
CHAPTER-1

Introduction and literature review

1.1 Mathematical modeling

1.1.1 What is mathematical modeling?

A mathematical model is an abstraction or simplification that allows one to describe or summarize

a system. There are many ways to define the devices or phenomena and their behaviors. In order

to define, we can use words, drawings or sketches, physical models, computer programs, or

mathematical formulas. In other words, the modeling can be applied in several languages, often

simultaneously. Since we are particularly interested in using the language of mathematics to

make models, the definition of mathematical modeling can be refined as given below:

“Mathematical modeling is a representation in mathematical terms of the behavior of real devices

and objects or phenomena”.

Mathematical modeling has very precise advantages which can be described as below:

• Mathematics is a very precise language. This helps us to formulate ideas and identify

underlying assumptions.

• All the results that mathematicians have proved over hundreds of years are at our disposal.

• Mathematics is a concise language, with well-defined rules for manipulations.

• Computers can be used to perform numerical calculations.

1.1.2 Objective of mathematical modeling

Since the modeling of any device and phenomena is very essential part to both the engineering

and sciences, therefore engineers and scientists have the perfect practical reasons for doing

mathematical modeling. In order to formulate the mathematical model for any problem, firstly
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we must see its behavior in “real world” and “conceptual world”. The external world is called

the real world where we observe the behaviors and various phenomena. These behaviors and

phenomena are either natural or produced by artifacts. However, the conceptual world is the

world of mind where we live and try to understand what is going on in the real or external world.

We see the conceptual world in three different ways: observation, modeling, and prediction. The

following figure is described to understand how the model works.

Fig. 1.1 Graphical representation of modeling

We can use mathematical modeling for a number of different reasons. The accuracy of the

model depends on both the state of knowledge about a system and how well the modeling is

done. Main objective of mathematical modeling underlies in developing scientific understanding

through quantitative expression of current knowledge of a system. The present thesis shall use

the above concept of modeling to study the physical behavior of various thermoelastic systems

under different thermoelastic models and thereby to understand the basic differences between

these models.
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1.2 Thermoelasticity theory

Thermoelasticity takes into account of the change in the size and shape of a solid object as

the temperature of that object fluctuates. Materials that are more elastic will expand and

contract more than those materials that are more inelastic. Scientists use their understanding of

thermoelasticity to design materials and objects that can withstand fluctuations in temperature

without breaking. All materials that are elastic expand when heated and contract when cooled.

The expansion that is described by thermoelasticity formulas is caused by an increase in the

movement of the atoms in the material. These atoms remain linked to each other as a solid is

heated but the molecular bonds grow in size, allowing the atoms to move away from each other

and causing the material to grow. Conversely, when a material is cooled, the atoms move less

and the bonds pull them closer to each other.

Initially, the investigations in the area of thermoelasticity were based on the “Uncoupled

theory of thermoelasticity” with the simplifying assumption that the influence of the strain on

the temperature field may be neglected. However, the experimental evidence shows that the

deformation of a body is associated with a change of its heat content. This implies that the time

varying external loading of a body causes in it not only displacements but also temperature

distribution changing with time. Similarly, the heating of a body gives the deformation as well

as the change in temperature. The mutual interactions between the temperature and deformation

fields control the motion of the body in any situation. The classical “Uncoupled theory of

thermodynamics” is, therefore, suffers form the drawback that the elastic changes have no effect

on the temperature and vice versa. The domain of science that deals with the coupling between

these two different fields is called coupled thermoelasticity.

In the case of coupled theory of thermoelasticity, the internal energy of a body depends on

the temperature and deformation fields. Due to the coupling between these two fields, the

temperature term is included in the displacement equation of motion, whereas deformation

is appeared in the heat conduction equation. Firstly, Duhamel (1837, 1838) had assumed the

coupling between deformation and temperature fields and proposed the first theory of thermal

stresses. He had also introduced the dilatation term in the equation of thermal conductivity.

Similarly, Neumann (1841) also developed stress-strain-temperature relations. Therefore, these
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approaches are known as Neumann-Duhamel relations. During last century, the innovative

research has advanced this area to a great extent.

1.2.1 Classical coupled theory of thermoelasticity

First of all, Biot (1956) carried out the work in the thermoelasticity theory which was based

on irreversible thermodynamics. He developed the constitutive relations and basic governing

equations of this theory by incorporating the coupling between strain and temperature fields

based on Nuemann-Duhamel approach. He has given the following system of linear equations

of the theory of coupled dynamical thermoelasticity theory for anisotropic materials.

Equations of compatibility:

ei j,kl + ekl,i j− eik, jl− e jl,ik = 0, for i, j, k, l = 1, 2, 3 (1.1)

Heat conduction equation:

qi,i = ρ(R− ṠT0) (1.2)

Equation of motion:

σi j, j +Fi = ρ üi (1.3)

where, Fi is the body force per unit volume.

Strain-displacement relations:

ei j =
1

2
(ui, j +u j,i) (1.4)

Constitutive relations:

σi j = ci jklekl− γi jT (1.5)
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ρS =
ρce

T0
T + γi jei j (1.6)

Energy conservation law:

U̇ = σi jėi j−qi,i +Q (1.7)

Fourier’s law:

qi =−Ki jT, j (1.8)

where, U is the internal energy, S is the entropy, R is the strength of the internal heat source, γi j

is the thermoelasticity tensor, ci jkl is the elasticity tensor and Ki j is the thermal conductivity

tensor, whereas ce is the specific heat per mass in the isothermal state.

From Eqs. (1.3) and (1.5), we have

ci jkluk,l j− γi jT, j +Fi = ρ üi (1.9)

Now, from Eqs. (1.2), (1.6) and (1.8), we have the following relations:

Ki jṪ,i j +ρR = ρceṪ +T0γi ju̇i, j (1.10)

If the material is assumed to be isotropic then the above equations can be written as

σi j = 2µei j +(λekk− γT )δi j (1.11)

ρS =
ρce

T0
T + γekk (1.12)

qi,i = Q−ρceṪ (1.13)
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qi =−KT,i (1.14)

where, Eq. (1.14) is identical to Fourier’s law of heat conduction. Eqs. (1.9) and (1.10) can also

be written for an isotropic medium in the following forms:

µ∇
2ui +(λ +µ)uk,ki− γT,i +Fi = ρ üi (1.15)

K∇
2T +ρR = ρceṪ +T0γ u̇k,k (1.16)

A wide and detailed discussion with interesting applications and theorems based on the Biot’s

theory can be available in pioneering work reported by Chadwick (1960), Boley and Weiner

(1960), Nowacki (1962, 1975), Parkus (1976), Nowinski (1978), Dhaliwal and Singh (1980),

Chandrasekharaiah (1986, 1998), etc. The classical theory of thermodynamics was based on

Fourier’s law of heat conduction and as a result, the heat conduction equation for this model

was a parabolic type partial differential equation that described the fact that this theory involved

the wave type equation of motion and the diffusion type equation of heat conduction. This

implied that if an elastic medium is subjected to thermal or mechanical disturbance, the effects

in both the temperature and displacement fields are felt instantaneously at an infinite distance

far from the source of disturbances. This appears to be physically unrealistic. Therefore, Biot’s

theory although removed the drawback of uncoupled theory of thermoelasticity, but it suffered

from paradox of infinite propagation speed, this theory also offered either unsatisfactory or poor

description of a solid’s response to fast transient loading, like short laser pulses, and at low

temperature. Due to shortcomings of this theory in the several cases, researchers had put their

efforts in the last few decades to modify the concept of this theory which were basically arose

from the inherent limitations in the Fourier’s law of heat conduction. In the next section, we

present a brief history in this respect.
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1.2.2 Drawbacks of Fourier’s law and its modifications

The Fourier’s law of heat conduction in the isotropic and homogeneous medium can be defined

as

−→q (−→r , t) =−K
−→
∇ T (−→r , t) (1.17)

From above it is clear that heat flux −→q (−→r , t) is the instantaneous result of temperature gradient,

−→
∇ T (−→r , t) established at a point −→r of body.

After combining the Eq. (1.17) with the energy equation (1.13), we obtain the heat conduction

equation:

K∇
2T (−→r , t) = ρceṪ −Q (1.18)

From above heat conduction equation, it is clear that the Fourier’s law is successfully applicable

to the problems which have large spatial dimension and long time response. However, due to the

parabolic nature of the heat conduction equation (1.18), it predicts an infinite speed for thermal

disturbance. Therefore, it is physically unrealistic for the transient behavior of heat conduction

at extremely short time, say, on the order of picoseconds (10−12s) to femtoseconds (10−15s). It

has also been observed that Fourier’s law is in contradiction with Einstein’s theory of relativity

and for situations involving temperature near absolute zero, extreme thermal gradients, high

heat flux conduction and short time behavior, such as laser-material interaction, this law is

not acceptable. With the rapid advancement of nanotechnology, nano-scale devices have been

developed and it has been realized that the heat conduction of these tiny devices demonstrates

many distinct phenomena such as the size effect and wave phenomena, which are not captured

by the conventional Fourier’s law.

It is worth to recall that in 1867, Maxwell was carrying out some experiments related to the

kinetic theory of gasses. During his experiment, he interestingly postulated the appearance of a

wave type flow of thermal signal. He thereby proposed that its disturbance shows a wavelike

behavior instead of diffusive type. These results are indicated to modify the Fourier’s law

(see Chandrasekharaiah (1986)). Subsequently, Nernst (1917) also speculated the possible

appearance of temperature waves in good thermal conducting materials at low temperature

(see also Ward and Wilks (1951)). This wave type behavior of thermal signal is now called
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“second sound “ effect. For super fluid helium, Landau (1941) indicated the ’second sound’ as

the propagation of phonon density disturbance, and concluded that its speed should be equal

to vp/
√

3 at 0 K, where vp is the speed of the ordinary sound (first sound). Also Tisza (1947)

predicted the possibility of extremely small heat propagation rates in liquid helium. Efforts were,

therefore, being carried out by several experiments as well as theoretical researchers during

last few decades to remove the physical paradox of Fourier’s law. It must be mentioned that

second sound was firstly detected experimentally in liquid helium by Peshkov (1944), who found

its speed to be equal to 19 m/s at 1.4 K. Tisza’s and Landau’s conclusions were re-examined

experimentally by Atkins and Osborne (1950), Pellam and Scott (1949), and Maurer and Herlin

(1949). Lifshitz (1958) concluded that second sound occurs in fluid helium at low temperatures.

Subsequently, it was also re-examined by Ackerman et al. (1966), Ackerman and Overton (1969)

and Bertman and Standiford (1970) in solid helium and by McNelly et al. (1970), Jackson et al.

(1970), Jackson and Walker (1971), Rogers (1971) etc. in other materials. We refer the review

article by Chandrasekharaiah (1986) for a detailed review in this respect.

1.2.3 Development of non-Fourier heat conduction models

In order to tackle the insufficiency of Fourier’s law, several researchers have made their contri-

butions and modified this law. During the modification of this law, several non-Fourier’s heat

conduction models are established which are described in the following forms in a detailed way:

1.2.3.1 Cattaneo-Vernotte law

Cattaneo (1958) and Vernotte (1958,1961) independently proposed a modification to Fourier’s

law by incorporating a flux-rate term as follows:

−→q (−→r , t)+ τ
∂−→q (−→r , t)

∂ t
=−K

−→
∇ T (−→r , t) (1.19)

where, τ is a non-negative parameter referred as a thermal relaxation time parameter which

is defined as the time lag needed to establish the steady state of heat conduction in a material

element when a temperature gradient is suddenly imposed on that element. This phenomena

concludes the fact that heat flux is not an instantaneous results of temperature gradient. The
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above law is called the Cattaneo and Vernotte’s law (CV law). When Eq. (1.19) is combined

with the energy equation, the following parabolic type heat conduction equation is derived as

K∇
2T (−→r , t) = (1+ τ

∂

∂ t
)(ρceṪ −Q) (1.20)

This modified heat conduction equation describes the combined diffusion and wave like behavior

of heat propagation and indicates a wave like signal propagating with a finite speed. This

law is also called the Maxwell-Cattaneo’s law. It gives the successful results in the cases in

which localized moving heat sources are involved with high intensity, rapidly propagating

crack tip, shock wave propagation, laser material processing, laser surgery, etc. Mengi and

Turhan (1978) done an experiment where they found the actual value of τ for a given material

and concluded that its values for gases have the ranges from 10−19s, for metals to 10−14s,

with the values for τ for liquids and insulators falling within this range. The values for this

parameter for some materials were also determined by Francis (1972). During the study of

practically relevant problems of heat transfer that involve extreme thermal gradients, high heat

flux conduction and short time behavior, some researchers have found significantly different

results by employing Eq. (1.20) instead of Eq. (1.18) and observed that Eq. (1.20) can be

employed as heat conduction equation to study the problems, particularly, to those that contain

the elapsed time during a transient less than, say about 10−5s or heat flux greater than, say about

105W/cm2. Laser penetration and welding, explosive bonding and melting and nucleate boiling

are the areas where the transient process of heat conduction is at extremely short time or heat

flux involved is very high. The details in this respect can be found in the review article developed

by Chandrasekharaiah (1998a), Hetnarski and Ignaczak (1999) and in the recent books by Wang

et al. (2008), Straughan (2011), Ignaczak and Ostoja-Starzewski (2010).

1.2.3.2 Dual phase-lag heat conduction model

Now a days, the advancement of short-pulse laser technologies and their applications to modern

micro-fabrication technologies have attracted the researchers to draw a great attention in high

rate heating on thin film structures (Tzou (1995a)). Furthermore, it is recommended that the laser

pulses can be reduced shorter to the range of femtoseconds (10−15s). It has been realized that
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when the response time becomes shorter, the non-equilibrium thermodynamic transition and the

microscopic effects in the energy exchange during heat transport procedure become significant.

The model formulation, therefore, becomes microscopic in nature (Tzou (1997)). In view of

recent experiments, the heat conduction theory of Cattaneo and Vernotte also fails in some

cases, specially during the heating of thin films. Therefore, in order to remove the drawbacks

of classical heat conduction theory and Cattaneo and Vernotte’s theory, Tzou (1995a,b) has

developed the dual phase-lag (DPL) theory of heat conduction. This theory is established on the

basis of that either the temperature gradient may dominate the heat flux or the heat flux may

dominate the temperature gradient. Here, it is worth mentioning that the dual phase-lag model

is motivated from some prior established models namely phonon-scattering model, phonon-

electron interaction model, micro-scopic two-step model, etc. Joseph and Preziosi (1989,1990)

and Guyer and Krumhansl (1966) put forward the phonon-scattering model in order to capture

the microscopic effects in heat transport mechanism. The phonon-electron interaction model is

developed by Brorson et al. (1987), Anisimov et al. (1974) and Fujimoto et al. (1984), whereas

the micro-scopic two step model is reported by Qiu and Tien (1992, 1993).

In view of all these micro-scopic models, Tzou (1995a) included the effects of micro-structural

interactions in the fast transient process of heat transport phenomena and proposed a more

generalized and modified law of heat conduction, known as dual phase-lag model which can be

written as

−→q (−→r , t + τq) =−K
−→
∇ T (−→r , t + τT ) (1.21)

where, τq and τT are the two delay times in which τq is the phase-lag in the heat flux vector while

τT is the phase-lag in temperature gradient vector. The phase-lag τq captures the thermal wave

behavior, a small-scale response in time for heat flux whereas phase-lag τT captures the effect of

phonon-electron interactions, a micro-scale response in space. Therefore, the dual phase-lag

concept is capable of measuring the small-scale response in both space and time. Both of the

phase-lags are positive and they are the intrinsic properties of the medium (see Tzou (1997)).

The dual phase-lag model is a universal model which is able to explain all the fundamental

properties in diffusion, thermal wave, phonon-electron scattering associated with small response

time. Many researchers like Quintanilla (2002), Kothari and Mukhopadhyay (2013), Mukhopad-

10



CHAPTER-1/ INTRODUCTION...CONTD.

hyay et al. (2014), Abdallah (2009), Tzou (1997), Al-Nimr and Al-Huniti (2000), Chen et al.

(2002), Lee and Tsai (2008) studied various aspects on this theory. Some important features of

this theory can be listed in the following forms:

1. The Jeffery-type heat flux equation (Joseph and Preziosi (1989,1990)) can be extracted by

using the Taylor’s series approximation of Eq. (1.21) upto first order of τq and τT :

−→q + τq
∂~q

∂ t
=−K(

−→
∇ T + τT

∂
−→
∇ T

∂ t
) (1.22)

With the help of energy equation, the corresponding heat conduction equation is obtained

as

(1+ τT
∂

∂ t
)∇2T =

ρce

K
(1+ τq

∂

∂ t
)
∂T

∂ t
− 1

K
(1+ τq

∂

∂ t
)
∂Q

∂ t
(1.23)

2. The dual phase-lag model (1.21) can be reduced to the following:

(a) Classical Fourier’s law of heat conduction if we take τq = τT = 0.

(b) Hyperbolic heat conduction if we assume τT = 0 and τq > 0.

(c) The energy equation in phonon-scattering model (see Joseph and Preziosi (1989),

Guyer and Krumhansal (1966) when we put K
ρce

= τRc2

3
, τT = 9τN

5
and τq = τR, where, τR

is the relaxation time for Umklapp process in which momentum is lost from phonon system

and τN is the relaxation time for normal processes in which momentum is conserved for

phonon system ( see Tzou (1995a)).

3. If we take the Taylor’s series expansion of Eq. (1.21) by using the second order in τq

whereas first order in τT (see Tzou (1995b)), we obtain the following:

~q+ τq
∂~q

∂ t
+

τ2
q

2

∂ 2~q

∂ t2
=−K(~∇T + τT

~∇T

∂ t
) (1.24)

and using energy equation, the corresponding heat conduction equation can be written as

K(1+ τT
∂

∂ t
)∇2T = (1+ τq

∂

∂ t
++

τ2
q

2

∂ 2

∂ t2
)(ρce

∂T

∂ t
+

∂Q

∂ t
) (1.25)
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Above equation is a hyperbolic type heat conduction equation which is showing that the

thermal wave travels with finite speed, VT = 1
τq

√

2KτT

ρce
.

Both the single phase-lag and dual phase-lag heat conduction models have been discussed to be

acceptable by the second law of extended irreversible thermodynamics in Tzou (1997) and Xu

(2011) and by the Boltzmann heat transport equation in Xu and Wang (2005).

1.3 Generalized thermoelasticity theory

Several researchers have contributed in the area of thermoelasticity theory in order to provide

major growth in the subject by incorporating the non-Fourier’s heat conduction in the elastic

materials. Hence, some generalized theories are developed on the basis of non-Fourier’s heat

conduction models as mentioned above. The main objective of these theories is to remove

the drawbacks inherent in the classical theory of thermoelasticity given by Biot (1956). These

theories are called as the generalized thermoelasticity theory or hyperbolic thermoelasticity

theory. A brief description is listed as given below:

1.3.1 Lord-Shulman’s theory or extended thermoelasticity (ETE) theory

In 1967, Lord and Shulman have developed a generalized thermoelasticity theory in which one

thermal relaxation parameter is included for isotropic thermoelastic material. In this theory, the

flux rate is included in the Fourier’s law of heat conduction. This theory is basically based on

the Cattaneo-Vernotte law (see Eq. (1.19)) and its results show the wave type behavior, i.e., the

propagation speed of both the thermal and elastic waves are finite. This theory is also called

extended thermoelasticity theory which is further extended by Dhaliwal and Sherief (1980) to

general anisotropic media.

1.3.2 Temperature-rate dependent thermoelasticity (TRDTE) theory

The second generalization of the coupled thermoelastic theory is said to be the thermoelasticity

with two relaxation parameters or the theory of temperature-rate dependent thermoelasticity.
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This theory includes the “second sound” effects and this theory is developed by Green and

Lindsay (1972). It is necessary to mention here that prior to this theory, Mullar (1971) developed

the entropy production inequality with some restrictions on a class of constitutive equations in a

review of thermodynamics of thermoelasticity. Later on, a generalization of this inequality is

re-formulated by Green and Laws (1972). Subsequently, an explicit version of the constitutive

equations are obtained by Green and Lindsay (1972) and these equations are also developed

independently by Suhubi (1975). Under the assumption that the medium has a center of

symmetry, the classical Fourier’s law of heat conduction is not violated in this model. All the

equations of this coupled theory are modified by involving two constants into the constitutive

equations that act as thermal relaxation time parameters. Chandrsekhasraiah (1986, 1998a) and

Hetnarski and Ignaczak (1999) have given a detailed discussion about extended and temperature-

rate dependent theory of thermoelasticity.

1.3.3 Green and Naghdi’s theory of thermoelasticity type-I, II and III

The third generalization of thermoelasticity theory was made by Green and Naghdi (1991, 1992,

1993, 1995) and they have introduced this generalization as an alternative way. In this theory,

the propagation of heat is modeled in such a way that it can produce the consistent theory of

thermoelasticity. This theory is based on the thermodynamics principles. However, in order

to get finite wave speed of the thermal signals, Green and Naghdi (1993) have introduced a

new concept in generalized thermoelasticity theory which is known as the thermoelasticity

theory with no energy dissipation. The prime characteristic of this theory is totally contrast

with the classical Fourier’s law of heat conduction. Basically, Green and Naghdi’s theory is

based on the entropy balance law rather than the usual entropy inequality. In this theory, thermal

displacement ( ν) , gradient of thermal displacement (∇v ) and temperature (T ) are considered

as the constitutive variables, where ν̇ = T . In the formulation of this theory, the usual entropy

production inequality is replaced with an entropy balance law (see Chandrasekharaiah (1998a))

and the heat conduction law for GN-III model is of the form:

−→q (−→r , t) =−[K−→∇ T (−→r , t)+K∗~∇ν(~r, t)] (1.26)
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where, K∗ is the rate of thermal conductivity of material.

When we assume K is much greater than K∗ , GN-III model gives its first special case: GN-I

model. The linearized form of GN-I model is similar to the Biot’s theory and therefore, GN-I

model suffers from the drawback of infinite speed of heat propagation. When we assume K∗is

much greater than K , GN-III model reduces into the second special case: GN-II model. In

GN-II, the internal rate of production of entropy is assumed to be identically zero which implies

that there is no dissipation of internal energy. In the type-II model, the thermal signals move

with finite speed. In the heat conduction equation of type-III, the heat flux is the combination of

type-I and type-II theories. The linearized heat conduction equations under different models of

Green and Naghdi for an isotropic medium can be written as given below:

Green and Naghdi type-III (GN-III) model:

(K∗+K
∂

∂ t
)∇2T =

∂ 2

∂ t2
(ρceT + γT0e) (1.27)

Green and Naghdi type-II (GN-II) model:

K∗∇2T =
∂ 2

∂ t2
(ρceT + γT0e) (1.28)

Green and Naghdi type-I (GN-I) model:

K∇
2T =

∂

∂ t
(ρceT + γT0e) (1.29)

where, e is the dilatation.

1.3.4 Thermoelasticity theory with dual phase-lags (DPLTE)

This theory is developed in the frame of extended thermoelasticity theory by incorporating the

dual phase-lag heat conduction model in the place of Fourier’s law. Tzou (1997) has introduced
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this theory, whereas Chandrasekharaiah (1998a) has reformulated and discussed this theory in a

proper way.

1.3.5 Thermoelasticity theory with three phase-lags (TPLTE)

The thermoelasticity with three phase-lags is developed by Roychoudhury (2007a) with the

inclusion of three different phase-lags in the heat conduction law given by Green and Naghdi

(1992) (GN-III model). These three phase-lags are introduced in the heat flux vector, temperature

gradient vector and thermal displacement gradient vector. Therefore, this theory is known as

three phase-lag thermoelasticity theory (TPLTE). The heat conduction law under this theory can

be written as given below:

−→q (−→r , t + τq) =−[K
−→
∇ T (−→r , t + τT )+K∗~∇ν(~r, t + τν)] (1.30)

Here , τν the delay time in thermal displacement gradient vector is the newly included in addition

to τq and τT of dual phase-lag model. Therefore, three phase-lag theory may be considered as

the generalization of GN-III thermoelasticity theory.

1.3.6 Quintanilla’s thermoelasticity theory

The above mentioned thermoelasticity theories have attracted the serious attention of researchers

in recent years in order to find out several features of these models. Some qualitative analysis on

these models are also reported. Quintanilla and Racke (2008) have discussed the stability of

three phase-lag model of heat conduction equation and the effects of considering all these three

material parameters. Since, the phase-lag theories could let to parabolic-type or hyperbolic-type

differential equations based on the order of Taylor’s series expansion of the phase lag parameters,

a big interest has also been developed to study the different Taylor’s approximations to these

heat conduction equations where continuous dependence and also stability can be achieved (see

Horgan & Quintanilla (2005), Mukhopadhyay & Kumar (2010), Quintanilla (2002), Quintanilla

(2003), Quintanilla & Racke (2006,2008)). Dreher et al. (2009) have reported an analysis on

dual phase-lag and three phase-lag heat conduction models and showed that when we combine
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the constitutive equations introduced in dual phase-lags and three phase-lags heat conduction

theory with the energy equation, then there exists a sequence of eigenvalues in a point spectrum

in such away that its real parts tend to infinity (see Dreher et al. (2009), Jordan et al. (2008)).

This implies the ill-posed behavior of the problem in Hadamard sense and we can not find the

continuous dependence results of the solution with respect to initial parameters. By mentioning

about these unacceptable results, Quintanilla (2011) has recently proposed to reformulate the

three phase-lags heat conduction model and suggested an alternative heat conduction theory

with a single delay term. Leseduarte and Quintanilla (2013) re-examined this new model given

by Quintanilla (2011) and found out the stability and spatial behavior of the solutions under

this model. They considered τν < τq = τT and τ = τq− τν , so that the constitutive law of heat

conduction can be taken as

~q(t) =−[K∇T (t)+K∗∇ν(t− τ)] (1.31)

By using the above equation, they have studied the spatial behavior of the solutions for this theory.

A Phragmen-Lindelof type alternative (see Quintanilla (2011)) is found out and it is shown that

the solutions either decay in an exponential way or blow up at infinity in an exponential way. The

results are extended to a thermoelasticity theory by considering the Taylor’s series approximation

of the equation of heat conduction to the delay term and Phragmen-Lindelof type alternative is

obtained for both the forward and backward in time equations. Continuous dependence results

for initial data and supply terms have been proved for this case. The continuous dependence

results are further extended to the thermoelastic case.

Quintanilla (2011) has further considered the Taylor’s series approximation until order l in the

thermal gradient part of the constitutive law and reduced it in the form

~q(t) =−[K∇T (t)+K∗{∇ν(t)+ τ∇ν̇(t)+ ...+
τ l

l(l−1)...1
∇ν(l)}]

If this equation is adjoined with the energy equation, the new heat conduction equation is

obtained as
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ceṪ (t) =−[K∆T (t)+K∗{∆ν(t)+ τ∆T (t)+ ...+
τ l

l(l−1)...1
∆T (l−1)}] (1.32)

where, ce is the specific heat, ∆ = ∇
2 is the Laplacian operator. Quintanilla has also shown that

the solutions of this heat conduction equation are always stable (at least) whenever l ≤ 3.

When we take l = 0, the Eq. (1.32) reduces to the form

ceṪ (t) =−[K∆T (t)+K∗∆ν(t)] (1.33)

This is the heat conduction equation under GN-III model.

When we take l = 2 in Eq. (1.32), we get the following equation of heat conduction which we

refer to new model-I (i.e., Quintanilla model-I):

ceṪ (t) =−[K ∆T (t)+K∗(1+ τ
∂

∂ t
+

τ2

2

∂ 2

∂ t2
)∆ν(t)] (1.34)

If we neglect the term containing τ2 for smallness in Eq. (1.34), then we get the following

equation which we refer to new model-II (i.e., Quintanilla model-II):

ceṪ (t) =−[K∆T (t)+K∗(1+ τ
∂

∂ t
)∆ν(t)] (1.35)

1.4 Fractional order thermoelasticity theory

The fractional calculus is just the generalization of the ordinary differential and integral calculus

to non-integer order. The fractional calculus became a very attractive subject to mathematicians.

In the recent years, many existing models have been developed interestingly by using fractional

calculus to study physical processes. This is due to the intensive development of the theory of

fractional calculus itself and its applications to many phenomena in various fields of science

and engineering. The fractional calculus is being applied to a great extent particularly, in

the area of heat conduction, diffusion, viscoelasticity, mechanics of solids, electrical theories,

rheology, fluid flows, chemical physics, bio-sciences, signal processing, electrochemistry, etc.

(see Rabotnov (1966), Oldham and Spanier (1974), Bagley (1983), Nishimoto (1990), Engheta
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(1996), Mainardi (1998), Podlubny (1999), Hilfer (2000), Magin (2004), Oldham (2009)). It

must be recalled here that firstly, Abel (1823) has applied fractional calculus in the solution of

an integral equation that arises in the formulation of the tautochrone problem. Euler (1730),

Lagrange (1772) and Fourier (1822) have also mentioned the concept of derivatives of arbitrary

order in their studies before a systematic study of fractional calculus. Consequently, many

different forms of fractional (i.e. non-integer) differential operators are introduced. They are

Riemann-Liouville derivative, Caputo derivative and Riesz derivative (for details, see Oldham

and Spanier (1974), Miller and Ross (1993), Podlubny (1999), Hilfer (2000), Herrmann (2011)).

But two of them are popularly used which are Riemann-Liouville fractional order derivative and

Caputo fractional order derivative. The corresponding formula can be listed as given below.

Riemann-Liouvlle fractional order derivatives:

Riemann-Liouville fractional order derivative Dα
t f (t) of order α with respect to time t of a

function f (t) can be written as:

Dα
t f (t) =

∂ α f (t)

∂ tα
=

∂ n

∂ tn

(

1

Γ (n−α)

ˆ t

0

(t− τ)n−α−1 f (τ)dτ

)

, for n−1 < α ≤ n

Caputo fractional order derivatives:

Caputo fractional order derivative Dα
t f (t) of order α with respect to time t is defined by

Dα
t f (t) =

∂ α f (t)

∂ tα
=

(

1

Γ (n−α)

ˆ t

0

(t− τ)n−α−1 ∂ n f (τ)

∂ tn
dτ

)

, for n−1 < α ≤ n

Notable contributions have been made to both the theory and applications of fractional calculus

during the 20th century, when some properties of fractional order derivatives were examined

with respect to arbitrary functions. The generalization of the concept of fractional calculus has

been subjected to several approaches. A considerable attention of several researchers has also

been paid to anomalous diffusion characterized by the time-fractional diffusion wave equation

introduced by Kimmich (2002).

Recently, fractional calculus approach has also been introduced in the theory of thermoelasticity.

A quasi-static uncoupled theory of thermoelasticity by including time-fractional derivative in

the heat conduction equation is developed by Povstenko (2005). He applied Caputo fractional
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derivatives and obtained the thermal stresses by finding the fundamental solution of a Cauchy

problem for the fractional heat conduction equation in one-dimensional and two-dimensional

cases. Subsequently, Sherief et al. (2010), Youssef (2010) and Ezzat et al. (2012a) have

proposed some new theories on generalized thermoelasticity using the heat conduction law

under fractional order time derivatives.

1.5 Thermoelasticity theory with memory dependent deriva-

tives

Recently, many researchers have tried to modify the classical Fourier’s law of heat conduction

equation using the fractional calculus (see Di Paola et al. (2009), Ezzat (2010, 2011), Ezzat,

and El-Karamany (2011a,b), Ezzat et al. (2012, 2014), Ezzat and El-Bary (2014)). Recently,

Diethelm (2010) has explained that the Caputo (1967) fractional derivative can be defined as:

Dα
a g(t) =

t
ˆ

a

Kα(t− s)g(m)(s)ds,

where,

Kα(t− s) =
(t− s)m−α−1

Γ (m−α)

Here, α > 0 and m is the integer which satisfies m−1 < α < m , while Kα(t− s) is the kernel

function and g(m) is the m-order derivative of g(t) which has some interesting physical meanings.

In above equation, the kernel Kα(t− ξ ) is fixed and from the above definition it is clear that

α−order fractional derivative is not defined locally at time t, but it depends on the total effects

of m−order integer derivative on the interval [a, t]. Hence, this concept of fractional order

derivative can be used to describe the variation of a system in which the instantaneous change

rate depends on the past state which is known as “memory effect” (Diethelm (2010)). However,

we know that the memory effect of real process basically arises in a segment of time [t− τ ,

t], where τ denotes the time delay and it is always positive. In spite of several applications of

fractional calculus, it has some demerits. Due to this, the concept of fractional order derivative

has been modified and a new concept of derivative has been established by Wang and Li (2011)

19



CHAPTER-1/ INTRODUCTION...CONTD.

which has been named as “memory dependent derivative”.

They defined first order memory dependent derivative of a function g(t) in an integral form

of a common derivative with a kernel function K(t− s) on a slipping interval [t− τ, t] in the

following manner:

Dτg(t) =
1

τ

t
ˆ

t−τ

K(t− s)g(1)(s)ds

where, τ is the time delay and the kernel function, K(t− s) is differentiable w.r.t. t and s.

The definition given above can reflect the memory effect on the delayed interval [t− τ, t] which

varies along with time. The kernel function Kα(t − s) is fixed for a given α in the case of

fractional derivative. However, not only the delay parameter τ , but the kernel function K(t− s)

can also be chosen freely in the case of “memory dependent derivative” such as 1, 1+ s− t,

1+ (s−t)
τ , and [1+ (s−t)

τ ]2, etc. The kernel function is a monotone function with K = 0 for the

past time t− τ and K = 1 for the present time t. Generally from the view point of applications,

the memory effect needs the weights K(t − s) which have the values between 0 and 1 for

s ∈ [t− τ, t). Similarly, m-order “memory dependent derivative” of g(.) at t relative to time

delay τ can be defined as

Dm
τ g(t) =

1

τ

t
ˆ

t−τ

K(t− s)g(m)(s)ds

where, K(t− s) is m− times differentiable w.r.t. t and s.

1.6 Stochastic processes and its applications in thermoelastic-

ity

A stochastic or random process can be defined as a collection of random variables that is indexed

by some mathematical set. Sometimes, it is called random function which is just the counterpart

of a deterministic process. It is very useful to tackle separately both the cases of discrete and

continuous. A discrete time stochastic process can be denoted as r = {rn, n = 0, 1, 2...}which

is a countable collection of random variables indexed by the non-negative integers, while a

continuous time stochastic process r = {rt , 0≤ t < ∞} is an uncountable collection of random
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variables indexed by the non negative real numbers (see Hoel et al. (1972)). We can also index

the random variables by negative time.

A stochastic process, r(t) is said to be stationary if for all n and for every set of time instants

(ti ∈ T, i = 1, 2, 3, ..., n), its joint probability density function, Gr(.) does not change with a

shift of the time parameter scale which can be expressed as

Gr(r1, r2, ..., rn; t1, t2, ..., tn) = Gr(r1, r2, ..., rn; t1 + ς , t2 + ς , ..., tn + ς)

where, ς is a time interval.

We also would like to recall here that the Brownian paths, also called as Wiener process, are not

differentiable point-wise. We may interpret their time derivative in a distributional sense to get a

generalized stochastic process called white noise. We denote it by

φ0(t, u) = Ẇ (t, u)

We can also use the notation φ0dt = dW , where W (.) is a Wiener process and φ0(.) is a stochastic

process. The term white noise arises from the spectral theory of stationary stochastic processes,

according to which white noise has a flat power spectrum that is uniformly distributed over all

frequencies (like white light). Since, Brownian motion has Gaussian independent increments

with mean zero, its time derivative is a Gaussian stochastic process with mean zero whose values

at different times are independent.

In order to take into account of the noise or error in a system, it is suggested that the deterministic

model can be replaced with the stochastic one. This is due to the fact that instead of dealing with

only one possible reality of how the process might evolve under time, in a stochastic process

there is some indeterminacy in its future evolution described by probability distributions. This

means that even if the initial conditions are known, there are many possibilities the process might

go to, but some paths may be more probable than the others. Hence, deterministic models that

represent idealized situations are often improved by including stochastic effects (see Kloeden

and Platen (1992), Lawler (2006), Sherief et al. (2013, 2016), ). As discussed by Sherief et al.

(2013, 2016), Bellomo and Flandoli (1989) and Omar (2009), there are many reasons which
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allow to replace the deterministic cases with the stochastic simulations in which stationary

stochastic processes are used. We must recall here some of them as

1. The system is not fully isolated, thus background fields give rise to additional noise.

2. Not all the variables that characterize the system are included in the model and these

variables give rise to additional noise.

3. The accuracy of the measuring devices for the mechanical load, temperature, etc. are not

100% accurate.

Recently, stochastic simulations are carried out by Sherief et al. (2013) to analyze the thermoe-

lastic problem in which the effects of the stochastic thermal shock at the boundary of the medium.

Sherief et al. (2016) have also discussed the wave propagation in the theory of generalized

thermoelastic diffusion using stochastic simulation technique.

1.7 Literature review

In last few decades, several researchers have been attracted towards the thermoelasticity theory

due to its wide applications in science, engineering and technology. Several problems based on

the thermoelastic interactions in different types of media have been investigated. We can find

wide research work carried out on the various theories of thermoelasticity in the review articles

by Chandrasekharaiah (1986, 1998a), Joseph and Preziosi (1989, 1990), Hetnarski and Ignaczak

(1999) etc. The recent books by Wang et al. (2008), Hetnarski and Eslami (2010), Ignaczak and

Ostoja-Starzewski (2010) as well as the Ph.D. theses of Kumar (2010), Prasad (2012), Kothari

(2014), and Tiwari (2017) may also be referred in this regard. We give below some important

work which are relevant to the present study.

Danilovskaya (1950) firstly studied a problem on elastic half space under the theory of clas-

sical thermoelasticity by neglecting the coupling term. This problem is thereafter called as

Danilovskaya’s problem. Subsequently, Hetnarski (1964b) discussed the solution of this problem

under the classical coupled thermoelasticity theory for small times. From above, it is noted that

the classical theory is not acceptable physically. Therefore, several efforts have been made to
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remove this paradox. The half space problems are investigated under different boundary condi-

tions in the context of Lord-Shulman (LS) theory by several researchers, like Chattopadhyay et

al. (1982) and Ramamurthy and Sharma (1991), etc. However, several other problems based on

this theory are studied by researchers, like Wadhawan (1972, 1973), Sharma (1987b), Furukawa

et al. (1990), Sharma and Chand (1991, 1996), and Roychoudhuri and Bhatta (1983). Misra et

al. (1987), Mukhopadhyay and Bera (1989), Mukhopadhyay et al. (1991), Banerjee and Roy-

choudhuri (1995) have investigated the problems of viscoelastic medium based on the LS-theory.

Chattopadhyay et al. (1982) investigated the stresses produced in an initially stressed elastic

half-space due to a moving load. A coupled thermoelastic problem for an infinite aelotropic

medium having a cylindrical hole is discussed by Chattopadhyay et al. (1985). The boundary

initiated axi-symmetric waves in an annular cylinder under different boundary conditions are

discussed by Sherief and Anwar (1988, 1989). Sherief (1986) has studied the fundamental

solutions for spherically symmetric space. El-Maghraby (2010) has discussed a generalized

thermoelasticity problem for a half-space with heat sources and body forces. Elhagary (2014a)

has discussed an asymptotic expansions of solutions for a problem on coupled and generalized

thermoelasticity theories. A two-dimensional problem for a thick plate with heat sources in

generalized thermoelasticity with one thermal relaxation time has been studied by El-Maghraby

(2005). Kulkarni and Deshmukh (2008) determined the thermal stresses in a thick circular plate

under steady temperature field. A problem of non-homogeneous steady-state heat conduction

in a thin circular plate and its thermal stresses has been reported by Deshmukh et al. (2009).

Recently, Sherief and Hussein (2016) have also studied a two-dimensional problem for a thick

plate with axi-symmetric temperature distribution in the theory of generalized thermoelastic

diffusion. Further, Kiani and Eslami (2017) have studied nonlinear generalized thermoelasticity

of an isotropic layer based on Lord-Shulman theory.

In the context of Green-Lindsay model, a problem of an infinite allotropic medium having a

cylindrical hole is studied by Chattopadhyay et al. (1985). However, the problems of thermoe-

lastic interactions due to heat sources in an unbounded elastic medium have been investigated by

many researchers including Roychoudhuri and Bhatta (1981), Roychoudhuri and Sain (1982),

Sherief and Anwar (1986), Sharma (1986), Misra et al. (1987), and Chandrashekharaiah (1988).
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Elhagary (2014b) has reported the results of a two-dimensional generalized thermoelastic diffu-

sion problem for a thick plate subjected to thermal loading due to laser pulse. Freed (2017) has

given a note on stress/strain conjugate pairs: explicit and implicit theories of thermoelasticity for

anisotropic materials. Further, Ignaczak and Domański (2017) have studied an one dimensional

model of nonlinear thermoelasticity at low temperatures and small strains. Lotfy (2014) has

studied two temperature generalized magneto-thermoelastic interactions in an elastic medium

under three theories. Mukhopadhyay and Kumar (2016) have investigated a problem of annular

cylinder under two-temperature thermoelasticity theory of Lord-Shulman model. Further, Kumar

et al. (2016) have investigated a problem on thermoelastic interactions under two-temperature

theory of thermoelasticity with two relaxation parameters. Recently, Mukhopadhyay et al. (2017)

have given a note on a two-temperature model in linear thermoelasticity with one relaxation

parameter. Sherief and Hussein (2017) have found the fundamental solution of thermoelasticity

with two relaxation times for an infinite spherically symmetric space. Sherief and Allam (2017)

have also studied two-dimensional axi-symmetric problem for a sphere with heat sources in the

theory of generalized thermo-viscoelasticity. Various generalized thermoelastic problems on

thick circular plates have been investigated by Tripathi et al. (2016 a,b,c) and also by Tripathi et

al. (2017).

The three theories of Green and Naghdi (1991, 1992, 1993, 1995) have drawn the attention of

several researchers. Chandrashekharaiah (1996a) has studied one dimensional wave propagation

in an elastic medium under Green and Naghdi-II (GN-II) theory of thermoelasticity. Chan-

drashekharaiah (1996b) has also studied free plane harmonic waves in an unbounded medium in

the context of GN-II thermoelasticity theory. Later on, this problem was extended for rotating

body by Chandrashekharaiah and Srinath (1997). A problem of cylindrical and spherical cavity

is studied by Chandrashekharaiah and Srinath (1997) in an unbounded medium subjected to

some loads on the boundary and due to heat source in an unbounded medium under GN-II

theory of thermoelasticity. A half space problem is also investigated by Misra et al. (2000) in

the context of GN theory of thermeolasticity. Subsequently, Quintanilla (2001a,b), Quintanilla

(2003), and Quintanilla and Straughan (2004) have reported the qualitative research works based

on the Green and Naghdi theory of thermoelasticity. Various problems under GN-III model have
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also been reported by several researchers including Taheri et al. (2005), Mallik and Kanoria

(2006), Kar and Kanoria (2006, 2007a), Roychoudhuri and Bandyopadhyay (2007), Banik et

al. (2007), Kar and Kanoria (2007b), and Mukhopadhyay and Kumar (2008a, 2008b). Mallik

and Kanoria (2008) have investigated a two dimensional problem of transversely isotropic

problem based on GN-II and GN-III theories. Bijelonja et al. (2017) have discussed mixed

finite volume method for linear thermoelasticity at all Poisson’s ratios. Harmonic plane wave

propagation in thermoelastic medium under GN-III model is reported in a detailed study by

Puri and Jordan (2004) and later on, by Kovalev and Radayev (2010) and also by Kothari and

Mukhopadhyay (2012). Recently, the convolutional type variational and reciprocity theorems in

the context of linear theory of GN-II and GN-III are reported by Chirita and Ciarletta (2010),

and Mukhopadhyay and Prasad (2011). Apalara et al. (2017) have given a stability result for the

vibrations given by the standard linear model with thermoelasticity of type-III. El-Karamany

and Ezzat (2016) have given a note on the phase-lag and Green-Naghdi thermoelasticity theories

in which they have proposed three models of generalized thermoelasticity: a single phase-

lag Green-Naghdi theory of type-III, a dual phase-lag Green-Naghdi theory of type-II and

type-III. Recently, Kumari and Mukhopadhyay (2016, 2017) have discussed the domain of

influence theorems for thermoelasticity of type-II. Further, Tiwari and Mukhopadhyay (2017)

have studied a problem on electromagneto-thermoelastic plane waves under Green-Naghdi

theory of thermoelasticity-II. Yasinskyy and Tokova (2017) have studied an inverse problem

on the identification of temperature and thermal stresses in an FGM hollow cylinder by the

surface displacements. Further, Wang et al. (2017) have studied the energy decay rate of

transmission problem between thermoelasticity of type-I and type-II. Sherief and Raslan (2016a)

have investigated a thermoelastic problem of spherical shell with and without energy dissipation.

Sherief and Raslan (2016b) have also discussed the thermoelastic interactions without energy

dissipation in an unbounded body with a cylindrical cavity. Recently, Sherief and Raslan (2017)

have studied a two dimensional problem of thermoelasticity without energy dissipation for a

sphere subjected to axi-symmetric temperature distribution.

Phase-lag theories have gained much interest among the scientists in order to understand them.

We recall few recent contributions for the exact dual-phase-lag heat equation by Kulish and
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Novozhilov (2004), Ordo˜nez-Miranda and Alvarado-Gil, 2010), Dreher et al. (2009), Jordan et

al. (2008). Magana and Quintanilla (2017) have discussed the existence and uniqueness in the

phase-lag thermoelasticity. Singh and Renu (2017) have studied the displacement field due to

cylindrical inclusion in a thermoelastic half space. Kar and Kanoria (2009) have investigated

a problem on generalized thermoelasticity for functionally graded orthotropic hollow sphere

under thermal shock with three phase-lag effect. Tiwari et al. (2016) have studied a problem on

magneto-thermoelastic disturbances induced by thermal shock in an elastic half space having

finite conductivity under dual phase-lag heat conduction. Mukhopadhyay et al. (2016) have

reported a detailed mathematical analysis of various models in linear thermoelasticity with

rational material laws. Sherief et al. (2017) have given a general formula for the drag on a solid

of revolution body at low Reynolds numbers in a micro-stretch fluid.

Fractional order thermoelasticity theory has been employed by some researchers in recent

years to study various problems. Some problems are investigated by Povstenko (2008a, 2008b,

2009a, 2009b, 2010, 2011a, 2011b) under fractional order thermoelasticity in the framework of

quasi-static uncoupled theory of thermoelasticity and he has discussed the effects of fractional

order parameter. Youssef (2010) has proved a uniqueness theorem and studied a problem under

fractional order thermoelasticity. Youssef and Al-Lehaibi (2010) and Youssef (2012) have

investigated some problems on thermoelastic interactions in the context of the model given by

Youssef (2010). Sherief et al. (2010) have established a uniqueness theorem and a reciprocity

theorem as well as a variational principle on fractional order thermoelasticity theory. Sarkar and

Lahiri (2012) have investigated a two-dimensional problem of a homogeneous isotropic and

thermally conducting thermoelastic rotating medium based on a fractional order thermoelasticity

theory. Ezzat et al. (2012) have derived an ultrafast fractional thermoelasticity model utilizing

the modified hyperbolic heat conduction model and derived a generalized fractional order

thermoelasticity theory to describe the thermoelastic behavior of a thin metal film irradiated

by a femtosecond laser pulse. Tiwari and Mukhopadhyay (2016) have studied a problem on

harmonic plane wave propagation under fractional order thermoelasticity and reported a detailed

analysis of fractional order heat conduction equation. Sherief and Raslan (2016c) have also

studied two dimensional problem for a long cylinder in the fractional theory of thermoelasticity.
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Some interesting discussions on fractional order thermoelasticity have also been reported by

Warbhe et al. (2017a,b), Tripathi et al. (2017) and Tripathi et al. (2017). Recently, Ezzat et

al. (2015) have proposed a new model of magneto thermoelasticity theory in the context of

a new consideration of heat conduction with memory dependent derivative and compared it

with the dynamical classical coupled thermoelasticity (see Biot (1956)). Subsequently, some

researchers (see Ezzat et al. (2016a,b) Ezzat and El-bary (2015)) have considered some problems

on the thermoelasticity theory using memory dependent derivatives and discussed the effects

of memory dependent derivatives as compared to ordinary time derivatives. Shaw (2017) has

given a note on the generalized thermoelasticity theory with memory dependent derivatives

in which the discontinuity solutions of generalized thermoelasticity are discussed and he has

also proposed a suitable Lyapunov function which will be an important tool to show several

qualitative properties. Tiwari and Mukhopadhyay (2017) have also used the new concept of a

memory dependent derivative in a heat transfer process in a solid to investigate the problem of

wave propagation in a homogeneous, isotropic and unbounded solid due to a continuous line

heat source and they have attempted to exhibit the significance of kernel function and time-delay

parameter, that are characteristics of memory dependent derivative heat transfer, in the behavior

of field variables.

We find in literature that some researchers have used stochastic simulation techniques for analysis

of heat conduction and thermoelastic problems. By considering uncertainty in the thermal

conductivity, some problems have been studied by Ahmadi (1978), Chen and Tien (1967), Keller

et al. (1978), and Tzou (1988). Chen and Tien (1967), Samuels (1966), and Val’kovskaya and

Lenyuk (1996) have discussed the results of some problems involving stochastic internal heat

generation. Chiba and Sugano (2007) have investigated a stochastic thermoelastic problem of

a functionally graded plate subjected to random external temperature load. Recently, Sherief

et al. (2013) have discussed the effects of stochastic thermal shock at the boundary of an

elastic medium. Sherief et al. (2016) have further discussed the wave propagation in the theory

of generalized thermoelastic diffusion using stochastic simulation technique. Hosseini and

Shahabian (2013) have discussed the stochastic hybrid numerical method for transient analysis

of stress field in functionally graded thick hollow cylinders subjected to shock loading. Allam
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et al. (2016) have studied a problem of stochastic thermoelastic diffusion interaction in an

infinitely long annular cylinder.

Problems on cracks and failures in solid have been explored by several researchers due to the

wide applications of these problems in the industry, particularly in the fabrication of electronic

components, geophysics and earthquake engineering etc. It is noted that Griffith (1921) has

firstly studied the theory of the cracks in two dimensional thermoelastic medium. We would also

like to mention here that the thermal stresses play an important role in the building of structural

elements. The flow induced thermal stresses in the infinite isotropic solids has been studied

by Florence and Goodier (1963). The crack problems in thermoelastic media have also been

discussed by Sih (1962), Kassir and Bergman (1971), Prasad and Aliabadi (1996), Raveendra

and Banerjee (1992), Elfalaky and Abdel-Halim (2006), Hosseini-Teherani and Eslami (2000),

Chaoudhuri and Ray (2006). Mallik and Kanoria (2009) discussed an understanding of thermally

induced stresses in solids which is necessary for a detailed study of the manufacturing stages.

Work reported by Sherief and El-Maghraby (2005) and Prasad and Mukhopadhyay (2013) are

also worth to be mentioned in this respect.

Very recently, thermoelasticty theory with single delay term proposed by Quintanilla (2011)

has been studied by some researchers. Kumari and Mukhopadhyay (2017a) have studied the

fundamental solutions of thermoelasticity with this recent heat conduction model with a single

delay term. Further, Kumari and Mukhopadhyay (2017b) have established some important

theorems on linear theory of thermoelasticity for an anisotropic medium under this new heat

conduction model. Subsequently, a uniqueness theorem and instability of solutions under the

relaxed assumption that the elasticity tensor can be negative is established by Quintanilla (2016).

Kumar and Mukhopadhyay (2016) have investigated a problem of thermoelastic interactions on

this theory in which state-space approach is used to formulate the problem and the formulation

is then applied to a problem of an isotropic elastic half space with its plane boundary subjected

to sudden increase in temperature and zero stress. Later on, Kumar and Mukhopadhyay (2017)

have further carried out an investigation on the effects of temperature dependency of material

parameters on a thermoelastic loading problem.
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1.8 Objective of the present thesis

Thermoelasticity involves a large category of phenomena and it comprises of the general theory

of heat conduction, thermal stresses, and strains set up by thermal flow in elastic bodies and the

reverse result of temperature distribution caused by the elastic deformation itself. The absence

of any elasticity term in the heat conduction equation in uncoupled thermoelasticity appears

to be unrealistic, since the produced strain causes variation in the temperature field due to the

mechanical loading of an elastic body. The classical theories of thermoelasticity also have

infinite speed of propagation of thermal signals, that contradict physical facts. During the last

few decades, various generalizations of the classical theory have been addressed to overcome

this paradox. An appreciable progress in the field of aircraft and machine structure has given

rise to numerous problems where thermal stress plays a very important role. In-depth research

has been carried out on generalized thermoelasticity theories in solving thermoelastic problems

in place of the classical uncoupled/coupled theory of thermoelasticity. It has been seen that the

wave type thermal transport is physically realistic than the diffusion type equation in analyzing a

problem on highly intensive heat transfer. Furthermore, due to the advancement of pulsed lasers,

fast burst nuclear reactors, and particle accelerators, which can supply heat pulses with a very

fast time-rise, generalized thermoelasticity theory is receiving serious attention as they predict

more realistic results.

The present thesis is concerned with the mathematical modeling on various unsolved problems

involving thermoelastic interactions. It is aimed at investigation of the behavior of physical

field variables of various thermoelastic systems under recently proposed thermoelastic models

and thereby to understand the basic differences of these models with respect to the responses

of the field variables due to thermoelastic interactions. It is concerned with the analysis of

various aspects of these thermoelasticity theories by investigating some problems involving

thermoelastic interactions inside different media and due to various types of thermo-mechanical

loads.
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