TABLE OF CONTENTS

	Pages	
CONTENTS	i-v	
LIST OF FIGURES	vi-xi	
LIST OF SYMBOLS	xii-xiii	
PREFACE	xiv-xvii	
CHAPTER-1: INTRODUCTION AND LITERATURE REVIEW	1-29	
1.1 Mathematical modeling	1-2	
1.1.1 What is mathematical modeling?	1	
1.1.2 Objective of mathematical modeling	1-2	
1.2 Thermoelasticity theory	3-12	
1.2.1 Classical coupled theory of thermoelasticity	4-6	
1.2.2 Drawbacks of Fourier's law and its modifications	7-8	
1.2.3 Development of non-Fourier heat conduction models	8-12	
1.3 Generalized thermoelasticity theories	12-17	
1.3.1 Lord-Shulman's theory or extended thermoelasticity (ETE) theory	12	
1.3.2 Temperature-rate-dependent thermoelasticity (TRDTE) theory	12-13	
1.3.3 Green and Naghdi's theory of thermoelasticity of type I, II and III	13-14	
1.3.4 Thermoelasticity theory with dual phase-lags (DPLTE)	14-15	
1.3.5 Thermoelasticity with three phase-lags (TPLTE)	15	
1.3.6 Quintanilla's theory of thermoelasticity	15-17	
1.4 Fractional order thermoelasticity theory	17-19	
1.5 Thermoelasticity theory with memory dependent derivatives	19-20	
1.6 Stochastic processes and it applications in thermoelasticity	20-22	
1.7 Literature review	22-28	
1.8 Objective of the present thesis	29	
CHAPTER-2: A DETAILED STUDY ON RESPONSES OF FOUR HEAT CONDUC-		
TION MODELS FOR AN AXISYMMETRIC PROBLEM OF COUPLED THERMOE-		

LASTIC INTERACTIONS INSIDE A THICK PLATE	31-56
2.1 Introduction	31-33
2.2 Governing equations	33-35
2.3 Formulation of the problem	35-39
2.3.1 Boundary conditions	38-39
2.4 Solution of the problem	39-49
2.4.1 Laplace and Hankel transforms	39-41
2.4.2 Inversion of the Hankel transform	42-43
2.4.3 Inversion of the Laplace transform	43-46
2.4.4 Discussion on analytical results	46-49
2.5 Numerical results and discussion	49-55
2.6 Conclusions	55-56
CHAPTER-3: AN INVESTIGATION ON COUPLED THERMOELASTIC	C INTERAC-
TIONS IN A THICK PLATE DUE TO AXI-SYMMETRIC TEMPERATU	RE DISTRI-
BUTION UNDER AN EXACT HEAT CONDUCTION WITH A DELAY	57-84
3.1 Introduction	57-58
3.2 Governing equations	58-60
3.3 Formulation of the problem	60-63
3.4 Boundary conditions	63-64
3.5 Solution of the problem	64-74
3.5.1 Laplace and Hankel transforms	64-66
3.5.2 Inversion of the Hankel transform	66-68
3.5.3 Inversion of Laplace transform	68-72
3.5.4 Discussion on analytical results	72-74
3.6 Numerical examples	74-77
3.7 Conclusions	77-84
CHAPTER-4: AN INVESTIGATION ON RESPONSES OF THERMO-ME	CHANICAL
LOAD INSIDE A INFINITELY EXTENDED THICK PLATE UNDER THE	RMOELAS-
TICITY WITH MEMORY DEPENDENT DERIVATIVES	85-107

4.1 Introduction	85-86
4.2 Governing equations	86-89
4.3 Formulation of the problem	89-92
4.3.1 Boundary conditions	92
4.4 Solution of the problem	93-97
4.4.1 Laplace and Hankel transforms	93-95
4.4.2 Inversion of the Hankel transform	95-97
4.5 Numerical results and discussion	97-106
4.6 Conclusions	106-107
CHAPTER-5: EFFECTS OF STOCHASTIC BOUNDARY CONDITIONS O	N WAVE
PROPAGATION IN THERMOELASTIC MEDIUM	109-165
5.1 Investigation of a problem of an elastic half space subjected to stochastic temperatu	re
distribution at the boundary	109-140
5.1.1 Introduction	109-111
5.1.2 Formulation of the problem	111-114
5.1.3 Solution of the problem in the Laplace transform domain	114-116
5.1.4 Stress distributions in physical domain	116-121
5.1.4.1 Deterministic stress distribution	116-117
5.1.4.2 Stochastic stress distribution	117-122
5.1.5 Temperature distributions in physical domain	122-124
5.1.5.1 Deterministic temperature distribution	122-123
5.1.5.2 Stochastic temperature distribution	123-124
5.1.6 Displacement distributions in physical domain	124-126
5.1.6.1 Deterministic displacement distribution	124-125
5.1.6.2 Stochastic displacement distribution	125-126
5.1.7 Numerical results and discussion	126-139
5.1.8 Conclusions	139-140
5.2 Investigation on effects of stochastic loading at the boundary under thermoelasticity	y

with two relaxation parameters	with	two	relaxation	parameters
--------------------------------	------	-----	------------	------------

141-165

5.2.1 Introduction	141	
5.2.2 Formulation of the problem	142-143	
5.2.3 Solution of the problem in the Laplace transform domain	143-146	
5.2.4 Temperature distributions in physical domain	146-152	
5.2.4.1 Deterministic temperature distribution	147-147	
5.2.4.2 Stochastic temperature distribution	147-152	
5.2.5 Stress distributions in physical domain	152-154	
5.2.5.1 Deterministic stress distribution	152-153	
5.2.5.2 Stochastic stress distribution	153-154	
5.2.6 Numerical results	154-164	
5.2.7 Discussion and conclusions	164-165	
CHAPTER-6: AN INVESTIGATION ON A TWO DIMENSIONAL PROBLEM	OF MODE-	
I CRACK IN A THERMOELASTIC MEDIUM	167-190	
6.1. Introduction	167-169	
6.2 Formulation of the problem	169-172	
6.3 Solution in the Laplace and Hankel transform domain	172-176	
6.4 Boundary conditions and dual integral equation formulation	176-180	
6.5 Solution of the dual integral equations	180-182	
6.6 Numerical results and discussions	182-189	
6.7 Conclusion	189-190	
CHAPTER-7: SUMMARY OF THE THESIS AND SCOPE FOR FUTURE		
WORK	191-195	
7.1 Summary of the thesis	191-194	
7.1.1 Part-I: Behavior of fields variables due to thermoelastic interactions inside a		
plate	191-192	
7.1.2 Part-II: The behavior of field variables due to thermoelastic interactions using	7	
memory dependent derivatives	192-193	
7.1.3 Part-III: The behavior of field variables due to thermoelastic interactions under		
stochastic thermo-mechanical loads at the boundary	193	

7.1.4 Part-IV: The behavior of field variables near Mode-I crack in thermoelastic

medium	194
7.2 Future scope for research work	194-195
REFERENCES	197-223
APPENDICES	225-233
LIST OF PUBLICATIONS	235-237