´ ∞

0 ∑
2
i=1{2α2

r
J1(αr)+α J0(αr)( p2

µ1
−2m2

i )}Ai cosh(miz)dα

+
´ ∞

0
2α3[ 1

αr
J1(αr)− J0(αr)]C qcosh(qz)dα

(3.46)

σ̄θθ =
´ ∞

0 ∑
2
i=1[αJ0(αr)( p2

µ1
+2α2−2m2

i )− 2
r
α2J1(αr)]Ai cosh(miz)dα

−2
r

´ ∞

0
Cqα2J1(αr)cosh(qz)dα

(3.47)

σ̄zz =
´ ∞

0
αJ0(αr){( p2

µ1
+2α2)[∑2

i=1 Ai cosh(miz) ]

+2α2qC cosh(qz)}dα
(3.48)
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Equations (3.41-3.48) constitute the complete set of solutions for the field variables in the Laplace

transform domain.

3.5.3 Inversion of Laplace transform

3.5.3.1 Short time approximated solutions and discussions

We observe that the solutions given by Eqs. (3.41-3.48) in the previous section involve complicated

functions of the Laplace transform parameter, p. Consequently, the derivation of inversion of

Laplace transform analytically is a tough and formidable task. Therefore, we firstly make an attempt

to get the solution for the field variables in the time domain for small values of time, and find out

the locations where the function fields have discontinuities. For this purpose, we apply Boley’s

theorem (1962) given in Appendix-A1. We must mention that this theorem is quite advantageous

(particularly, when the transform expressions involve exponential functions) in extracting the time-

domain information, to find out the wave fronts and the exact values of speeds directly from the

Laplace transform expressions without actually inverting these expressions.

To apply this theorem, we proceed as follows: firstly, assuming p to be very large, we expand all

the quantities involving p in Eq. (3.31) in powers of 1
p

and we obtain the roots of Eq. (3.31) by

neglecting higher powers for smallness. Solutions for LS-model are reported in Sherief and Hamza

(1994). Hence, we omit this case and concentrate on other three models we considered for our study.

We obtain the roots of Eq. (3.31) for three considered models as follows:

New model-I:

m1 = p(M11 +M12
1

p
+M13

1

p2
+M14

1

p3
) (3.49)

m2 = (N12 +N12
1

p
+N13

1

p2
) (3.50)
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New model-II:

m1 = p(M′
11 +M′

12

1

p
+M′

13

1

p2
) (3.51)

m2 =
√

p(N′11 +N′12

1

p
+N′13

1

p2
) (3.52)

GN-III model:

m1 = p(1+
ε

2

1

p
+ e12

1

p2
) (3.53)

m2 =
√

p(1+
d22

2

1

p
) (3.54)

where,

M11 = 1, M12 = 0, M13 = (α2 + ε
a0τ1

)1
2
, M14 = {3

8
(a0τ+1

a0τ1
)3− ε

2
(a0τ+1

a2
0τ2

1

)}, N11 =
√

N1,

N12 =
N2

2
√

N1
, N13 = (N3

2
− N2

2
8N1

) 1√
N1
), N1 =

c11
a11

, N2 = (2c12− a3
12

2a2
11

−2c11
a12
a11

) 1
2a11

,

N3 = {c11− a2
12

a2
11

+ 5
8

a4
12

a3
11

+ 1

8b3
11

(16a2
11c2

11 +8b2
12b11b13−16a11c11b11b13)+2c13− b12b14

b11
} 1

2a11
,

a11 = a0τ1, a12 = a0τ +1, b11 = a11, b12 = a12, b13 = (2a11α2 +a0 + ε +1),

b14 = 2α2a12, b15 = 2α2a0, c11 = (α2a11 +1), c12 = α2a12,

c13 = (ε1α2 +a11α4 +a0α2), c14 = a12α4, c15 = a0α4,

M′
11 = 1, M′

12 =
ε

2a′11
, M′

13 =
ε

2a′11
(1+ 1

4a′11
),

N′11 =
√

N′1, N′12 =
1
2

N′2√
N′1
, N′13 =

N′3
2
√

N′1
− N′22

8N
′ 3
2

1

N′1 =
1

a′11
, N′2 =

B′12

2a′11
− a0

a′211

, N′3 =
a2

0

a′311

− a0B′12

2a′211

+
B′13

2a′11

B′12 =
2

b′11
(a′11c′11 +a0)+

2
b′11

(1−b′12),

B′13 =
2

b′11
(a′11c′11 +a0c′11)+

1

4b′311

{2b′11b′312−8b′11b′12(a
′
11c′11 +a0)...

−4a′11(b
′2
12 +2b′11b′13)16a′11(a11c11 +a0)}

a′11 = a0τ1, a′12 = (a0τ +1), b′11 = a′11, b′12 = a′12, ,

b′13 = (2a′11α2 +a0 + ε1), b′14 = 2α2a′12, b′15 = 2α2a0,
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c′11 = (α2a′11 +1), c′12 = α2a′12, c′13 = (ε1α2 +a′11α4 +a0α2),

c′14 = α4a12, c′15 = α4a0, d12 = α2 + ε−a0ε, d22 = α2− ε−a0, e12 =
4d12−ε2

8

Further, for large p,

tanh(mil) = tanh(ql) = 1+O( 1
p
), cosh(mil) =

1
2
emil +O( 1

p
), sinh(ql) = 1

2
eql +O( 1

p
)

Now, substituting above values of m1 and m2 from (3.49-3.54) into Eq. (3.41), we get the expressions

for short-time approximated solution for the temperature distribution in the Laplace transform

domain for different models as follows:

New model-I:

T̄ (r, z, p) = [
(2M13−α2)

p3

ˆ ∞

0

α J0(αr)θ ∗0 (α)em1(z−l)dα +
(2M13−α2)

p3

+
(2M13−α2)

p3

ˆ ∞

0

α J0(αr)θ ∗0 (α)e−m1(z+l)dα]+O(
1

p4
)

+[
1

p

ˆ ∞

0

α J0(αr)θ ∗0 (α)em2(z−l)dα

+
1

p

ˆ ∞

0

α J0(αr)θ ∗0 (α)e−m2(z+l)dα]+O(
1

p2
) (3.55)

New model-II:

T̄ (r, z, p) = [
M′

12

p2

ˆ ∞

0

α J0(αr)θ ∗0 (α)em1(z−l)dα+

+
M′

12

p2

ˆ ∞

0

α J0(αr)θ ∗0 (α)e−m1(z+l)dα]+O(
1

p3
)

+[
1

p

ˆ ∞

0

α J0(αr)θ ∗0 (α)em2(z−l)dα

+
1

p

ˆ ∞

0

α J0(αr)θ ∗0 (α)e−m2(z+l)dα]+O(
1

p2
) (3.56)
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GN-III model:

T̄ (r, z, p) = [
ε

p2

ˆ

α J0(αr)θ ∗0 (α)em1(z−l)dα

+
ε

p2

ˆ ∞

0

α J0(αr)θ ∗0 (α)e−m1(z+l)dα]+O(
1

p3
)

+[
1

p

ˆ ∞

0

α J0(αr)θ ∗0 (α)em2(z−l)dα

+
1

p

ˆ ∞

0

α J0(αr)θ ∗0 (α)e−m2(z+l)dα]+O(
1

p2
) (3.57)

Now, we apply Boely’s theorem (see Appendix-A1) as follows:

The inverse Laplace transform of the first term in Eq. (3.55) is

I1 =
1

2πi

ˆ d+i∞

d−i∞

(2M13−α2)

p3

ˆ ∞

0

α J0(αr)θ ∗0 (α)em1(z−l)+ptdα d p

which can be written as

I1 =
1

2πi

ˆ d+i∞

d−i∞

K′

p3
[1+O(

1

p
)]eg(p,t)d p (3.58)

where, K′ = (2M13−α2)e
´ ∞

0
α J0(αr)θ ∗0 (α)em1(z−l)+ptdα, and g(p, t) = m1(z− l)+ pt.

By using Eq. (3.49), we obtain g(p, t)− pξ (t) = O( 1
p
), where, ξ (t) = M11(z− l)+ t.

Similarly, we can invert the remaining terms in Eq. (3.55).

The inverse Laplace transform of the first term in Eq. (3.56) is

I2 =
1

2πi

ˆ d+i∞

d−i∞

M′
12

p2

ˆ ∞

0

α J0(αr)θ ∗0 (α)em1(z−l)+ptdα d p

which can be written as

I2 =
1

2πi

ˆ d+i∞

d−i∞

K′

p2
[1+O(

1

p
)]eg(p,t)d p (3.59)

where, K′ = M′
12e−M′

12(z−l)
´ ∞

0
α J0(αr)θ ∗0 (α)em1(z−l)+ptdα, and g(p, t) = m1(z− l)+ pt.

By using Eq. (3.51), we obtain g(p, t)− pξ (t) = O( 1
p
), where, ξ (t) = M′

11(z− l)+ t.

Similarly, we can invert the remaining terms in Eq. (3.56).
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The Inverse Laplace transform of the first term in Eq. (3.57) is

I3 =
1

2πi

ˆ d+i∞

d−i∞

ε

p2

ˆ ∞

0

α J0(αr)θ ∗0 (α)em1(z−l)+ptdα d p

which can be written as

I3 =
1

2πi

ˆ d+i∞

d−i∞

K′

p2
[1+O(

1

p
)]eg(p,t)d p (3.60)

where, K′ = ε
´ ∞

0
α J0(αr)θ ∗0 (α)em1(z−l)+ptdα, and g(p, t) = m1(z− l)+ pt.

By using Eq. (3.53), we obtain g(p, t)− pξ (t) = O( 1
p
), where, ξ (t) = (z− l)+ t.

Similarly, we can invert the remaining terms in Eq. (3.57).

3.5.4 Discussion on analytical results

In this section, we will analyze the results obtained as short-time approximated solutions in the

previous section. Inverting all four terms in Eqs. (3.55) and (3.56) in the form as given in Eqs.

(3.58) and (3.59), we note that in cases of new model-I and new model-II, the first and second

terms of the solution given for temperature field represent the waves originating at the upper surface

of the plate (z = l) and the lower surface of the plate (z =−l), respectively. The expressions for

M11 and M′
11 indicate that the waves propagate with the finite speed unity in the contexts of these

two models. These waves are modified elastic waves and arrive at the middle plane at time l. The

third and fourth terms in Eqs. (3.55) and (3.56) are clearly not of wave type, but diffusive, which

is due to the presence of the damping term in the new heat conduction equation. Similarly, under

GN-III model, the first and the second terms in Eq. (3.57) represent the modified elastic waves

originating at the upper and lower surface of the plate and the elastic wave propagate with the same

non dimensional finite speed 1. Moreover, like the cases of new models, the third and fourth terms

in this case are diffusive in nature. From equations (3.49-3.50) and (3.53), it follows that the speed

of modified elastic wave is 1 under all three models: new model-I, new model-II and GN-III model.

The solution as given in Eqs. (3.49) and (3.51) further predicts that elastic waves under new model-I
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propagate without any attenuation while in the case of new model-II, the elastic wave propagates

with attenuation and the attenuation coefficient is M′
12 which depends on the thermoelastic coupling

constant as well as on delay parameter τ . The elastic wave for GN-III model also decays expo-

nentially with the attenuating coefficient ε/2. Therefore, we can conclude that although the speed

of modified elastic wave does not depend on delay term τ and the new heat conduction models

is similar in nature with GN-III model, but the elastic wave decays exponentially with different

attenuating coefficients pertinent to new model-I, new model-II and GN-III model. Further, the new

model-I shows no attenuation in elastic wave. This indicates distinct feature of the present new

model-I.

By following Boley’s theorem (1962) as given above, we note that the solution as derived for

different models reveal an interesting fact: the temperature function has no discontinuity in the

contexts of new model-I and new model-II. This is also similar in nature like GN-III model which

also predicts no such discontinuity for temperature distribution.

We have also found that the solution of stress components consist of six different parts. Four

parts represent four coupled waves: two (modified elastic and shear waves) originating at the

upper surfaces, and two (modified elastic and shear waves) originating at the lower surface of

the plate. Other two parts are diffusive in nature. For new model-I and II, each and every stress

components surfers a finite jump discontinuity at the wave fronts ξ (t) = (z− l)+ t. However, the

stress components are continuous across the shear wave front 1√
µ1
(z− l)+ t = 0. Further, the shear

waves propagate with the common non dimensional finite speed
√

µ1. The displacement u and its

first partial derivative with respect to z and t are also continuous functions, but its second derivatives

are discontinuous functions with a finite jump. The displacement w is also continuous. The thermal

parts of all the field variables are diffusive in cases of new model-I, new model- II as well as in

the case of GN-III model. Our results for GN-III model match with the corresponding results for

GN-III model as reported by Mukhopadhyay and Kumar (2010). By comparing our results with

the corresponding results in the context of LS-model (see Sherief and Hamza (1994)), a significant

difference is observed. In the context of LS-model as reported in Sherief and Hamza(1994), the
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solution of temperature distribution in the middle plane of the plate consists of four coupled waves:

two modified elastic waves originating from the upper and lower surfaces of the plate and two

thermal waves propagating from the upper and lower surfaces of the plate. Both the modified elastic

wave as well as modified thermal wave propagate with finite speeds. Furthermore, all these wave

attenuate with an exponential decay. Similarly, other fields also consists of modified thermal wave

propagating with finite speed and with constant attenuating coefficients. It must also be mentioned

that in the contexts of dual phase-lag and three phase-lag models, the thermal wave propagate with

finite speed as reported by Mukhopadhyay and Kumar (2010). Hence, we find here a significantly

different nature of the solutions predicted by the present model that takes into account a single

delay term as compared to the results predicted by LS-model that includes one thermal relaxation

parameter or by the other generalized thermoelastic models like, dual phase-lag and three phase-lag

models. However, the new model-II shows closely related predictions like GN-III model.

3.6 Numerical examples

In the previous section, we have made an attempt to investigate the nature of solutions of the field

variables by deriving the short-time approximated analytical solutions with the help of Boley’s

theorem (1962). Now, in order to understand the differences of behavior of field variables in the

present contexts, we carry out numerical work to compute the numerical values of physical fields at

the middle plane of the plate at any instant of time. We consider the copper material for the purpose

of numerical work and assume the following data as given in Chandrasekharaiah and Srinath(1997):

λ = 7.76×1010Nm−2, µ = 3.38×1010Nm−2, αt = 1.78×10−5K−1, d = K
ρce

= 0.000113m2s−1,

ce = 383.1JKKg−1, ρ = 8954Kgm−3, T0 = 293K, η = 1
d
, τ = 0.1, τ1 =

τ2

2
, C0 = 1, l = 1, K∗ =

cv(λ+2µ)
4

We have employed the numerical method given by Bellman et al. (1966) (see Appendix-A2)

to invert the Laplace transforms. We apply the Gauss-Laguerre integration method to invert the

Hankel transforms. By using programming in MatLab, we carry out our computation to obtain the
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numerical values of physical fields in the physical domain (r, t) by using the solutions obtained

in Laplace transform domain given by Eqs. (3.41-3.48). The non-dimensional finite speed of the

elastic wave is computed to be 1 for new model-I and II. The elastic wave reaches the middle plane

at non-dimensional time 1 for both the new model-I and new model-II. This is also found to be the

same for GN-III model.

The physical fields are computed at the middle plane of the plate for different values of r and t

from Eqs. (3.41-3.48). For the purpose of comparing the results in the contexts of new models

with the corresponding results under LS-model, we also carry out our computation for LS model

by assuming τ0 = 0.2. We represent the numerical results graphically and show the variations of

different fields at three non-dimensional times (0.35, 0.69, 1.21). Figures (3.1, 3.3, 3.5) show the

distributions of temperature, displacement and radial stress, respectively in the contexts of all four

models for the delay parameter τ = 0.1 and for thermal relaxation parameter of LS model, τ0 = 0.2.

Figures (3.2, 3.4, 3.6) are displayed separately to compare the distributions of the variables under

only three models: new model-I, new model-II, and GN-III model to understand the difference in

prediction for field variables by these models. The curves at times (0.35, 0.69) in Figures (3.1−3.6)

are showing the distributions of the fields in the middle plane before the arrival of the elastic wave.

The curves at time 1.21 in Figures (3.1−3.6) are showing the distributions of the fields after the

arrival of the elastic wave to the middle plane of the plate under different models.

It follows from Figures (3.1,3.2) that under all models, the temperature decreases with the increase

of time and region of influence increases with time. Furthermore, before the arrival of elastic wave

to the middle plane, this field shows different values under different models near the boundary and

the difference decreases with the increase of radial distance. However, at later time after the arrival

of elastic wave to the middle plane, there is no significant differences among the results predicted

by three models: new model-I, new model-II and GN-III model. We note that the results predicted

by LS-model shows a prominent difference as compared to the results predicted by other three

models. This difference is more prominent before the arrival of elastic wave to the middle plane.

The nature of distribution of displacement fields can be observed from Figures (3.3, 3.4) which
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show that there is a significant change in the distribution after the elastic wave reaches the middle

plane of the plate and the region of influence increases significantly. However, all models agrees

with a similar trend of distribution. Difference of results is noted for LS-model and other three

models, although at initial time this difference is not very prominent. With the increase of radial

distance and time, this difference becomes very prominent. Variation of radial stress is depicted in

Figures (3.5, 3.6) which show that for this field also, there is a prominent difference in the nature

of radial stress distribution before and after the arrival of elastic wave to the middle plane of the

plate. Before the arrival of elastic wave, the radial stress is compressive up to a longer region of

the middle plane, but it becomes tensile in nature after the arrival of elastic wave in the middle

plane. However, there is no prominent increment in the region of influence with the increment of

time. Further more, we observe that GN-III model, new model-I and new model-II indicate similar

results for this field variable too. However, LS-model indicate a significantly different values as

compared to the other three models. This difference is more prominent at initial time of interaction.

At time 1.21, i.e., after the arrival of the elastic wave at the middle plane, the difference decreases.

The displacement component w vanishes at the middle plane of the plate and difference among

different models for the other stress components are found to be similar to those for the radial stress

components. Hence, we have omitted these figures. Figures (3.7−3.9 ) are plotted to show the

variation of the physical fields under all four models by assuming the delay parameter τ = 0.01

and thermal relaxation parameter of LS-model τ0 = 0.02 and we observe that the differences in

prediction under different models reduces with the smaller values of delay parameter and thermal

relaxation parameters. Figures (3.10−3.12) show the variations of the physical fields under all

four models, at time t = 0.02, i.e. at very small time. We note that at smaller time, the disagreement

of LS model with other three models is very much significant for all the field variables. Moreover,

at small time, the results under GN-III model closely match with the corresponding results under

new model-II.

The variation of the physical fields with time at two different locations of the middle plane of the

plate are displayed separately in Figures 3.13(a, b), 3.14(a, b) and 3.15(a, b) in which 3.13(a),
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3.14(a) and 3.15(a) show the variation of the field variables with time at r = 0.5, i.e near the

boundary while 3.13(b), 3.14(b) and 3.15(b) show the variation of field variables with time at

r = 2.5, i.e at the mid position of the middle plane of the plate. We observe that there is more

prominent disagreement of LS model as compared to other models for the prediction of temperature

distribution at the the mid position as compared to the position near the boundary. Figure 3.14(a, b)

reveal that there is no significant differences in the variation of displacement with time near the

boundary as well as at the mid position of the middle plane under different models. However, the

prediction of radial stress distribution by LS model near the boundary as well as at the mid position

of the middle plane of the plate is significantly different as compared to the predictions by other

three models.

3.7 Conclusions

We make an attempt to investigate the specific features of the heat conduction model that is very

recently proposed by Quintanilla (2011). This model is an alternative reformulation of three

phase-lag model to overcome the fact that the three phase-lag model defines ill-posed problem. We

consider a problem of thick plate subjected to axi-symmetric temperature distribution at the lower

and upper surface.

Fig. 3.1 Temperature distribution in the middle plane of the plate with τ = 0.1 and τ0 = 0.2
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Fig. 3.2 Temperature distribution in the middle plane of the plate with τ = 0.1 and τ0 = 0.2

Fig. 3.3 Displacement distribution in the middle plane of the plate with τ = 0.1 and τ0 = 0.2

Fig. 3.4 Displacement distribution in the middle plane of the plate with τ = 0.1 and τ0 = 0.2
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Fig. 3.5 Radial Stress distribution in the middle plane of the plate with τ = 0.1 and τ0 = 0.2

Fig. 3.6 Radial Stress distribution in the middle plane of the plate with τ = 0.1 and τ0 = 0.2

Fig. 3.7 Temperature distribution in the middle plane of the plate with τ = 0.01 and τ0 = 0.02
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Fig. 3.8 Displacement distribution in the middle plane of the plate with τ = 0.01 and τ0 = 0.02

Fig. 3.9 Stress distribution in the middle plane of the plate with τ = 0.01 and τ0 = 0.02

Fig. 3.10 Temperature distribution in the middle plane of the plate with τ = 0.1 and τ0 = 0.2
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Fig. 3.11 Displacement distribution in the middle plane of the plate with τ = 0.1 and τ0 = 0.2

Fig. 3.12 Stress distribution in the middle plane of the plate with τ = 0.1 and τ0 = 0.2

Fig. 3.13 (a) Variation of Temperature with time at r=0.5 for τ = 0.1 and τ0 = 0.2
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Fig. 3.13 (b) Variation of Temperature with time at r=2.5 for τ = 0.1 and τ0 = 0.2

Fig. 3.14 (a) Variation of displacement with time at r=0.5 for τ = 0.1 and τ0 = 0.2

Fig. 3.14 (b) Variation of displacement with time at r=2.5 for τ = 0.1 and τ0 = 0.2
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Fig. 3.15 (a) Variation of Radial stress with time at r=0.5 for τ = 0.1 and τ0 = 0.2

Fig. 3.15 (b) Variation of Radial stress with time at r=2.5 for τ = 0.1 and τ0 = 0.2

• Under all models, the temperature decreases with increase of time and region of influence

increases with time. Furthermore, before the arrival of elastic wave to the middle plane, this

field shows different values under different models near the boundary and the difference

decreases with the increase of radial distance.

• For distribution of displacement field, there is a significant change in the distribution after the

elastic wave reaches the middle plane of the plate and the region of influence increases very

significantly. However, all models agrees with a similar trend of distribution. Difference of

results is noted for LS-model and other three models, although at initial time this difference

is not very prominent.
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• There is a prominent difference in the nature of variation of stress fields before and after the

arrival of elastic wave to the middle plane of the plate. Before the arrival of elastic wave, the

radial stress is compressive up to a longer region of the middle plane.

• Lord-Shulman model shows prominently different results as compared to other three models

for all the physical field variables.

• New model-I and new model-II show similar predictions like GN-III model for all the physical

field variables.
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