LIST OF FIGURES

Figures	Page
Fig. 1.1 Graphical representation of modeling	2
Fig. 2.1 (a) An infinitely extended thick plate of thickness 2 <i>l</i>	34
Fig. 2.1 (b) Axi-symmetric temperature distribution in the cylindrical co-ordinate with	ı z-axis
as the axis of symmetry	36
Fig. 2.2 Temperature distribution at $t = 0.13$	51
Fig. 2.3 Temperature distribution at $t = 0.35$	52
Fig. 2.4 Temperature distribution at $t = 0.69$	52
Fig. 2.5 Temperature distribution at $t = 1.21$	52
Fig. 2.6 Displacement distribution at $t = 0.13$	53
Fig. 2.7 Displacement distribution at $t = 0.35$	53
Fig. 2.8 Displacement distribution at $t = 0.69$	53
Fig. 2.9 Displacement distribution at $t = 1.21$	54
Fig. 2.10 Radial stress distribution at $t = 0.13$	54
Fig. 2.11 Radial stress distribution at $t = 0.35$	54
Fig. 2.12 Radial stress distribution at $t = 0.69$	55
Fig. 2.13 Radial stress distribution at $t = 1.21$	55
Fig. 3.1 Temperature distribution in the middle plane of the plate with $\tau = 0.1$ and	
$ au_0=0.2$	77
Fig. 3.2 Temperature distribution in the middle plane of the plate with $\tau = 0.1$ and	
$ au_0 = 0.2$	78
Fig. 3.3 Displacement distribution in the middle plane of the plate with $\tau = 0.1$ and	
$ au_0 = 0.2$	78
Fig. 3.4 Displacement distribution in the middle plane of the plate with $\tau = 0.1$ and	
$ au_0 = 0.2$	78

Fig. 3.5 Radial Stress distribution in the middle plane of the plate with $\tau = 0.1$ and	
$ au_0=0.2$	79
Fig. 3.6 Radial Stress distribution in the middle plane of the plate with $\tau = 0.1$ and	
$ au_0=0.2$	79
Fig. 3.7 Temperature distribution in the middle plane of the plate with $\tau = 0.01$ and	
$ au_0 = 0.02$	79
Fig. 3.8 Displacement distribution in the middle plane of the plate with $\tau = 0.01$ and	
$ au_0 = 0.02$	80
Fig. 3.9 Stress distribution in the middle plane of the plate with $\tau = 0.01$ and $\tau_0 = 0.02$	80
Fig. 3.10 Temperature distribution in the middle plane of the plate with $\tau = 0.1$ and	
$ au_0 = 0.2$	80
Fig. 3.11 Displacement distribution in the middle plane of the plate with $\tau = 0.1$ and	
$ au_0=0.2$	81
Fig. 3.12 Stress distribution in the middle plane of the plate with $\tau = 0.1$ and $\tau_0 = 0.2$	81
Fig. 3.13 (a) Variation of temperature with time at $r=0.5$ for $\tau = 0.1$ and	
$ au_0=0.2$	81
Fig. 3.13 (b) Variation of temperature with time at $r=2.5$ for $\tau = 0.1$ and	
$ au_0=0.2$	82
Fig. 3.14 (a) Variation of displacement with time at $r=0.5$ for $\tau = 0.1$ and	
$ au_0=0.2$	82
Fig. 3.14 (b) Variation of displacement with time at $r=2.5$ for $\tau=0.1$ and	
$ au_0=0.2$	82
Fig. 3.15 (a) Variation of radial stress with time at $r=0.5$ for $\tau = 0.1$ and	
$ au_0=0.2$	83
Fig. 3.15 (b) Variation of radial stress with time at $r=2.5$ for $\tau=0.1$ and	
$ au_0 = 0.2$	83
Fig. 4.1 Temperature distributions with delay time 0.2 and non dimensional time 0.69	100
Fig. 4.2 Temperature distributions with delay time 0.2 and non dimensional time 0.35	101
Fig. 4.3 Temperature distributions with delay time 0.1 and non dimensional time 0.69	101

Fig. 4.4 Temperature distributions with delay time 0.1 and non dimensional time 0.35	101
Fig. 4.5 Temperature distributions with delay time 0.01 and non dimensional time 0.69	102
Fig. 4.6 Temperature distributions with delay time 0.01 and non dimensional time 0.35	102
Fig. 4.7 Displacement distributions with delay time 0.2 and non dimensional time 0.69	102
Fig. 4.8 Displacement distributions with delay time 0.2 and non dimensional time 0.35	103
Fig. 4.9 Displacement distributions with delay time 0.1 and non dimensional time 0.69	103
Fig. 4.10 Displacement distributions with delay time 0.1 and non dimensional time 0.35	103
Fig. 4.11 Displacement distributions with delay time 0.01 and non dimensional time	
0.69	104
Fig. 4.12 Displacement distributions with delay time 0.01 and non dimensional time	
0.35	104
Fig. 4.13 Radial stress distributions with delay time 0.2 and non dimensional time 0.69	104
Fig. 4.14 Radial stress distributions with delay time 0.1 and non dimensional time 0.35	105
Fig. 4.15 Radial stress distributions with delay time 0.1 and non dimensional time 0.69	105
Fig. 4.16 Radial stress distributions with delay time 0.1 and non dimensional time 0.35	105
Fig. 4.17 Radial stress distributions with delay time 0.01 and non dimensional time 0.69	106
Fig. 4.18 Radial stress distributions with delay time 0.01 and non dimensional time 0.35	106
Fig. 5.1.1 (a) Deterministic stress distribution for case-I	128
Fig. 5.1.1 (b) Stochastic stress distribution for sample path-I in case-I	129
Fig. 5.1.1 (c) Stochastic stress distribution for sample path-II in case-I	129
Fig. 5.1.1 (d) Comparison between deterministic and stochastic stress distributions for	
case-I	129
Fig. 5.1.1 (e) Variance of stress distribution for case-I	130
Fig. 5.1.2 (a) Deterministic temperature distribution for case-I	130
Fig. 5.1.2 (b) Stochastic temperature distribution for sample path-I in case-I	130
Fig. 5.1.2 (c) Stochastic temperature distribution for sample path-II in case-I	131
Fig. 5.1.2 (d) Comparison between deterministic and stochastic temperature distribution	is for
case-I	131
Fig. 5.1.2 (e) Variance of temperature distribution for case-I	131

Fig. 5.1.3 (a) Deterministic displacement distribution for case-I	132
Fig. 5.1.3 (b) Stochastic displacement distribution for sample path-I in case-I	132
Fig. 5.1.3 (c) Stochastic displacement distribution for sample path-II in case-I	132
Fig. 5.1.3 (d) Comparison between deterministic and stochastic displacement distri	butions for
case-I	133
Fig. 5.1.3 (e) Variance of displacement distribution for case-I	133
Fig. 5.2.1 (a) Deterministic stress distribution for case-II	133
Fig. 5.2.1 (b) Stochastic stress distribution for sample path-I in case-II	134
Fig. 5.2.1 (c) Stochastic stress distribution for sample path-II in case-II	134
Fig. 5.2.1 (d) Comparison between deterministic and stochastic stress distributions	for
case-II	134
Fig. 5.2.1 (e) Variance of stress distribution for case-II	135
Fig. 5.2.2 (a) Deterministic temperature distribution for case-II	135
Fig. 5.2.2 (b) Stochastic temperature distribution for sample path-I in case-II	136
Fig. 5.2.2 (c) Stochastic temperature distribution for sample path-II in case-II	136
Fig. 5.2.2 (d) Comparison between deterministic and stochastic temperature distri	butions for
case-II	137
Fig. 5.2.2 (e) Variance of temperature distribution for case-II	137
Fig. 5.2.3 (a) Deterministic displacement distribution for case-II	137
Fig. 5.2.3 (b) Stochastic displacement distribution for sample path-I in case-II	138
Fig. 5.2.3 (c) Stochastic displacement distribution for sample path-II in case-II	138
Fig. 5.2.3 (d) Comparison between deterministic and stochastic displacement distri	butions for
case-II	139
Fig. 5.2.3 (e) Variance of displacement distribution for case-II	139
Fig. 5.2.1 Deterministic temperature distribution at time $t=0.15$	156
Fig. 5.2.2 Deterministic and stochastic temperature distributions at time $t=0.15$	156
Fig. 5.2.3 Deterministic stress distribution at time $t=0.15$	157
Fig. 5.2.4 Deterministic and stochastic stress distributions at time $t=0.15$	157
Fig. 5.2.5 Variance of temperature distribution at time $t=0.15$	157

Fig. 5.2.6 Variance of stress distribution at time $t=0.15$	158
Fig. 5.2.7 Deterministic stress distribution at time $t=0.15$	158
Fig. 5.2.8 Deterministic and stochastic stress distributions at time $t=0.15$	158
Fig. 5.2.9 Deterministic temperature distribution at time $t=0.10$	159
Fig. 5.2.10 Deterministic and stochastic temperature distributions at time $t=0.10$	159
Fig. 5.2.11 Deterministic stress distribution at time $t=0.10$	159
Fig. 5.2.12 Deterministic and stochastic stress distributions at time $t=0.10$	160
Fig. 5.2.13 Variance of temperature distribution at time $t=0.10$	160
Fig. 5.2.14 Variance of stress distribution at time $t=0.10$	160
Fig. 5.2.15 Deterministic stress distribution at time $t=0.10$	161
Fig. 5.2.16 Deterministic and stochastic stress distributions at time $t=0.10$	161
Fig. 5.2.17 Deterministic temperature distribution at time $t=0.05$	161
Fig. 5.2.18 Deterministic and stochastic temperature distributions at time $t=0.05$	162
Fig. 5.2.19 Deterministic stress distribution at time $t=0.05$	162
Fig. 5.2.20 Deterministic and stochastic stress distributions at time $t=0.05$	162
Fig. 5.2.21 Variance of temperature distribution at time $t=0.05$	163
Fig. 5.2.22 Variance of stress distribution at time $t=0.05$	163
Fig. 5.2.23 Deterministic stress distribution at time $t=0.05$	163
Fig. 5.2.24 Deterministic and stochastic stress distributions at time $t=0.05$	164
Fig. 6.1 Displacement of Mode-I crack	168
Fig. 6.2 Temperature distributions at the vertical distance 0.2	186
Fig. 6.3 Temperature distributions at the vertical distance 0.3	186
Fig. 6.4 Vertical stress distributions at the vertical distance 0.2	186
Fig. 6.5 Vertical stress distributions at the vertical distance 0.3	187
Fig. 6.6 Horizontal stress distributions at the vertical distance 0.2	187
Fig. 6.7 Horizontal stress distributions at the vertical distance 0.3	187
Fig. 6.8 Vertical displacement distributions at the vertical distance 0.2	188
Fig. 6.9 Vertical displacement distributions at the vertical distance 0.3	188
Fig. 6.10 Horizontal displacement distributions at the vertical distance 0.2	188