
CHAPTER-6

An investigation on a two dimensional problem of Mode-I crack

in a thermoelastic medium

6.1 Introduction

Cracks and failures in solid has been a topic of active research due to its wide applications in the

industry and particularly in the fabrication of electronic components, geophysics and earthquake

engineering, etc. The present Chapter aims at investigating a two dimensional Griffith crack prob-

lem represented by a line segment. It is in reality a long flat ribbon shaped cavity in a solid and

stressed in such a way that the stress pattern remains unaltered while passing in a direction parallel

to the plane of the crack. It is worth to recall that the theory of cracks in two dimensional medium

was first studied by Griffith (1921). The fracture mode of any material shows the separation ge-

ometrically. In two dimensions, there are three basic problems of crack corresponding to three

different modes (Mode-I, II and III) of displacement which are useful to study. A Griffith crack

having the length 2r in a solid medium in the case of Mode-I is shown in Fig. 6.1 under the action

of the tension which is in the direction perpendicular to the line of the crack. The Mode-I crack

denotes a symmetric opening with the relative displacements of the medium being normal to the

fracture surface (see Irwin (1958)). It can be noted that crack growth usually takes place in Mode-I

or close to it.

It must be mentioned that thermal stresses play a very important role in building structural ele-

ments, like machines, gas or stream turbines, aircrafts, etc. In almost all structures crack may

occur as manufacturing defects or because of service loading which can either be mechanical or

thermal. If the load is frequently applied, the crack may grow in fatigue to a final fracture. The
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result of any unaccounted induced thermal stress may also be catastrophic in many cases. Hence,

an understanding of thermally induced stresses in solids is necessary for a comprehensive study

at the manufacturing stages. The flow induced thermal stresses in infinite isotropic solids has

been studied by Florence and Goodier (1963). The crack problems in thermoelastic media are

discussed by Sih (1962), Kassir and Bergman (1971), Prasad and Aliabadi (1996), Raveendra

and Banerjee (1992), Elfalaky and Abdel-Halim (2006), Hosseini-Teherani and Eslami (2000),

Chaoudhuri and Ray (2006), Sherief and El-Maghraby (2003). Mallik and Kanoria (2009), Abdel-

Halim and Elfalaky (2005) have also discussed the dynamical problems for an internal penny

shaped crack in an infinite thermoelastic solid. Recently, Sherief and El-Maghraby (2005) and

Prasad and Mukhopadhyay (2013) have solved the mode-I crack problem of an infinite thermoe-

lastic medium in the context of Lord-Shulman’s theory (1967) and Green-Naghdi theory (1995),

respectively.

Fig. 6.1 Displacement of Mode-I crack

In this chapter, we consider a two dimensional dynamical problem of an infinite space with finite

linear Mode-I crack and employ a recently proposed heat conduction model: an exact heat conduc-

tion with a single delay term. The thermoelastic medium is taken to be homogeneous and isotropic.

However, the boundary of the crack is subjected to prescribed temperature and stress distributions.

We have discussed the thermoelastic behavior inside the medium in the neighborhood of the crack
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in which we have used the thermoelasticity theory given by Quintanilla (2011), namely model of

Quintanilla-I (new model-I) and model of Quintanilla-II (new model-II) and compared its results

with the results of type-III thermoelasticity theory of Green and Naghdi which is discussed by

Prasad and Mukhopadhyay (2013). We have formulated the problem in such way that all the three

models (new model-I, II and GN-III model) can be written in a unified way, from which we can

obtain results under every particular model. Two dimensional equations of motion along with the

new heat conduction equation and constitutive relations are given to describe the present problem.

Laplace and exponential Fourier transforms are used to solve the problem and we obtain the so-

lution in the transformed domain. In section 6.4, the prescribed boundary temperature and stress

distributions are used to derive four dual integral equations which are further reduced into two

dual integral equations. These dual integral equations are solved by using regularization method.

The method given by Bellman et al. (1966) is used to invert the Laplace transform numerically

and obtain the final solution of the problem. We compute all the physical fields in the physical

domain and represent them graphically. In section 6.6, we discuss and compare all the findings

and highlight the specific behavior of different physical fields near the crack region.

6.2 Formulation of the problem

A two dimensional dynamical problem is considered in an infinite medium −∞ < x < ∞,−∞ <

y < ∞ which has a Mode-I (opening mode) crack defined by |x| ≤ r, y = 0. The crack surface is

subjected to known temperature and normal stress distributions. We consider the basic governing

equations of coupled thermoelasticity for isotropic and homogeneous medium as follows:

Equations of motion are given as

(λ +µ)
∂e

∂x
+µ∇2u− γ

∂T

∂x
= ρ

∂ 2u

∂ t2
(6.1)

(λ +µ)
∂e

∂y
+µ∇2v− γ

∂T

∂y
= ρ

∂ 2v

∂ t2
(6.2)

169



CHAPTER-6/ AN INVESTIGATION ON A TWO...CONTD.

The heat conduction equation under theory of thermoelasticity of type-III due to Green and

Naghdi (1995) is given by

(K∗+K
∂

∂ t
)∇2T =

∂ 2

∂ t2
(ρceT + γT0e) (6.3)

We consider the heat conduction equation by Quintanilla (2011) as

[

K∗(1+ τ0
∂

∂ t
+

τ2
0

2

∂ 2

∂ t2
)+K

∂

∂ t

]

∇2T =
∂ 2

∂ t2
(ρceT + γT0e) (6.4)

In the above equation, if we neglect the effect of higher order terms containing the delay time

parameter τ0, then we have

[

K∗(1+ τ0
∂

∂ t
)+K

∂

∂ t

]

∇2T =
∂ 2

∂ t2
(ρceT + γT0e) (6.5)

The stress-strain-temperature relations for the present case are given by

σxx = 2µ
∂u

∂x
+λe− γ(T −T0) (6.6)

σyy = 2µ
∂v

∂y
+λe− γ(T −T0) (6.7)

σxy = µ(
∂u

∂y
+

∂v

∂x
) (6.8)

Now, we aim to study the present problem by considering it as a problem of thermoelasticity in the

contexts of three different forms of heat conduction equations as given by Eqs. (6.3−6.5). Hence,

we combine them in the following manner:

[

K∗(1+ τ0
∂

∂ t
+ τ1

∂ 2

∂ t2
)+K

∂

∂ t

]

∇2T =
∂ 2

∂ t2
(ρceT + γT0e) (6.9)
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From Eq.(6.9), we can get the different heat conduction equations under different thermoelastic

models in the following manner:

1. Quintanilla model (new model-I): τ1 =
τ2

0

2
, τ0 6= 0

2. Quintanilla model (new model-II): τ1 = 0, τ0 6= 0

3. GN-III model: τ1 = 0, τ0 = 0

In above equations (6.1−6.9), u and v are the displacement components along the x and y direc-

tions, respectively and t is the time. T is the absolute temperature, T0 is the reference temperature,

K is the thermal conductivity and K∗ is the rate of the thermal conductivity. γ is the material con-

stants given by γ = (3λ + 2µ)αt , where, αt is the coefficient of linear of thermal expansion. e is

the dilatation given by

e = (
∂u

∂x
+

∂v

∂y
) (6.10)

Now for simplicity, we use the following non-dimensional variables:

x′ = cηx, y′ = cηy,r′ = cηr, u′ = cηu, v′ = cηv, t ′ = c2ηt, σ ′i j =
σi j

µ , T ′ = T−T0

T0
, τ ′1 = c4η2τ1,

τ ′0 = c2ητ0

where, η = ρce

K
, and c =

√

λ+2µ
ρ . Here, c, is the speed of the propagation of longitudinal elastic

waves.

Now with the help of the above non dimensional quantities, after dropping the dashed notations

for convenience, Eqs. (6.1− 6.2), (6.6) and (6.7− 6.9) can be reduced in the following non-

dimensional forms:

(m2−1)
∂e

∂x
+∇2u−a2

∂T

∂x
= m2 ∂ 2u

∂ t2
(6.11)

(m2−1)
∂e

∂y
+∇2v−a2

∂T

∂y
= m2 ∂ 2v

∂ t2
(6.12)

[

a1(1+ τ
∂

∂ t
+ τ1

∂ 2

∂ t2
)+

∂

∂ t

]

∇2T =
∂ 2

∂ t2
(T +a3e) (6.13)

171



CHAPTER-6/ AN INVESTIGATION ON A TWO...CONTD.

σxx = 2
∂u

∂x
+(m2−2)e−a2T (6.14)

σyy = 2
∂v

∂y
+(m2−2)e−a2T (6.15)

σxy =

(

∂u

∂y
+

∂v

∂x

)

(6.16)

where, a1 =
K∗

Kc2η
, a2 =

ηT0

µ , a3 =
γ

Kη , m2 = λ+2µ
µ

Now, removing u and v from Eqs.(6.11−6.12) using Eq.(6.10), we obtain

(

∇2− ∂ 2

∂ t2

)

e = a4∇2T (6.17)

where, a4 =
a2

m2

6.3 Solution in the Laplace and Fourier transform domain

After taking the Laplace transform to both the sides of Eqs. (6.10− 6.13) and (6.17), we obtain

the following equations:

ē =
∂ ū

∂x
+

∂ v̄

∂y
(6.18)

(1−m2)
∂ ē

∂x
+a2

∂ T̄

∂x
= (∇2−m2s2)ū (6.19)

(1−m2)
∂ ē

∂y
+a2

∂ T̄

∂y
= (∇2−m2s2)v̄ (6.20)

[{

a1

(

1+ τ0 s+ τ1s2
)

+ s
}

∇2− s2
]

T̄ = s2a3ē (6.21)

(

∇2− s2
)

ē = a4∇2T̄ (6.22)

where, s, is the Laplace transform parameter.

Now, eliminating ē from Eqs. (6.21− 6.22), we obtain the partial differential equation which is
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satisfied by T̄ as

(

∇2− k2
1

)(

∇2− k2
2

)

T̄ = 0 (6.23)

where, k2
1 and k2

2 are the roots of the following characteristic equation:

k4− s2
{

1+a1

(

1+ τ0s+ τ1s2
)

+ s+ ε
}

{a1 (1+ τ0s+ τ1s2)+ s} k2 +
s4

{a1 (1+ τ0s+ τ1s2)+ s} = 0 (6.24)

where, ε = a3a4

Now, we can obtain T̄ , the solution of Eq. (6.23) in the following form:

T̄ = T̄1 + T̄2

where, T̄1 and T̄2 are the solutions of the equations

(

∇2− k2
i

)

T̄i = 0, i = 1, 2 (6.25)

The exponential Fourier transform of a function ḡ(x, y, s) cab be defined as

ḡ∗(q, y, s) = F [ḡ(x, y, s)] =
1√
2π

∞̂

−∞

ḡ(x, y, s)e−iqx dx

where, q is the Fourier transform parameter.

The inverse Fourier transform can be defined as

ḡ(x, y, s) = F−1 [ḡ∗(q, y, s)] =
1√
2π

∞̂

−∞

ḡ∗(q, y, s)eiqx dq

Now, we apply the exponential Fourier transform to both sides of Eq. (6.25) to get

(

∂ 2

∂y2
− k2

i +q2

)

T̄ ∗i = 0, i = 1, 2 (6.26)

The solution of Eq.(6.26) which is bounded at infinity can be found in the following form:
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T̄ ∗i = Bi(q, s)(k2
i − s2)e−qi|y|, i = 1, 2

where, qi =
√

q2 +m2
i and Bi(q, s) is the parameter which depends upon q and s only for i = 1, 2.

Due to symmetry of the problem, we take the case y > 0 only. Then the above equation can be

written as

T̄ ∗i = Bi(q, s)(k2
i − s2)e−qiy, i = 1, 2 (6.27)

In a similar manner, by eliminating T̄ from Eqs. (6.21) and (6.22), we obtain ē∗ = ē∗1 + ē∗2, where,

ē∗i , i = 1, 2 can be written as

ē∗i = B′i(q, s)(k2
i − s2)e−qiy, i = 12 (6.28)

where, B′i(q, s), i = 1, 2 are also parameters which depend only on q and s.

Now, substituting Eqs. (6.27) and (6.28) into Eq. (6.22), we obtain the equation which relates the

parameters Bi(q, s) and B′i(q, s) for i = 1, 2 in the following form:

B′i(q, s) = a4k2
i Bi(q, s), i = 1, 2 (6.29)

Therefore, using Eq. (6.29) and (6.28), we find

ē∗i = ca4kBi(q, s)(k2
i − s2)e−qiy, i = 1, 2 (6.30)

Now, we take the exponential Fourier transform of Eqs. (6.19) and (6.20) to get

(

∂ 2

∂y2
−q2−m2s2

)

ū∗ =
(

1−m2
)

iq ē∗+ iqa2 T̄ ∗ (6.31)

(

∂ 2

∂y2
−q2−m2s2

)

v̄∗ =
(

1−m2
) ∂

∂y
ē∗+a2

∂

∂y
T̄ ∗ (6.32)
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In view of Eqs. (6.27) and (6.30), Eqs. (6.31−6.32) can be rewritten as

(

∂ 2

∂y2
−q2−m2s2

)

ū∗ = iqa4

2

∑
i=1

(

k
2

i −m2s2
)

Bi(q, s)e−qis (6.33)

(

∂ 2

∂y2
−q2−m2s2

)

v̄∗ =−a4

2

∑
i=1

(

k
2

i −m2s2
)

Bi(q, s)qi e−qis (6.34)

The solution ū∗ of Eq. (6.33) can be written as

ū∗ = iqa4

(

2

∑
i=1

Bi(q, s)e−qiy +H1e−δy

)

(6.35)

where, δ =
√

q2 +m2s2 and H1 = H1(q, s) is a parameter that depends on q and s only.

Taking the exponential Fourier transform of Eq. (6.18) with respect to x, we obtain

∂ v̄∗

∂y
= ē∗− iq ū∗ (6.36)

Now, with the help of Eqs. (6.30) and (6.35) along with the integration with respect to y, Eq.

(6.36) can be re-written as given below

v̄∗ =−a4

(

2

∑
i=1

Bi(q, s)qie
−qis +

q2H1(q, s)

δ
e−δy

)

(6.37)

Now, taking the Laplace and exponential Fourier transforms to the both sides of the Eqs. (6.14−

6.16) and using the results of the Eqs. (6.27), (6.30), (6.35) and (6.37), we can write the compo-

nents of the stress tensor in the Laplace and Fourier transform domain in the following form:

σ̄∗xx = a4

[

B1

(

m2s2−2q2
1

)

e−q1y +B2

(

m2s2−2q2
2

)

e−q2y−2H1q2e−δy
]

(6.38)

σ̄∗yy = a4

[

(

m2s2 +2q2
)(

B1e−q1y +B2e−q2y
)

+2H1q2e−δy
]

(6.39)

σ̄∗xy =−ia4q

[

2
(

B1q1e−q1y +B2q2e−q2y
)

+
q2 +δ 2

δ
H1e−δy

]

(6.40)
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Now, taking the inverse Fourier transform of Eqs. (6.27), (6.30), (6.35), and (6.38− 6.40), we

find the solution in the Laplace transform domain for the present problem as given below

T̄ =
1√
2π

∞̂

−∞

[

a2(k
2
1− s2)e−q1y +G2(k

2
2− s2)e−q2y

]

eiqx dq (6.41)

ē =
a4√
2π

∞̂

−∞

[

B1k2
1e−q1y +B2k2

2e−q2y
]

eiqx dq (6.42)

ū =
ia4√
2π

∞̂

−∞

[

B1e−q1y +B2e−q2y +H1e−δy
]

qeiqx dq (6.43)

v̄ =
−a4√

2π

∞̂

−∞

[

B1q1e−q1y +B2q2e−q2y +
H1q2

δ
e−δy

]

eiqx dq (6.44)

σ̄xx =
a4√
2π

∞̂

−∞

[

B1

(

m2s2−2q2
1

)

e−q1y +B2

(

m2s2−2q2
2

)

e−q2y−2H1q2e−δy
]

eiqx dq (6.45)

σ̄yy =
a4√
2π

∞̂

−∞

[

(

m2s2 +2q2
)(

B1e−q1y +B2e−q2y
)

+2H1q2e−δy
]

eiqx dq (6.46)

σ̄xy =
−ia4√

2π

∞̂

−∞

[

2
(

B1q1e−q1y +B2q2e−q2y
)

+
q2 +δ 2

δ
H1e−δy

]

qeiqx dq (6.47)

6.4 Boundary conditions and dual integral equation formulation

For the present study, we assume the following boundary conditions at y = 0

∂T

∂y
= 0, |x|> r (6.48)
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v = 0, |x|> r (6.49)

T = H(t), |x|< r (6.50)

σyy =−H(t), |x|< r (6.51)

σxy = 0, −∞ < x < ∞ (6.52)

where, H(.), is the Heaviside unit step function.

Now, using the boundary conditions given by Eqs. (6.48) and (6.50), Eq. (6.41) can be re-written

as

∞̂

−∞

[

B1(k
2
1− s2)+B2(k

2
2− s2)

]

eiqx dq =

√
2π

s
, |x|< r (6.53)

∞̂

−∞

[

B1q1(k
2
1− s2)+B2q2(k

2
2− s2)

]

eiqx dq = 0, |x|> r (6.54)

and using the boundary conditions given by Eqs. (6.49), (6.51) and (6.52), Eqs. (6.44), (6.46)

and (6.47) can be written as

∞̂

−∞

[

B1q1 +B2q2 +
H1q2

δ

]

eiqx dq = 0, |x|> r (6.55)

∞̂

−∞

[(

m2s2 +2q2
)

(B1 +B2)+2H1q2
]

eiqx dq =−
√

2π

sa4
, |x|< r (6.56)

∞̂

−∞

[

2(B1q1 +B2q2)+
q2 +δ 2

δ
H1

]

qeiqx dq = 0, −∞ < x < ∞ (6.57)
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From Eq. (6.57), we have

H1 =−
2δ (B1q1 +B2q2)

q2 +δ 2
(6.58)

Using Eq. (6.58) and the symmetry of the problem to consider x only in the intervals [0, r] and

[r, ∞], we re-write Eqs. (6.53−6.56) as

2

∑
i=1

(k2
i − s2)

ˆ ∞

0

Bi cos(qx)dq =

√

π

2

1

s
, 0 < x < r (6.59)

2

∑
i=1

(k2
i − s2)

ˆ ∞

0

Bi qcos(qx)dq = 0, x > r (6.60)

2

∑
i=1

ˆ ∞

0

Biqi

m2s2 +2q2
cos(qx)dq = 0, x > r (6.61)

2

∑
i=1

ˆ ∞

0

Bi

[

(

m2s2 +2q2
)2−4q2qiδ

m2s2 +2q2

]

cos(qx)dq =−
√

π

2

1

sa4
, 0 < x < r (6.62)

The Eqs. (6.59− 6.62) form a set of four dual integral equations. From these equations, we can

obtain the unknown parameters B1 and B2 . Now, in order to solve these dual integral equations,

we first assume the following:

Bi(q, s) =

ˆ r

0

hi(v, s)J0(qv)dv (6.63)

where, hi, i = 1, 2 is the function of v and s only and J0(.) is the Bessel function of the first kind of

order zero.

Now, substituting the value of Bi from Eq. (6.63) into the Eq. (6.59) and after changing the order

of integration, we obtain the following relation:

2

∑
i=1

(k2
i − s2)

ˆ a

0

hi(v, s)dv

ˆ ∞

0

cos(qx)J0(qv)dq =

√

π

2

1

s
, 0 < x < r (6.64)

We further have the integral relation of Bessel function (see Watson (1996), Mandal and Mandal
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(1999)) as given below

ˆ ∞

0

cos(qx)J0(qv)dq =















1√
v2−x2

, x < v

0, x > v

(6.65)

Hence, using above substitution, we can write Eq.(6.64) as

2

∑
i=1

(k2
i − s2)

ˆ ∞

x

hi(u, s)√
u2− s2

du =

√

π

2

1

s
, 0 < x < r

Now, multiplying the above equation with x√
x2−v2

and integrating with respect to x from v to r after

changing the order of integration and differentiating the resultant equation, we have the following:

(k2
1− s2)h1(v, s)+(k2

2− s2)h2(v, s) =−N(v)

s
, 0 < x < r (6.66)

where,

N(v) =−
√

2

π

v√
r2− v2

(6.67)

Now, multiplying both sides of the Eq. (6.66) by J0(qv) and integrating with respect to v from 0

to r, we obtain

B2 =−
1

k2
2− s2

[

J(q)

s
+
(

k2
1− s2

)

B1

]

, 0 < x < r (6.68)

where,

J(q) =

ˆ r

0

N(v)J0(qv)dv (6.69)

Next, for obtaining the similar relation to Eq. (6.68) between B1 and B2 for the case x > r, we take

the following:

Bi(q, s) =
1

qi

ˆ ∞

r

hi(v, s)J0(qv)dv, x > r, 1 = 1, 2 (6.70)

Using the relation (6.65) into Eq. (6.60) and after changing the order of integration, we obtain the

following:
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2

∑
i=1

(k2
i − s2)

ˆ ∞

x

hi(u, s)√
u2− x2

du = 0, x > r

Now, multiplying both sides of the above relation by x√
x2−v2

and integrating with respect to x from v

to ∞, after changing the order of integration with the help of relation (6.70), we have the following:

B2 =−
(

k2
1− s2

)

q1
(

k2
2− s2

)

q2

B1, x > r (6.71)

Now, substituting from Eq.(6.68) into the Eq. (6.62), we have the following:

ˆ ∞

0

B1q1L1(q, s)

m2s2 +2q2
cos(qx)dq = L̄2(x, s), x < r (6.72)

where,

L1(q, s) =−
(

k2
2− k2

1

)(

m2s2 +2q2
)2−4q2δ

[

q1

(

k2
2− s2

)

−q2

(

k2
1− s2

)]

q1

L̄2(x, s) =−
√

2

π

(

k2
2− s2

)

sa4
+

1

s

ˆ ∞

0

J(q)

[

(

m2s2 +2q2
)2−4q2δ q2

(m2s2 +2q2)

]

cos(qx)dq, x < r (6.73)

Hence, substituting from Eq. (6.71) into Eq. (6.61), we obtain

ˆ ∞

0

B1q1cos(qx)

(m2s2 +2q2)
dq = 0, x > r (6.74)

In this way the original four dual integral Eqs. (6.59−6.62) having the parameters B1 and B2 are

now changed into two dual integral Eqs.(6.72) and (6.74) in the single parameter B1only.

6.5 Solution of the dual integral equations

For solving the above two dual integral Eqs. (6.72) and (6.74), we assume the following substitu-

tion:
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B1(q, s) =

(

m2s2 +2q2
)

q1
φ(q, s) (6.75)

Therefore, Eqs. (6.72) and (6.74) are reduced into the following forms:

ˆ ∞

0

L1(q, s)φ(q, s)cos(qx)dq = L̄2(x, s), 0 < x < r (6.76)

ˆ ∞

0

φ(q, s)cos(qx)dq = 0, x > r (6.77)

In order to define above for all the values of x, we are now extending the definition of the integral

which is given in Eq. (6.77) in the following manner:

ˆ ∞

0

φ(q, s)cos(qx)dq =















√
2π d

dx

[

x
´ r

x

ϕ(z,s)dz√
z2−x2

]

, 0 < x < r

0, x > r

(6.78)

where, ϕ(z, s) is a function which has to be determined.

We see that the left hand side of the Eq. (6.78) is just the Fourier cosine transform of φ(q, s).

Therefore, by using the inverse Fourier cosine transform ( Sherief and El-Maghraby (2005), Sned-

don (1995), Churchil (1972)), we find the following:

φ(q, s) =

ˆ r

0

d

dx

[

x

ˆ r

x

ϕ(z, s)dz√
z2− x2

]

cos(qx)dx (6.79)

Now, using integration by parts followed by the changing the order of integration to solve the above

equation, we have

ϕ(q, s) = q

ˆ r

0

φ(z, s)dz

ˆ z

0

xsin(qx)dx√
z2− x2

(6.80)

By using the formula from Watson (1996), Mandal and Mandal (1999), we have
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ˆ z

0

xsin(qx)dx√
z2− x2

=
π

2
zJ1(qz)

Therefore, Eq. (6.80) can be re-write in the following form:

φ(q, s) =
π

2
q

ˆ r

0

zϕ(z, s)J1(qz)dz, (6.81)

Now, putting the value of φ(q, s) from Eq. (6.81) into the Eq. (6.76), we have the following

relation:

ˆ r

0

L̄1(z, x, s)ϕ(z, s)dz = L̄2(x, s), 0 < x < r (6.82)

where,

L̄1(z, x, s) =
πz

2

ˆ ∞

0

qL1(q, s)J1(qz)cos(qx)dq

We see that the Eq. (6.82) is the Fredholm’s integral equation of the first kind in the unknown

parameter function ϕ(z, s) which can be obtained by solving numerically and then φ(q, s) can be

obtained from Eq. (6.81). Therefore, by using the value of φ(q, s) into Eq. (6.75), we can get the

value of B1. In this way, the expression for B2 can be obtained using the value of B1 for the case

x < r and x > r with the help of the Eqs. (6.68) and (6.71), respectively.

6.6 Numerical results and discussions

In order to obtain the final solution of the present problem in space-time domain, we proceed as

follows. The method (see Delves and Mohammed (1985)) described in the Appendix-A5 is used to

solve the dual integral equations. However, the inversion of Laplace transform is carried out using

the Bellman et al. (1966) which is described in the Appendix-A2. In order to see the behavior

of all the physical fields near the crack region, we have considered the copper material having

the Mode-I crack with unit length. The material constants are taken as follows (see Sherief and
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El-Maghraby (2005)):

m = 2, αt = 1.78(10−5)K−1, c = 4.158(103)ms−1, a4 = 0.01, ρ = 8954Kgm−3, η = 8886sm−2,

r = 1m, ce = 383.1 JKKg−1, λ = 7.76(1010)Nm−2, µ = 3.86(1010)Nm−2, T0 = 293K, a2 = 0.042,

τ0 = 0.02, τ1 =
τ2

0

2
.

We carry out programming by using the software Mathematica-7 to find out the non-dimensional

numerical values of all the different physical fields like temperature, vertical and horizontal stresses,

vertical and horizontal displacements for different values of vertical distance y. We make an at-

tempt to compare the predictions by all three models namely, new model-I, new model-II and

GN-III model and the graphical representation of our results is carried out for each physical field

with respect to the horizontal distance, x. Due to symmetricity of the problem, we show the results

for half length (x≥ 0) only. We specially observe the behavior of the physical fields in the vicinity

of crack. Each physical field under all models is plotted for different values of y at non-dimensional

time 1.2. Figs. (6.2), (6.4), (6.6), (6.8), and (6.10) show the nature of the different physical fields

at the non-dimensional vertical distance 0.2, whereas Figs. (6.3), (6.5), (6.7), (6.9), and (6.11)

are showing the nature of different physical fields under all three models for non-dimensional ver-

tical distance 0.3.

The temperature distribution is shown in the Figs. (6.2) and (6.3) for non-dimensional vertical

distances, 0.2 and 0.3, respectively. From Figs. (6.2) and (6.3), we note that the maximum value

of temperature distribution under all three models is occurred at the beginning of the crack for both

the vertical distances 0.2 and 0.3 and it decreases very slowly up to the middle of the crack region.

Thereafter the decreasing rate increases. Further, at the end of the crack edge, it suddenly decreases

which becomes zero after some distance. We further observe that the value of the temperature for

lower vertical distance 0.2 at the beginning of the crack is more as compared to the values for the

non-dimensional distance 0.3 under all three models. However, the values under GN-III model and

new model-II are almost the same for both the vertical distances 0.2 and 0.3 which is significantly

different from the values under new model-I.

The vertical stress distribution is shown in Figs. (6.4) and (6.5) for different non-dimensional ver-
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tical distances. We find that at the start of the crack, the values under all three models are maximum

which are started to decrease up to middle of the crack. Then two local minima and one local max-

imum are occurred before the end of the crack edge. From there, it increases which becomes zero

after some distance. We also find that the values under all three models for the non-dimensional

vertical distance 0.2 is greater than the values for non dimensional vertical distance 0.3. However,

the values under GN-III model and new model-II are almost the same which are significantly dif-

ferent from the values obtained under the new model-I. Furthermore, we note that the value under

new model-I is larger up to the middle of the crack edge as compared to the values under other two

models for both the vertical distances 0.2 and 0.3. The nature of the vertical stress is oscillatory in

nature near the end of the crack and it is more pronounced for lower vertical distance and for the

GN-III model and new model-II.

The Figs. (6.6) and (6.7) are representing the behavior of the horizontal stress for the non-

dimensional vertical distances 0.2 and 0.3, respectively. It is indicated that the value under the

new model-I is significantly different from the values under new model-II and GN-III model at the

beginning of the crack edge. However, under all models the horizontal stress increases when we

move towards the end of the middle edge and this field yields a maximum value at a point near the

middle of the crack edge which is the same under all three models. Further, the values decrease

up to the end of the crack edge and from there, it again starts to increase which finally become

zero after some distance. Therefore, one local maximum and one local minimum are occurred for

this field inside the crack edge. Furthermore, it is noted that near the middle of the crack edge, the

value under the new model-I is significantly different with the values occurred under the GN-III

model and new model-II. We further observe that the values under all three models are more for

the vertical distance 0.2 as compared to the values found for the vertical distance 0.3. This implies

that the horizontal stress decreases with the increase of vertical distance.

The nature of the vertical displacement distribution near the crack edge for the vertical distance

0.2 and 0.3 can be seen from the Figs. (6.8) and (6.9), respectively. We observe that the values

are significantly different under all three models near the crack edge for both the vertical distances
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which is maintained up to the end of the crack edge. Further, we have also seen that one local

maximum is occurred near the middle of the crack edge and showing a decreasing trend thereafter

upto the end of crack edge. However, it again starts increasing after the end of the crack edge

which finally vanishes after some distance. The values for the vertical distance 0.3 are smaller as

compared to the values for the vertical distance 0.2 under all three models. The behavior of this

physical field is same under all three models: new model-I, new model-II, GN-III model in the

case of both the vertical distances 0.2 and 0.3.

The horizontal displacement distribution is shown in Figs. (6.10) and (6.11). We see that the

values are same at the beginning of the crack edge under all three models and decrease with ver-

tical distance. There is a significant difference up to the middle of the crack edge for both the

vertical distances. The value upto end of the crack edge under the new model-I show a prominent

difference with the values predicted by other two models. After the end of the crack, the horizontal

displacement suddenly decreases to a local minimum value and increases thereafter. Finally, it

becomes zero after some distance. It is also seen that within the crack edge, two local minima and

one local maximum are occurred for both the vertical distances. It is also observed that the values

of horizontal displacement for the vertical distance 0.2 are larger than the values obtained for the

vertical distance 0.3 under all three models.

Therefore, it is clear from above discussion that all the physical fields under all three models: new

model-I, new model-II and GN-III model vanish after some distance from the end of the crack

edge. There is a prominent difference in the predictions of different models for each field and it is

more prominent in the crack region. The vertical distance also plays a role in the behavior of each

physical field. The value of each physical field decreases with the increase of the vertical distance

in the crack region under each thermoelasticity theory.
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Fig. 6.2 Temperature distributions at the vertical distance 0.2

Fig. 6.3 Temperature distributions at the vertical distance 0.3

Fig. 6.4 Vertical stress distributions at the vertical distance 0.2
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Fig. 6.5 Vertical stress distributions at the vertical distance 0.3

Fig. 6.6 Horizontal stress distributions at the vertical distance 0.2

Fig. 6.7 Horizontal stress distributions at the vertical distance 0.3
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Fig. 6.8 Vertical displacement distributions at the vertical distance 0.2

Fig. 6.9 Vertical displacement distributions at the vertical distance 0.3

Fig. 6.10 Horizontal displacement distributions at the vertical distance 0.2
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Fig. 6.11 Horizontal displacement distributions at the vertical distance 0.3

6.7 Conclusion

In this chapter, we have investigated a dynamical problem of an infinite two dimensional elastic

medium with a crack of Mode-I type in the contexts of thermoelasticity theories, namely, Quin-

tanilla’s theory (2011) and Green-Naghdi theory (1995). The temperature and impact loading are

considered at the boundary of the crack inside the medium. Laplace and exponential Fourier trans-

form techniques are used to solve the problem. We obtain four dual integral equations which are

further reduced into two dual integral equations. These dual integral equations are solved by using

regularization method and a numerical method is used to invert the Laplace transform numerically

to obtain the final solution of the problem. In order to compare the results under different models,

we carry out computational work for finding the numerical values of all the physical field variables

for different vertical distances. We observe the behavior of all the physical fields in the vicinity of

the crack and concluded that under all models, each physical field shows the same nature through-

out the domain which vanishes after some distance from the end edge of the crack. However, the

value of each physical field decreases with the increase of the vertical distance from the end of the

crack region under each thermoelasticity theory. The results under different models differ signif-

icantly, although the new model-II and GN-III model predict more similar results as compared to

new model-I. This implies that there is a significant effect of single delay time parameter for the
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present crack problem.
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