
CHAPTER-5

Effects of stochastic boundary conditions on wave

propagation in thermoelastic medium

5.1 Investigation of a problem of an elastic half space subjected

to stochastic temperature distribution at the boundary

5.1.1 Introduction

In recent years, the concept of stochastic simulation techniques are being used for the analysis of

heat conduction and thermoelastic problem due to the fact that stochastic thermal stress analysis,

instead of deterministic thermal stress analysis, is more necessary to maintain the reliability and

safety gain in the design of high-temperature apparatuses or heat resistant structures. The stochastic

thermal stress involves uncertainties in the apparatus structures and in thermal environments like,

external temperatures, heat transfer coefficients etc. Therefore, it appears to be more realistic. In

order to take into account of the noise or error in a system, it is suggested and as discussed in refs.

(see Bellomo and Flandoli (1989), Omar (2009) and Sherief et al. (2013, 2016)), there are many

reasons which allow to replace the deterministic cases with the stochastic simulations in which

stationary stochastic precess are used. This is due to the fact that instead of dealing with only one

possible reality of how the process might evolve under time, in a stochastic process there is some

indeterminacy in its future evolution described by probability distributions. This means that even
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if the initial conditions are known, there are many possibilities that the process might go to, but

some paths may be more probable than others.

Problems involving stochastic internal heat generation have been considered by Val’kovskaya and

Lenyuk (1994). Chiba and Sugano (2007) investigated a stochastic thermoelastic problem of a

functionally graded plate that is exposed to random external temperature load. Recently, Sherief

et al. (2013) have discussed the effects of stochastic thermal shock at the boundary of an elastic

medium and compared the results with deterministic thermal shock in the context of the theory of

generalized themoelasticity with one relaxation time.

In this section of Chapter-5, we have investigated the responses of stochastic type temperature

distribution applied at the boundary of an elastic medium in the context of thermoelasticity without

energy dissipation. We have considered an one dimensional problem of half space and assume that

the bounding surface of half space is traction free and is subjected to two types of time dependent

temperature distributions which are of stochastic types. In order to compare the results predicted by

stochastic temperature distributions with the results of deterministic type temperature distribution,

the stochastic type temperature distributions applied at the boundary are taken in such a way that

they reduce to the cases of deterministic types as special cases.

We aim to compare the results of deterministic cases of all the physical fields with the corre-

sponding stochastic type solutions. The thermal shock problem in the context of thermoelasticity

without energy dissipation has been solved by Li and Dhaliwal (1996) in which they have used the

generalized thermoelasticity theory developed by Green and Naghdi to solve the boundary value

problem of an isotropic elastic half space with its plane boundary either rigidly fixed or stress free

and subjected to a sudden temperature increase. The deterministic solutions of all the physical

field variables for this problem have been obtained. In the present work, we consider a half space

problem of a thermoelastic material without energy dissipation subjected to stochastic temperature

distribution at the boundary. This formulates many problems in geophysics and industry where a

thermal shock is applied to a large block of material in a manufacturing process. We consider two

different cases. In Case-I, the boundary is assumed to be stress free and is maintained at constant
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temperature, where as in Case-II, a ramp-type heating is applied at the stress free boundary of the

half space. We assume the deterministic case as well as the realistic case when some noise exists,

i.e., the boundary temperature distribution is of stochastic type. In sub-section 5.1.2, we write the

basic governing equations in the context of Green-Naghdi model of type-II. In sub-section 5.1.3,

we formulate the problem in context of this model and find the solution of all the physical fields

in Laplace transform domain. In sub-section 5.1.4, firstly, by using short-time approximation and

inversion of Laplace transform, we find the solution of thermal stress in deterministic case. In sub-

section 5.1.4.2, we describe the theory as well as procedure to find the stochastic type solution of

all the physical field variables. In sub-section 5.1.5, we find the deterministic as well as stochastic

type solution for temperature distribution in Case-I and Case-II. In sub-section 5.1.6, we find the

deterministic as well as stochastic type solution for displacement distribution for two cases. In

sub-section 5.1.7, we carry out the numerical computation for which we take the copper materiel

as a special case and use the MatLab code for computational work. We compute the deterministic

as well as stochastic solutions of the physical fields in the both the cases and present them in dif-

ferent figures. Differences of stochastic and deterministic type solutions of all the physical fields

are discussed. We have shown the variance of all the physical fields to highlight the differences of

solutions.

5.1.2 Formulation of the problem

We consider a problem of an isotropic one dimensional half space x≥ 0. We assume the x−axis as

a perpendicular to the upper plane pointing inwards. We formulate the problem in such a way that

the surface of the bounding plane of the half-space is taken to be stress free and subjected to a time

dependent temperature distribution. All the physical field variables are assumed to be bounded

and vanish as x → ∞. We can write the governing equations for thermoelasticity without energy

dissipation in the absence of body forces and heat sources as given below:
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Equation of motion:

ρ üi = µui, j j +(λ +µ)u j, i j− γ T, i (5.1.1)

Heat conduction equation under Green-Naghdi-II model (1993):

K∗T,ii = ρceT̈ + γT0ë (5.1.2)

Stress-strain-temperature relation:

σi j = λeδi j +2µei j− γ(T −T0)δi j (5.1.3)

Strain-displacement relation:

ei j =
1

2
(ui, j +u j,i), i, j = 1, 2, 3 (5.1.4)

where, T is the absolute temperature and γ is a material constant given by γ = (3λ +2µ)αt , where,

αt is the coefficient of linear thermal expansion and K∗ is the rate of thermal conductivity of the

medium, ce is the specific heat at constant strain, T0 is the reference temperature assumed to be

such that |(T −T0)/T0|<< 1, and e = ui,i is the cubical dilatation.

Considering one dimensional problem, we can write the displacement vector in the form of u =

(u(x, t), 0, 0). Therefore, Eqs. (5.1.1-5.1.4) can be written as

ρ ü = (λ +2µ)D2u− γDT (5.1.5)

K∗D2T = ρceT̈ + γT0ë (5.1.6)

σxx = σ = (λ +2µ)Du− γ(T −T0) (5.1.7)
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σyy = σzz = λDu− γ(T −T0) (5.1.8)

σxy = σzy = σxz = 0 (5.1.9)

where, D = ∂
∂x

Now, for simplicity of the present problem, we use the following non-dimensional variables:

x
′
= c1ξ x, t

′
= c2

1ξ t, u
′
= c1ξ u, θ

′
=

γ(T −T0)

λ +2µ
, σ

′

i j =
σi j

λ +2µ

where, ξ = ρce

K
and c1 =

√

(λ +2µ)/ρ is the speed of propagation of isothermal elastic waves.

Using these non-dimensional variables and after dropping the dashed notations, Eqs. (5.1.5-5.1.7)

reduce to the following forms:

ü = D2u−Dθ (5.1.10)

a0D2θ = θ̈ + ε ë (5.1.11)

σ = e−θ (5.1.12)

where,

a0 =
K∗

K c2
1ξ

, ε =
γ2T0

ρce(λ +2µ)

We assume the boundary conditions in the following forms:

σ(x, t)|x=0 = 0, σ(x, t)|x=∞ = 0, for t > 0 (5.1.13)

θ(x, t)|x=0 = θ0(t), θ(x, t)|x=∞ = 0, for t > 0 (5.1.14)
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where, θ0(t) is any function of t.

Initial conditions have been taken in homogeneous form.

5.1.3 Solution of the problem in the Laplace transform domain

Applying Laplace transform to Eqs. (5.1.10-5.1.12) along with the homogeneous initial conditions,

we obtain

s2ū = D2ū−Dθ̄ (5.1.15)

(a0D2− s2)θ̄ − εs2ē = 0 (5.1.16)

σ̄ = ē− θ̄ (5.1.17)

where, s is a Laplace parameter. Here, f̄ (x, s) = L{ f (x, t)}.

After applying the divergence operator to (5.1.15), we obtain the following equation:

(D2− s2)ē−D2θ̄ = 0 (5.1.18)

Laplace transform of the boundary conditions (5.1.13-5.1.14) yields the following conditions in

Laplace transform domain:

σ̄(x, s)|x=0 = 0; σ̄(x, s)|x=∞ = 0; θ̄(x, s)|x=0 = θ̄0(s); θ̄(x, s)|x=∞ = 0 (5.1.19)

Now, eliminating ē between Eqs. (5.1.16) and (5.1.18), we obtain the fourth order differential

equation in θ̄ as

(a0D4− s2(a0 +(1+ ε))D2 + s4)θ̄ = 0 (5.1.20)
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Assuming that the solution is bounded at infinity, we can write the general solution of Eq. (5.1.20),

in the following form:

θ̄ = Be−k1x +C e−k2x (5.1.21)

where, k1 and k2 are the roots with positive real parts of the characteristic equation

a0k4− s2(a0 +(1+ ε))k2 + s4 = 0 (5.1.22)

and B, C are the parameters depending on Laplace transform parameter, s only.

Further, applying the boundary conditions (5.1.19), we obtain the parameters B and C in the fol-

lowing forms:

B =
k2

1−s2

k2
1−k2

2

θ̄0(s) and C =−
k2

2−s2

k2
1−k2

2

θ̄0(s).

Hence, we obtain θ̄ in the form

θ̄(x, s) =
θ̄0(s)

(k2
1− k2

2)
[(k2

1− s2)e−k1x− (k2
2− s2)e−k2x] (5.1.23)

Now, in view of Eqs. (5.1.16) and (5.1.21), we obtain the solution for ē as

ē(x, s) =
θ̄0(s)

(k2
1− k2

2)
[(k2

1 e−k1x− k2
2 e−k2x] (5.1.24)

After substitution of these solutions into Eq. (5.1.17), we obtain the solution of stress field in

Laplace transform domain as

σ̄(x, s) =
s2θ̄0(s)

(k2
1− k2

2)
[e−k1x− e−k2x] (5.1.25)

Using the relation ē = Dū and integrating both sides of Eq. (5.1.24) from x to ∞, and assuming that

u vanishes at infinity, we obtain the solution of displacement field in the Laplace transform domain

in the following form:
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ū(x, s) =
θ̄0(s)

(k2
1− k2

2)
[(−k1 e−k1x + k2 e−k2x] (5.1.26)

Hence, we have completed the solution of the problem in Laplace transform domain.

5.1.4 Stress distributions in physical domain

5.1.4.1 Deterministic stress distribution

First, we consider two different types of deterministic temperature applied at the boundary of the

half space. For this, we assume the boundary temperature θ0(t) in equation (5.1.14) to be defined

as follows:

Case-I: Constant temperature at the boundary

θ0(t) = θ ∗1 (t) = θ0 (5.1.27)

where, θ0 is a constant.

Case-II: Ramp type heating at the boundary

θ0(t) = θ ∗2 (t) = θ0 h(t) (5.1.28)

where, h(t) is defined as

h(t) =































0 t ≤ 0

t
t0

0 < t ≤ t0

1 t > t0

where, t0 is a constant time that is the fixed time of rise of ramp-type heating.

After taking the Laplace transform of Eqs. (5.1.27) and (5.1.28) and substituting these into Eq.

(5.1.25) and then taking Laplace inversion, we obtain the solution of stress distribution in the

116



CHAPTER-5/ INVESTIGATION OF A PROBLEM...CONTD.

physical domain (x, t) in two cases of boundary temperature distributions as follows:

Case-I:

σ1(x, t) =
θ0

a3
[H(t−a1x)−H(t−a2x)] (5.1.29)

Case-II:

σ2(x, t) =
θ0

a3t0
[(t−a1x)H(t−a1x)− (t−a2x)H(t−a2x)−

−(t−a1x− t0)H(t−a1x− t0)− (t−a2x− t0)H(t−a2x− t0)] (5.1.30)

where, H(.) is a Heaviside unit step function and ai, i = 1, 2, 3 are the constants given in the

Appendix-A3. We observe that the solutions given by Eq. (5.1.29) matches the corresponding

solutions as reported in Li and Dhaliwal (1996).

5.1.4.2 Stochastic stress distribution

Now, we consider two types of boundary temperature distributions as

θ0(t) = θ ∗i (t)+ψ0(t), i = 1, 2 (5.1.31)

where, θ ∗i (t), i = 1, 2 are the same functions as we considered in deterministic cases, Case-I and

Case-II. Here, ψ0(t) is a stochastic process characterized by the parameter, t satisfying the follow-

ing condition:

E[ψ0(t)] = 0 (5.1.32)

In order to solve the present problem, we recall the following properties of Laplace transform (see

Sherief et al. (2013), Nowinski (2000)) which are used in our work:
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1. Stochastic process x(t) satisfies the property

E[L{x(t)}] = L[E{x(t)}] (5.1.33)

2. We have ρxx(t1, t2)=E[x(t1)x(t2)] which represents the auto-correlation function of a stochas-

tic process x(t). Now, we define the following representation:

ρ̃xx(s1, s2) = E [x̄(s1)x̄(s2)] (5.1.34)

Then, we can write

ρ̃xx(s1, s2) = L2 {ρxx(t1, t2)} (5.1.35)

where, L2 represents the double Laplace transform as defined by

L2 {g(t1, t2)}=

∞̂

0

e−s1t1





∞̂

0

e−s2t2g(t1, t2)dt2



 dt1

As we know that ψ0(t) is a stochastic process, then it is clear that each of the physical fields is also

a stochastic process whose main randomness is due to the function ψ0(t) and from Eq. (5.1.25),

we have

E[σ̄(x, s)] =
s2θ̄ ∗i (s)

(k2
1− k2

2)

[

e−k1x− e−k2x
]

, i = 1, 2 (5.1.36)

In present work, the process is considered probabilistically stationary because it shows a form of

probabilistic equilibrium in the sense that the particular instants, at which it is experimented, are

not important.

Now, we define that a random process, x(t) is said to be stationary if ∀ n and for every set of time

instants (ti ∈ T, i = 1, 2, 3, ..., n):

gx(x1, ..., xn; t1, ..., tn) = gx (x1, ..., xn; t1 + τ, ..., tn + τ)
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This implies that its joint probability density function does not vary with the shift of the parameter

scale. Then, the auto-correlation function of a stationary process can be written in the following

way:

E [x(t1)x(t2)] = ρxx(τ), τ = t1− t2

Above expression clearly shows that auto-correlation function is the function of time interval τ

only.

Now, we will evaluate variance, a measure for dispersion for the stresses as follows:

From (5.1.25) and (5.1.34), we have

ρ̃σσ (x, s1, s2) = E [σ̄(x, s1) σ̄(x, s2)]

= E

[

s2
1θ̄0(s1)

(

k2
1(s1)− k2

2(s1)
)

[

e−k1(s1)x− e−k2(s1)x
] s2

2θ̄0(s2)
(

k2
1(s2)− k2

2(s2)
)

[

e−k1(s2)x− e−k2(s2)x
]

]

= ρ̃ψ0ψ0
(s1, s2) Γ̄(x, s1) Γ̄(x, s2)+ θ̄ ∗1 (s1)Γ̄(x, s1) θ̄ ∗2 (s2)Γ̄(x, s2)

where,

Γ̄(x, si) =
s2

i
(

k2
1(si)− k2

2(si)
)

[

e−k1(si)x− e−k2(si)x
]

, i = 1, 2 (5.1.37)

and

ρ̃ψ0ψ0
(s1, s2) = E [ψ̄0(s1) ψ̄0(s2)]

From Eq. (5.1.36), we conclude that

ρ̃σσ (x, s1,s2) = ρ̃ψ0ψ0
(s1, s2) Γ̄(x, s1) Γ̄(x, s2)+E [σ̄(x, s1)]E [σ̄(x, s2)] (5.1.38)

We take the stochastic process, ψ0(t), included to the boundary condition to be of white noise type,

which shows an extreme case in which there is no regularity. Then, from Eq. (5.1.33), we have

ρψ0ψ0
(t) = δ (τ) (5.1.39)

From Eq. (5.1.35), the double Laplace transform of Eq. (5.1.38) is given by
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ρ̃ψ0ψ0
(s1,s2) =

1

s1 + s2
(5.1.40)

We recall the following formula for Laplace transform (see Oberhettinger and Badii (1973)):

1. L2 {g1(x)g2(y)}= L{g1(x)}L{g2(y)}

2. 1
s1+s2

L2 {g(x−η , y−η)}=















L2

{´ x

0
g(x−η , y−η)dη

}

, y > x

L2

{´ y

0
g(x−η , y−η)dη

}

, y < x

From (5.1.33) and (5.1.40), it is clear that Eq. (5.1.38) reduces to the following form:

ρ̃σσ (x,s1, s2) =
1

s1+s2
L2 {Γ(x, t1)Γ(x, t2)}+E [σ̄(x, s1)]E [σ̄(x, s2)]

= L2

{

´ t1
0

Γ(x, t1−η)Γ(x, t2−η)dη
}

+L2 {E[σ(x, t1)]E[σ(x, t2)]} , t2 > t1

After taking the inversion of double Laplace transform, we obtain the following:

ρσσ (x, t1, t2) =
´ t1

0
Γ(x, t1−η)Γ(x, t2−η)dη +E[σ(x, t1)]E[σ(x, t2)]

Now, we assume t1 = t2 = t.

Hence, we can write the above equation in the following form:

ρσσ (x, t) = E[σ2(x, t)] =
´ t

0
Γ

2(x, t−η)dη +(E[σ(x, t)])2

Again we assume t−ξ = ψ , then we can write the above equation in the following form:

ρσσ (x, t) =
´ t

0
Γ

2(x, ψ)dψ +(E[σ(x, t)])2

Hence, we can write the variance of stress distribution function in the form

Var[σ(x, t)] = E[σ2(x, t)]− (E[σ(x, t)])2 =
´ t

0
Γ

2(x, ψ)dψ

From Eq. (5.1.37), we obtain

Γ̄(x, s) =
s2

(

k2
1(s)− k2

2(s)
)

[

e−k1(s)x− e−k2(s)x
]

(5.1.41)

Applying the asymptotic expansions in the similar way as in Li and Dhaliwal (1996), and taking

the inversion of Laplace transform, we obtain

Γ(x, t) =
1

a3
[δ (t−a1x)−δ (t−a2x)] (5.1.42)
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Now, from Eqs. (5.1.32−5.1.33) and (5.1.36), we obtain

L{E[σ(x, t)]}=
s2θ̄ ∗i (s)

(k2
1− k2

2)

[

e−k1x− e−k2x
]

, i = 1, 2

We observe that due to the randomness on the boundary, E[σ(x, t)], the mean of all the sample

paths of the stress field is similar to the solutions (5.1.29−5.1.30) for the deterministic case.

Now, in view of Eqs. (5.1.25) and (5.1.41), we obtain the stochastic stress distribution in the

Laplace transform domain as

σ̄(x, s) = θ̄0(s)Γ̄(x, s)

Then by using Eq. (5.1.31), we can write the above equation in the following form:

σ̄(x, s) =
[

θ̄ ∗i (s)+ ψ̄0(s)
]

Γ̄(x, s), i = 1, 2

In view of Eqs. (5.1.25) and (5.1.29− 5.1.30) and inverting the Laplace transform of the above

equation by applying the convolution property, we find the stochastic stress distribution in the

physical domain as

σ(x, t) = σi(x, t)+

t
ˆ

0

ψ0(u)Γ(x, t−u)du, i = 1, 2

We can write above as

σ(x, t) = σi(x, t)+

t
ˆ

0

Γ(x, t−u)dW (u), i = 1, 2

where, σi(x, t), i = 1, 2 are the deterministic stress distributions as obtained in Case-I and Case-II

given by Eqs. (5.1.29−5.1.30), respectively and W (u) is the Wiener process.

Therefore, the stochastic stress distributions for Case-I and Case-II can be written as
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Case-I:

σ(x, t) = σ1(x, t)+

t
ˆ

0

Γ(x, t−u)dW (u)

Case-II:

σ(x, t) = σ2(x, t)+

t
ˆ

0

Γ(x, t−u)dW (u)

where, Γ(x, t) is given by Eq. (5.1.42) and σ1(x, t), σ2(x, t) are given by Eqs. (5.1.29− 5.1.30),

respectively.

5.1.5 Temperature distributions in physical domain

In the similar way as we have done in the previous section for stress distribution function, we can

obtain the temperature distribution as described below.

5.1.5.1 Deterministic temperature distribution

By assuming the boundary temperature, θ0(t) in Eq. (5.1.14) in the forms as in Case-I and Case-II

given by Eqs. (5.1.27) and (5.1.28), we obtain deterministic temperature distribution functions,

θ1(x, t) and θ2(x, t) corresponding to Case-I and Case-II, respectively as

Case-I:

θ1(x, t) = θ0 [a4H(t−a1x)−a5H(t−a2x)] (5.1.43)

Case-II:

θ2(x, t) =

θ0

t0
[a4 {(t−a1x)H(t−a1x)− (t−a1x− t0)H(t−a1x− t0)}−

a5 {(t−a2x)H(t−a2x)− (t−a2x− t0)H(t−a2x− t0)}]
(5.1.44)
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where, ai, i = 1, 2, 3, 4, 5 are the constants given in the Appendix-A3. Clearly, the solution in

Case-I matches with the corresponding solution reported in Li and Dhaliwal (1996).

5.1.5.2 Stochastic temperature distribution

If the stochastic boundary condition is of white noise type, then as we derived the variance of stress

in the previous section, the variance of the temperature distribution is given by

Var [θ(x, t)] =

t
ˆ

0

Θ
2(x, ψ)dψ,

where,

Θ(x, t) = [a4δ (t−a1x)−a5δ (t−a2x)] (5.1.45)

Also, we can see that due to the randomness on the boundary, the mean (E[θ(x, t)]) of all the

sample paths of the temperature distribution is the same as the solutions given by Eqs. (5.1.43−

5.1.44).

Therefore, as we derived the stochastic stress in the previous section, we can rewrite the Eq.

(5.1.23) in the following way

θ̄(x, s) = θ̄0(s)Θ̄(x, s)

Now, using Eq. (5.1.31), we further get

θ̄(x, s) =
[

θ̄ ∗i (s)+ ψ̄0(s)
]

Θ̄(x, s), i = 1, 2

Now, by inverting the Laplace transform of above equation and using the convolution property in

second term, we obtain
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θ(x, t) = θi(x, t)+

t
ˆ

0

ψ0(u)Θ(x, t−u)du, i = 1, 2

We can write above as

θ(x, t) = θi(x, t)+

t
ˆ

0

Θ(x, t−u)dW (u), i = 1, 2

where, θi(x, t), i = 1, 2, are given by Eqs. (5.1.43) and (5.1.44) which represent the deterministic

temperature distributions in Case-I and Case-II, respectively. W (u) is the Wiener process.

Hence, the stochastic temperature distributions for Case-I and Case-II can be written as

Case-I:

θ(x, t) = θ1(x, t)+

t
ˆ

0

Θ(x, t−u)dW (u)

Case-II:

θ(x, t) = θ2(x, t)+

t
ˆ

0

Θ(x, t−u)dW (u)

where, Θ(x, t) is given by Eq. (5.1.45).

5.1.6 Displacement distributions in physical domain

5.1.6.1 Deterministic displacement distribution

In view of prescribed boundary temperatures, given by equations (5.1.27) and (5.1.28) for Case-I

and Case-II, respectively, the deterministic displacement distribution functions, u1(x, t) and u2(x, t)

for two cases are evaluated as follows:
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Case-I:

u1(x, t) = θ0 [−a6 (t−a1x)H(t−a1x)+a7 (t−a2x)H(t−a2x)] (5.1.46)

Case-II:

u2(x, t) =

θ0

2t0
[a6

{

(t−a1x− t0)
2 H(t−a1x− t0)− (t−a1x)2 H(t−a1x)

}

+

a7

{

(t−a2x− t0)
2 H(t−a2x− t0)− (t−a2x)2 H(t−a2x)

}

]
(5.1.47)

where, ai, i= 1, 2, 6, 7 are the constants given in the Appendix-A3. The solution (5.1.46) in Case-I

matches with the corresponding solution reported in Li and Dhaliwal (1996).

5.1.6.2 Stochastic displacement distribution

If the stochastic boundary condition is of white noise type, then by following way, like derivation

of stress and temperature distributions, the variance of the displacement is derived as

Var [u(x, t)] =

t
ˆ

0

Ξ 2(x, ψ)dψ

where,

Ξ(x, t) = [−a6H(t−a1x)+a7H(t−a2x)] (5.1.48)

We note that E[u(x, t)], the mean of all the sample paths of the displacement due to randomness

on the boundary is the same as the solutions given by Eqs. (5.1.46−5.1.47).

Therefore, as we derived the stochastic stress and temperature distributions, we can also rewrite

the Eq. (5.1.26) in the following form:

ū(x, s) = θ̄0(s)Ξ̄(x, s)

Now, using Eq. (5.1.31), we further obtain
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ū(x, s) =
[

θ̄ ∗i (s)+ ψ̄0(s)
]

Ξ̄(x, s), i = 1, 2

Hence, by inverting of Laplace transforms and applying the convolution property in second term,

we obtain

u(x, t) = ui(x, t)+

t
ˆ

0

ψ0(u)Ξ(x, t−u)du, i = 1, 2

u(x, t) = ui(x, t)+

t
ˆ

0

Ξ(x, t−u)dW (u), i = 1, 2

where, ui(x, t), i = 1, 2 are the deterministic displacement distributions in Case-I and Case-II as

given by equations (5.1.46) and (5.1.47), respectively and W (u) is the Wiener process.

Therefore, the stochastic displacement distributions for Case-I and Case-II can be derived as

Case-I:

u(x, t) = u1(x, t)+

t
ˆ

0

Ξ(x, t−u)dW (u)

Case-II:

u(x, t) = u2(x, t)+

t
ˆ

0

Ξ(x, t−u)dW (u)

where, Ξ(x, t) is given by Eq. (5.1.48).

5.1.7 Numerical results and discussion

In this section, we solve the above problem numerically for the purpose of illustrating the analytical

results obtained in previous sections and make attempt to compare the results of stochastic and

deterministic solution of all the physical fields. We consider the data for copper material as given

126



CHAPTER-5/ INVESTIGATION OF A PROBLEM...CONTD.

below:

ce = 383.1JKKg−1, αt = 1.78× 10−5K−1, K = 386WmK−1, λ = 7.76× 1010Kgm−1s−2, µ =

7.76×1010Kgm−1s−2, τ0 = 0.05, ρ = 8954Kgm−3

We do all the numerical computations at non-dimensional time, t = 0.25. To compute the stochastic

type integration, we followed Hingham (2001), from which we take the concept of Brownian

motion or standard Wiener processes. Two sample paths of stochastic process have been plotted to

compare the results with deterministic cases of all the physical field variables.

Results of Case-I are shown in Figures 5.1.1 (a, b, c, d, e), 5.1.2 (a, b, c, d, e) and 5.1.3 (a, b, c,

d, e). For Case-I, deterministic stress distribution is shown in Fig. 5.1.1(a) and stochastic stress

distributions for sample path-I, II are shown in Figures 5.1.1(b, c). In order to show its comparison

with deterministic stress distribution, we plot Fig. 5.1.1(d) in which we take two sample paths of

stochastic process. From Figure 5.1.1(d), it is clear that the average of two sample paths coincide

with deterministic stress distribution and verifies our analytical result in this respect. Fig. 5.1.1(e)

shows the variance of stress distribution. The deterministic temperature distribution is shown in

Fig. 5.1.2(a) and stochastic temperature distributions for sample path-I, II are shown in Figures

5.1.2(b, c). Its comparison with deterministic temperature distribution is shown in Fig. 5.1.2(d)

in which we take two sample paths of stochastic process. From Fig. 5.1.2(d), it is clear that the

average of two sample paths coincide with deterministic temperature distribution. Fig. 5.1.2(e)

shows the variance of temperature distribution. Also, deterministic displacement distribution is

shown in Fig. 5.1.3(a) and stochastic displacement distributions for sample path-I, II are shown

in Figures 5.1.3(b, c), while its comparison with stochastic displacement distribution is shown

in Fig. 5.1.3(d) in which we take two sample paths of stochastic process. Fig. 5.1.3(d) also

indicates that the average of two sample paths match exactly with the deterministic displacement

distribution. Fig. 5.1.3(e) shows the variance of displacement distribution.

Results for Case-II are displayed in Figures 5.2.1(a, b, c, d, e), 5.2.2 (a, b, c, d, e) and 5.2.3 (a,

b, c, d, e). For the Case-II, the deterministic stress distribution is shown in Fig. 5.2.1(a) and

stochastic stress distributions for sample path-I, II are shown in Figures 5.2.1(b, c). Fig. 5.2.1(d)
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shows the comparison of stochastic stress distributions for two sample paths with the deterministic

stress distribution and depicts that the average of two sample paths coincide with deterministic

stress distribution. Fig. 5.2.1(e) shows the variance of stress distribution. Similarly, deterministic

temperature distribution is shown in Fig. 5.2.2(a) and stochastic temperature distributions for

sample paths I and II are shown in Figures 5.1.2(b, c) while its comparison with deterministic

temperature distribution is shown in Fig. 5.2.2(d). From Fig. 5.2.2(d), it is clear that the average

of two sample paths coincide with deterministic temperature distribution. Fig. 5.2.2(e) shows

the variance of temperature distribution. The deterministic displacement distribution for Case-

II is shown in Fig. 5.2.2(a) and stochastic displacement distributions for sample path-I, II are

shown in Figures 5.1.3(b, c). Figure 5.2.2(d) displays the comparison of stochastic displacement

distributions for two different sample paths with the deterministic displacement distribution and

verifies the analytical results that the average of two sample paths coincide with deterministic

displacement distribution. Fig. 5.2.2(e) shows the variance of displacement distribution. In case

of stochastic distribution for any sample path, we observed fluctuation in the field variables near

the boundary and it vanishes after some distance from the boundary. This implies that region of

influence for the stochastic distribution of each field is finite.

Fig. 5.1.1 (a) Deterministic stress distribution for case-I
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Fig. 5.1.1 (b) Stochastic stress distribution for sample path-I in case-I

Fig. 5.1.1 (c) Stochastic stress distribution for sample path-II in case-I

Fig. 5.1.1 (d) Comparison between deterministic and Stochastic stress distributions for case-I
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Fig. 5.1.1 (e) Variance of stress distribution for case-I

Fig. 5.1.2 (a) Deterministic temperaturedistribution for case-I

Fig. 5.1.2 (b) Stochastic temperature distribution for sample path-I in case-I
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Fig. 5.1.2 (c) Stochastic temperature distribution for sample path-II in case-I

Fig. 5.1.2 (d) Comparison between deterministic and Stochastic temperaturedistributions for

case-I

Fig. 5.1.2 (e) Variance of temperature distribution for case-I
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Fig. 5.1.3 (a) Deterministic displacementdistribution for case-I

Fig. 5.1.3 (b) Stochastic displacementdistribution for sample path-I in case-I

Fig. 5.1.3 (c) Stochastic displacementdistribution for sample path-II in case-I
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Fig. 5.1.3 (d) Comparison between deterministic and Stochastic displacementdistributions for

case-I

Fig. 5.1.3 (e) Variance of displacementdistribution for case-I

Fig. 5.2.1 (a) Deterministic stress distribution for case-II
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Fig. 5.2.1 (b) Stochastic stress distribution for sample path-I in case-II

Fig. 5.2.1 (c) Stochastic stress distribution for sample path-II in case-II

Fig. 5.2.1 (d) Comparison between deterministic and stochastic stress distributions for case-II
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Fig. 5.2.1 (e) Variance of stressdistribution for case-II

Fig. 5.2.2 (a) Deterministic temperature distribution for case-II
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Fig. 5.2.2 (b) Stochastic temperature distribution for sample path-I in case-II

Fig. 5.2.2 (c) Stochastic temperature distribution for sample path-II in case-II
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Fig. 5.2.2 (d) Comparison between deterministic and stochastic temperature distributions for

case-II

Fig. 5.2.2 (e) Variance of temperaturedistribution for case-II

Fig. 5.2.3 (a) Deterministic displacement distribution for case-II
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Fig. 5.2.3 (b) Stochastic displacement distribution for sample path-I in case-II

Fig. 5.2.3 (c) Stochastic displacement distribution for sample path-II in case-II
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Fig. 5.2.3 (d) Comparison between deterministic and stochastic displacement distributions for

case-II

Fig. 5.2.3 (e) Variance of displacement distribution for case-II

5.1.8 Conclusions

The half space problem has been solved for two types of stochastic white noise type thermal bound-

ary conditions when the boundary is assumed to be stress free. The white noise stochastic process

has been chosen as it is the most common type. The corresponding deterministic type thermal

boundary conditions are also considered in order to investigate the effects of stochastic condi-

tions in more detailed way. We have shown both analytically and numerically that mean of the

stochastic solution of all the physical fields coincides with the respective deterministic solution.
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It is found that the deviation of the stochastic solution from its mean decreases with the distance

from the bounding plane which is the source of noise. We find that fluctuations on the solution

due to the noise on the boundary travels inside the medium with finite speed as we have seen it is

also observed in the case of deterministic boundary conditions. Our analytical results as well as

numerical results clearly indicate that all the physical fields vanish after a certain distance from the

boundary in the stochastic case as well as in the deterministic case. This ascertains the fact that the

thermoelasticity without energy dissipation theory predicts finite speed of thermal waves.

By comparing our results in Case-I with the corresponding results as reported in Sherief et al.

(2013), we note that the heat conduction equations of both the theories (thermoelasticity the-

ory with one relaxation time and thermoelasticity without energy dissipation) are of wave types.

Therefore, they automatically ensure the finite speed of propagation for heat and elastic waves.

However, an important feature of the thermoelasticity theory under GN-II model is that waves

propagate without any attenuation, which is unlike the case of thermoelasticity theory with one

relaxation time as obtained by Sherief et al. (2013) and we find that wave propagate with attenua-

tion in this case. Furthermore, in Case-I of our present study and in case of thermoelasticity with

one relaxation time, stress and temperature distributions show the finite jump discontinuity at both

the elastic and thermal wave fronts and displacement is continuous in nature. However, in case of

ramp-type heating (Case-II), all the field variables are continuous in nature. We observe that the

region of influence is less in the case of all the physical field variables under the thermoelasicity

theory without energy dissipation as compared to generalized thermoelasticity theory with one re-

laxation time parameter. Furthermore, it is noted that the fluctuations of the field variables due to

presence of noise in the case of stochastic distribution are more concentrated near the boundary of

the half space in case of thermoelasicity theory without energy dissipation as compared to general-

ized thermoelasticity theory with one relaxation time parameter. Under thermoelasticity with one

relaxation time, the fluctuations in the field variables continue upto a longer distance as compared

to the case of GN-II model.
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5.2 Investigation on effects of stochastic loading at the

boundary under thermoelasticity with two relaxation

parameters

5.2.1 Introduction

In the previous section (First section) of Chapter-5, we have investigated the effects of stochastic

temperature distribution at the boundary of an elastic half space under the thermoelasticity theory

without energy dissipation. However, in the present section, the main objective is to study the

responses of stochastic type mechanical distribution at the boundary of an elastic half space in the

context of generalized thermoelasticity with two relaxation times. Here, we have added the effects

of the presence of some noise or uncertainty in the applied load in the boundary of elastic medium

and represented it as a stochastic load. We have compared all the stochastic physical field variables

to the respective deterministic fields which are discussed by Sherief (1994). In order to compare

the results under the stochastic mechanical distribution, we have also considered the case of de-

terministic mechanical distribution prescribed at the boundary. Hence, the stochastic mechanical

distribution is considered in such a way that it reduces to a deterministic type distribution as a

special case. We compute the deterministic as well as stochastic solutions of the physical fields

and present them in different figures. Differences of stochastic and deterministic type solutions of

all the physical field variables are discussed. The overall conclusion regarding the responses of

stochastic type mechanical distribution in the present context is presented in a detailed way.

The work of this section is published in Applied Mathematical Modelling (Elsevier), 648-669, 54 (2018).
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5.2.2 Formulation of the problem

An infinite, homogeneous and isotropic thermoelastic medium is considered in the half space

x ≥ 0 in which x− axis has been taken as a perpendicular to the bounding plane directing in-

wards. However, the formulation of the problem is carried out in such a way that the surface of the

bounding plane of the half space is considered to a time dependent stress distribution. We consider

the following governing equations for the thermoelasticity with two relaxation time parameters as

introduced by Green and Lindsay (1972):

Equation of motion:

ρ ü = (λ +2 µ)
∂ 2u

∂x2
− γ

∂

∂x

[

T −T0 + τ1Ṫ
]

(5.2.1)

Heat conduction equation:

K
∂ 2T

∂x2
= ρ ce

[

Ṫ + τ2T̈
]

+ γT0
∂ u̇

∂x
(5.2.2)

Constitutive equation:

σ = (λ +2 µ)
∂u

∂x
− γ

[

T −T0 + τ1Ṫ
]

(5.2.3)

where, T is the absolute temperature and T0 is a reference temperature such that | (T−T0)/T0 |≪ 1.

Further, we assume that displacement and temperature are dependent on space co-ordinate, x and

time t only. u is the displacement component in the x−direction, t is the time variable. τ1 and

τ2 are the relaxation time parameters with dimension of time. K is the thermal conductivity and

γ = (3λ +2µ)αt , αt being the coefficient of linear thermal expansion. σ = σxx is the component

of stress tensor in the x−direction.

Above governing Eqs. (5.2.1−5.2.3) are considered only in the absence of body forces and heat

sources. However, all the physical distributions are taken to be bounded which vanish as x→ ∞.

We now use the following non-dimensional variables:
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x′ = c1ηx, t ′ = c2
1ηt, τ ′1 = c2

1ητ1, u′ = c1η u, τ ′2 = c2
1ητ2, σ ′ = σ

µ , θ = (T −T0)/T0

where, η = ρce/K and c1 =
√

(λ+2µ)
ρ is the velocity of longitudinal waves. For convenience, we

now remove the dashed notation from above variables. Hence, finally the Eqs. (5.2.1−5.2.3) take

the following forms:

β 2ü = β 2 ∂ 2u

∂x2
−B

∂

∂x

[

θ + τ1θ̇
]

(5.2.4)

∂ 2θ

∂x2
= θ̇ + τ2θ̈ +C

∂ u̇

∂x
(5.2.5)

σ = β 2 ∂u

∂x
−B

[

θ + τ1θ̇
]

(5.2.6)

where, B = γ T0/µ , C = γ/Kη and β 2 = (λ +2µ)/µ

We now assume the boundary conditions of the medium for t > 0 in the following forms:

σ(0, t) = F(t), σ(∞, t) = 0 (5.2.7)

θ(0, t) = 0, θ(∞, t) = 0 (5.2.8)

where, F(t) is the mechanical load acting at the boundary of the plane. However, the initial condi-

tions are considered to be homogeneous.

5.2.3 Solution of the problem in Laplace transform domain

After taking the Laplace transform with the homogeneous initial conditions, the Eqs.(5.2.4−5.2.6)

are transformed to the forms:

∂ 2ū

∂x2
− s2ū =C1(1+ τ1 s)

∂ θ̄

∂x
(5.2.9)
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∂ 2θ̄

∂x2
− s(1+ τ2s)θ̄ =C s

∂ ū

∂x
(5.2.10)

σ̄ = β 2 ∂ ū

∂x
−B(1+ τ1s)θ̄ (5.2.11)

where, C1 = B/β 2 and s is the Laplace transform parameter. Here, f̄ (x, s) = L{ f (x, t)}.

Now for simplicity, we define the potential function , ϕ by the relation:

u =
∂ϕ

∂x
(5.2.12)

Hence, by substituting u from Eq. (5.2.12) into the Eqs. (5.2.9−5.2.11) and after integrating the

first resulting equation with respect to x, Eqs. (5.2.9−5.2.11) can be written as

(
∂ 2

∂x2
− s2)ϕ̄ =C1(1+ τ1 s)θ̄ (5.2.13)

(
∂ 2

∂x2
− s− τ2 s2)θ̄ =C s

∂ 2

∂x2
ϕ̄ (5.2.14)

σ̄ = β 2s2ϕ̄ (5.2.15)

With the help of potential function, ϕ the boundary conditions can be rewritten as given below:

ϕ̄(0, s) =
F̄(s)

β 2s2
(5.2.16)

β 2 ∂ 2ϕ̄(0, s)

∂x2
= F̄(s) (5.2.17)

ϕ̄(∞, s) =
∂

∂x
ϕ̄(∞, s) =

∂ 2ϕ̄(∞, s)

∂x2
= 0 (5.2.18)
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After eliminating θ̄ from Eqs. (5.2.13-5.2.14), we obtain the following equation:

{

∂ 4

∂x4
−
[

(1+ ε)s+(1+ τ2 + ετ1)s
2
] ∂ 2

∂x2
+ s3(1+ τ2s)

}

ϕ̄ = 0 (5.2.19)

where, ε =C1C

It is clear that the Eq. (5.2.19) is a fourth order differential equation with constant coefficient.

Therefore, characteristic equation of Eq. (5.2.19) can be written as

m4−
[

(1+ ε)s+(1+ τ2 + ετ1)s
2
]

m2 + s3(1+ τ2s) = 0

We find that above equation have four complex roots in which two of them are having positive real

parts and other two have negative real parts. Therefore, for the stability of the solution, we will

consider only the roots which have positive real parts. Hence, we can express the solution of the

above equation (5.2.19) satisfying the boundary conditions given in Eqs. (5.2.16−5.2.18) in the

following form:

ϕ̄(x, s) = B1(s)e−m1x +B2(s)e
−m2x (5.2.20)

where, B1(s) and B2(s) are the parameters which depend on s only where as m1 and m2 are the

roots with positive real parts of the characteristic equation.

Further, we obtain the expressions for B1(s) and B2(s) as

B1(s) =−
(m2

2− s2)F̄(s)

β 2s2(m2
1−m2

2)
, B2(s) =

(m2
1− s2)F̄(s)

β 2s2(m2
1−m2

2)

Now, using above expressions for B1(s) and B2(s) into the Eq. (5.2.20), we get

ϕ̄(x, s) =−
F̄(s)

β 2s2(m2
1−m2

2)

[

(m2
2− s2)e−m1x− (m2

1− s2)e−m2x
]

(5.2.21)

The function, ϕ̄(.) given by Eq. (5.2.21) represents the responses of mechanical shock as we have

assumed in Eq. (5.2.7). Here, F̄(s) is the Laplace transform of F(t), which is the mechanical load
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applied at the boundary.

Using Eqs. (5.2.13) and (5.2.21), we have

θ̄(x, s) =
ε sF̄(s)

B(m2
1−m2

2)

[

e−m1x− e−m2x
]

(5.2.22)

Further, using Eqs. (5.2.15) and (5.2.22), we find

σ̄(x, s) =−
F̄(s)

(m2
1−m2

2)

[

(m2
2− s2)e−m1x− (m2

1− s2)e−m2x
]

(5.2.23)

These are the solutions of the physical field variables in the Laplace transform domain.

5.2.4 Temperature distributions in physical domain

5.2.4.1 Deterministic temperature distribution

Now, we assume the deterministic type mechanical load applied at the boundary of half space in

the following form:

F(t) = σ0 hl(t) (5.2.24)

where,

hl(t) =















1, if 0≤ t ≤ l

0 otherwise

and σ0 is a constant mechanical load, whereas the function hl(t) is a pulse function which is used

to define the constant deterministic mechanical load applied at the boundary. We assume that at

the boundary of the medium a constant load σ0 is maintained for certain period of non dimensional

time, 0≤ t ≤ l and then after time, t > l, the load is zero.

Now, we take the Laplace transform of Eq. (5.2.24) and putting it into Eq. (5.2.22), and then we

take the Laplace inversion of the resulting equation in a similar way as given in Sherief (1994).
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Then, we obtain the temperature distribution in the physical domain (x, t) as follows:

θ̄(x, t) =
σ0ε

B
[e−b11x

3

∑
j=0

b j

(2b12) j+1

{

T
j+1

1 J j+1(T1)−M
j+1
1 J j+1(M1)

}

H(t−b10x)

−e−b21x
3

∑
j=0

b j

(2b22) j+1

{

T
j+1

2 I j+1(T2)−M
j+1
2 I j+1(M2)

}

H(t−b20x)] (5.2.25)

where, b10, b11, b12, b21, b20, b22, b0, b1, b2, b3, T1, T2, M1, and M2 are the constants which have

been given in the Appendix-A4. J j and I j, j = 0, 1, 2, 3 are the jth order Bessel and modified

Bessel functions of first kind, whereas H(.) is the Heaviside unit-step function. This solution is

clearly matched with corresponding temperature distribution which is given in Sherief (1994) with

some changes in notations.

5.2.4.2 Stochastic temperature distribution

In this section, we are going to evaluate the stochastic temperature distribution. By considering

the presence of white noise in the load distribution in the boundary, we assume the mechanical

distribution at the boundary of the plane in the following form:

F(t) = f1(t)+φ0(t) (5.2.26)

where, f1(t) = σ0hl(t) and φ0(t) is a stochastic process which is described by the parameter, t, has

the property given below:

E[φ0(t)] = 0 (5.2.27)

As described in refs. (Sherief et al. (2013, 2016) and Nowinski (2000)), a stochastic process r(t)

satisfies the following property:
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E [L{r(t)}] = L [E {r(t)}] (5.2.28)

Also, the auto-correlation function of a stochastic process r(t) can be written as

Rrr(t1, t2) = E [r(t1)r(t2)], where t1 and t2 are two successive time instants. Then, the Laplace

transform of Rrr(t1, t2) can be written as

R̂rr(s1, s2) = E [r̄(s1)r̄(s2)] (5.2.29)

which can be re-written as

R̂rr(s1, s2) = L2

{

Rrr(t1, t2)
}

(5.2.30)

In above equation, L2(.) represents the double Laplace transform which can be defined in the

following form:

L2 { f (t1, t2)}=

∞̂

0

e−s1t1





∞̂

0

e−s2t2 f (t1, t2)dt2



dt1

After introducing the stochastic mechanical distribution, φ0(t) at the boundary of the plane, all the

physical field variables behave like a stochastic process in which the main randomness is present

due to the stochastic process φ0(t).

Therefore, from Eq. (5.2.22), we have

E
[

θ̄(x, s)
]

=
εs f̄1(s)

B(m2
1−m2

2)

[

e−m1x− e−m2x
]

(5.2.31)

We have considered here the stochastic process which is the probabilistically stationary. It repre-

sents a form of probabilistic equilibrium in the sense that the particular instant is not important at

which it is observed.

We would also like to define that a stochastic process, r(t) to be stationary if for all n and for every
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set of time instants (ti ∈ T, i = 1, 2, 3, ..... , n), its joint probability density function Gr(.) does not

change with a shift of the time parameter scale which can be expressed as

Gr(r1, r2, ..., rn; t1, t2, ..., tn) = Gr(r1, r2, ..., rn; t1 + ς , t2 + ς , ..., tn + ς)

It implies that the auto-correlation function, Rrr(ς) of a stationary process, r(t) is a function of the

time interval ς alone which can be defined as

E [r(t1)r(t2)] = Rrr(ς)

where, ς = t1− t2

The measure for dispersion of the temperature field can be defined by using the Eqs. (5.2.22) and

(5.2.29) in the following way:

R̂θθ (x, s1, s2) = E
[

θ̄(x, s1)θ̄(x, s2)
]

= E

[

ε s1 f̄1(s1)

B(m2
1(s1)−m2

2(s1))

[

e−m1(s1)x− e−m2(s1)x
] ε s2 f̄1(s2)

B(m2
1(s2)−m2

2(s2))

[

e−m1(s2)x− e−m2(s2)x
]

]

= R̂φ0φ0
(s1, s2)Γ̄ (x, s1)Γ̄ (x, s2)+ f̄1(s1)Γ̄ (x, s1) f̄1(s2)Γ̄ (x, s2)

where,

Γ̄ (x, si) =
ε si

B(m2
1(si)−m2

2(si))

[

e−m1(si)x− e−m2(si)x
]

, i = 1, 2 (5.2.32)

and

R̂φ0φ0
(s1, s2) = E

[

φ̄0(s1)φ̄0(s2)
]

From Eq.(5.2.31), we have

R̂θθ (x, s1, s2) = R̂φ0φ0
(s1, s2)Γ̄ (x, s1)Γ̄ (x, s2)+E

[

θ̄(x, s1)
]

E
[

θ̄(x, s2)
]

(5.2.33)

Now, we see that the stochastic process, φ0(t) shows an extreme case in which there is no regularity
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found. From Refs. (Sherief et al. (2013, 2016) and Nowinski (2000)), we have

Rφ0φ0
(t1, t2) = δ (ς) (5.2.34)

By using Eq. (5.2.30), the double Laplace transform of the Eq. (5.2.34) can be written as given

below

R̂φ0φ0
(s1, s2) =

1

s1 + s2
(5.2.35)

From Oberhettinger and Badii (1973), we have used the following properties of double Laplace

transform:

• L2 {G1(x)G2(y)}= L{G1(x)}L{G2(y)}

• 1
s1+s2

L2 {G(x− z, y− z)}=















L2

{´ x

0
G(x− z, y− z)dz

}

, y > x

L2

{´ y

0
G(x− z, y− z)dz

}

, y < x

Using Eqs. (5.2.28) and (5.2.34), the Eq. (5.2.33) can be written in the following form:

R̂θθ (x, s1, s2) =
1

s1 + s2
L2 {Γ(x, t1)Γ(x, t2)}+E

[

θ̄(x, s1) θ̄(x, s2)
]

= L2







t1
ˆ

0

Γ(x, t1− z)Γ(x, t2− z)dz







+L2 {E[θ(x, t1)]E[θ(x, t2)]} , t2 > t1

After taking the inversion of the double Laplace transform, the above equation can be written as

Rθθ (x, t1, t2) =

t1
ˆ

0

Γ(x, t1− z)Γ(x, t2− z)dz+E[θ(x, t1)]E[θ(x, t2)]

Now, we take t1 = t2 = t in the above equation. Then, we have

Rθθ (x, t) =

t
ˆ

0

Γ2(x, t− z)dz+(E[θ(x, t)])2
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Again if we assume, t− z = ξ to solve the integration in the above equation, then we obtain

Rθθ (x, t) =

t
ˆ

0

Γ2(x, ξ )dξ +(E[θ(x, t)])2

We can also re-write the above equation in the following form:

E[θ 2(x, t)]− (E[θ(x, t)])2 =

t
ˆ

0

Γ2(x, ξ )dξ

which further can be re-written in the following form:

Var [θ(x, t)] = E
[

θ 2(x, t)
]

− (E[θ(x, t)])2 =

t
ˆ

0

Γ2(x, ξ )dξ

From Eq. (5.2.32), we obtain

Γ̄ (x, s) =
ε s

B(m2
1(s)−m2

2(s))

[

e−m1(s)x− e−m2(s)x
]

(5.2.36)

Now, we apply the asymptotic expansion to invert the Laplace transform in the above equation in

a similar way as given in Sherief (1994). Therefore, we find

Γ (x, t) =
ε

B
[e−b11x

{

3

∑
j=0

b j

(

t−b10x

b12x

)
j
2

J j

(

2
√

b12x(t−b10x)
)

}

H(t−b10x)

− e−b21x

{

3

∑
j=0

b j

(

t−b20x

−b22x

)
j
2

I j

(

2
√

−b22x(t−b20x)
)

}

H(t−b20x)] (5.2.37)

By using Eqs. (5.2.26−5.2.27) and (5.2.22), we have

L{E [θ(x, t)]}=
εs f̄1(s)

B(m2
1(s)−m2

2(s))

[

e−m1(s)x− e−m2(s)x
]

We have seen that the deterministic temperature distribution given by Eq. (5.2.25) is similar to the

mean of all the sample paths of the temperature field, E[θ(x, t)].
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Also in the view of Eqs. (5.2.22) and (5.2.26), we can write the stochastic temperature distribution

in Laplace transform domain in the the following form:

θ̄(x, s) = F̄(s)Γ̄(x, s)

=
[

f̄1(s)+ φ̄0(s)
]

Γ̄(x, s)

Now, by inverting the Laplace transform in the above equation using Eqs. (5.2.22) and (5.2.25)

with the help of convolution property, we obtain the stochastic temperature distribution in the

physical domain as

θ(x, t) = θ1(x, t)+

ˆ t

0

φ0(u)Γ (x, t−u)du

By using the concept of Wiener process, W (u), we can write the above equation in the following

form (see Sherief et al. (2016)):

θ(x, t) = θ1(x, t)+

ˆ t

0

Γ (x, t−u)dW (u)

where, θ1(x, t) is the deterministic temperature distribution given by Eq. (5.2.25) and Γ(x, t) is

given by Eq. (5.2.37). In the above equation, second term is a stochastic integral which can be

computed numerically by using the Wiener process.

5.2.5 Stress distributions in physical domain

5.2.5.1 Deterministic stress distribution

Now, by using Eqs. (5.2.7) and (5.2.23) along with the short time approximation to invert the

Laplace transform in a similar manner which have been done in the previous section, we obtain the

deterministic stress distribution in the physical domain in the following form:
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σ(x, t) =−σ0e−b11x

{

c20 [hl(t−b10x)+ J0(T1)− J0(M1)]+
3

∑
j=0

c2( j+1)

(2b12x) j+1

[

T
j+1

1 J j+1(T1)−M
j+1
1 J j+1(M1)

]

}

H(t−b10x)

+σ0e−b21x

{

c10 [hl(t−b20x)+ I0(T2)− I0(M2)]+
3

∑
j=0

c1( j+1)

(2b22x) j+1

[

T
j+1

2 I j+1(T2)−M
j+1
2 I j+1(M2)

]

}

H(t−b20x) (5.2.38)

where, b10, b11, b12, b20, b21, b22, c10, c11, c12, c13, c14, c20, c21, c22, c23, c24 are the constants

which are given in the Appendix-A4. J j and I j, j = 0, 1, 2, 3 are the jth order Bessel and modified

Bessel functions of first kind whereas H(.) is the Heaviside unit step function. The solution given

in Eq. (5.2.38) is also matched with the corresponding solution given in Sherief (1994).

5.2.5.2 Stochastic stress distribution

As we assume the boundary condition is of white noise type, we find the variance of the stochastic

stress distribution in a similar manner as we have done in the previous section, in the following

form:

Var(σ(x, t) =

ˆ t

0

Ξ 2(x, t) dt

where, E(x, t) has been obtained in a similar way as we obtain Γ (x, t) in the previous section.

Therefore, E(x, t), can be written in the following form:

Ξ(x, t) =−e−b11x







c20

[

δ (t−b10x)−

√

b12x

t−b10x
J1

(

2
√

b12x(t−b10x)
)

]

+
3

∑
j=0

c2( j+1)

(

t−b10x

b12x

)
j
2

J j

(

2
√

b12x(t−b10x)
)







H(t−b10x)

+e−b21x







c10

[

δ (t−b20x)+

√

−b22x

t−b20x
J1

(

2
√

−b22x(t−b20x)
)

]

+
3

∑
j=0

c1( j+1)

(

t−b20x

−b22x

)
j
2

J j

(

2
√

−b22x(t−b20x)
)







H(t−b20x) (5.2.39)

We observe that E [σ(x, t)] the mean of all the sample paths of stress distribution due to randomness

at the boundary of an elastic medium is same as the solution given by Eq. (5.2.38).

Therefore, we can re-write the Eq. (5.2.23) using Eq. (5.2.26) in the following form:

σ̄(x, s) = F̄(s) Ξ̄(x, s),
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which can also be written in the following form:

σ̄(x, s) =
[

f̄1(s)+ φ̄0(s)
]

Ξ̄(x, s)

Now, inverting the Laplace transform of the above equation using Eqs. (5.2.23) and (5.2.38) with

the help of convolution property, we obtain the stochastic stress distribution in the physical domain

given as

σ(x, t) = σ1(x, t)+

ˆ t

0

φ0(u)Ξ(x, t−u)du

By using the concept of Wiener process, W (u), we can write the above equation in the following

form (see Sherief et al. (2016)):

σ(x, t) = σ1(x, t)+

ˆ t

0

Ξ(x, t−u)dW (u)

where, σ1(x, t), is the deterministic stress distribution given by Eq. (5.2.38) and Ξ(x, t) is given in

Eq. (5.2.39). In the above equation, the second term is a stochastic integral which has been solved

using Wiener process.

5.2.6 Numerical results

In this section, the numerical simulation is carried out in order to illustrate the theoretical re-

sults obtained in previous section. We carry out stochastic simulation and show the variations

of stochastic field distributions inside the medium and compare the results with the deterministic

cases. Stochastic simulation is done by using Wiener process. We have considered the aluminum

material for the purpose of numerical simulation for which the constants are given as follows:

ε = 0.0286, B = 0.0549, τ1 = 0.02, τ2 = 0.02, σ0 = 1, l = 0.1, t = 0.15, 0.10, 0.05

The value of the mechanical shock parameter, σ0, is given above and the computation is carried

out for three non-dimensional times namely, t = 0.05, 0.10, and 0.15 to represent the time evalua-
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tion of the temperature and stress distributions. From Hingham (2001), the concept of Brownian

motion or standard Wiener processes is used to compute the stochastic integrals involved in the

solution of physical field variables. Two sample paths of stochastic process are considered to

compare the results with deterministic cases of all the physical field variables. The numerical re-

sults are displayed in Figs. (5.2.1− 5.2.24) for different physical fields at three different times.

Figures (5.2.1− 5.2.8) show the nature of variation of different physical field variables at time

t = 0.15 in which the temperature and stress distributions are plotted in Figs. (5.2.1− 5.2.2) and

Figs. (5.2.3−5.2.4), respectively. Fig. (5.2.1) depicts the deterministic temperature distribution.

The comparison of deterministic temperature distribution with stochastic temperature distribution

is displayed in Fig. (5.2.2) in which we note clearly that the mean of all the sample paths of

the stochastic temperature distribution coincides with the deterministic temperature distribution.

Similarly in Fig. (5.2.3), the deterministic stress distribution is shown and its comparison with

stochastic stress distribution is depicted in Fig. (5.2.4) in which the deterministic stress distribu-

tion coincides with the mean of all the sample paths of the stochastic stress distribution. However,

the variance of temperature and stress distributions are shown in Fig. (5.2.5) and Fig. (5.2.6),

respectively from which we observe that it increases near the boundary of the plane and after some

distance from the boundary it starts to decrease and finally becomes zero for both the physical

field variables. From Figs. (5.2.3− 5.2.4), we find that the stress field is compressive near the

boundary of the half space, although the values of stress below x-axis is very very small compared

to its value above the axis after some distance from the boundary. We have drawn two more Figs.

(5.2.7− 5.2.8) to show the compressive nature of stress field and to show that stress after some

distance from the boundary becomes zero. The distinction of stochastic distribution and deter-

ministic distribution is significant in this reason. Similarly, the nature of different physical field

variables at two different times t = 0.10 and t = 0.05 are shown by the Figs. (5.2.9−16) and Figs.

(5.2.17−5.2.24), respectively. From Figs. (5.2.1−5.2.2), (5.2.9−5.2.10) and (5.2.17−5.2.19),

it is clear that the temperature distribution is continuous at all three times t = 0.15, 0.10 and 0.05.

However, from Figs. (5.2.2−5.2.4), (5.2.11−5.2.12) and (5.2.19−5.2.20), it is clear that stress
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distribution has finite jump discontinuity at two different points at two times t = 0.10 and 0.05,

while for time t = 0.15, the finite jump discontinuity at four different points is appeared. Hence

as the time increases, the discontinuity in the stress is shifted to outward from the boundary of the

plane. From numerical results, it is clear that all the deterministic field variables are matched with

the corresponding results reported by Sherief (1994) and this validates the results of present work.

We have also observed that all the physical field variables become zero after some distance from

the boundary of the plane in both the cases: deterministic and stochastic physical field variables,

which justify that our results are matched with the assumptions of the problem.

Fig. 5.2.1 Deterministic temperature distribution at time t=0.15

Fig. 5.2.2 Deterministic and stochastic temperature distributions at time t=0.15
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Fig. 5.2.3 Deterministic stress distribution at time t=0.15

Fig. 5.2.4 Deterministic and stochastic stress distributions at time t=0.15

Fig. 5.2.5 Variance of temperature distribution at time t=0.15
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Fig. 5.2.6 Variance of stress distribution at time t=0.15

Fig. 5.2.7 Deterministic stress distribution at time t=0.15

Fig. 5.2.8 Deterministic and stochastic stress distributions at time t=0.15
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Fig. 5.2.9 Deterministic temperature distribution at time t=0.10

Fig. 5.2.10 Deterministic and stochastic temperature distributions at time t=0.10

Fig. 5.2.11 Deterministic stress distribution at time t=0.10
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Fig. 5.2.12 Deterministic and stochastic stress distributions at time t=0.10

Fig. 5.2.13 Variance of temperature distribution at time t=0.10

Fig. 5.2.14 Variance of stress distribution at time t=0.10

160



CHAPTER-5/ INVESTIGATION ON EFFECTS...CONTD.

Fig. 5.2.15 Deterministic stress distribution at time t=0.10

Fig. 5.2.16 Deterministic and stochastic stress distributions at time t=0.10

Fig. 5.2.17 Deterministic temperature distribution at time t=0.05
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Fig. 5.2.18 Deterministic and stochastic temperature distributions at time t=0.05

Fig. 5.2.19 Deterministic stress distribution at time t=0.05

Fig. 5.2.20 Deterministic and stochastic stress distributions at time t=0.05

162



CHAPTER-5/ INVESTIGATION ON EFFECTS...CONTD.

Fig. 5.2.21 Variance of temperature distribution at time t=0.05

Fig. 5.2.22 Variance of stress distribution at time t=0.05

Fig. 5.2.23 Deterministic stress distribution at time t=0.05
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Fig. 5.2.24 Deterministic and stochastic stress distributions at time t=0.05

5.2.7 Discussion and conclusions

Present work is based on the generalized thermoelasticity with two relaxation time parameters for

two types of mechanical boundary conditions: deterministic and stochastic types. The white noise

stochastic process has been considered for the stochastic type boundary conditions. The mechan-

ical load is prescribed at the boundary of the medium to study the nature of different physical

fields with its stochastic counterparts. In order to take into account the presence of noise or error

in the system, it is suggested that the deterministic model can be replaced with the stochastic one

and the deterministic models that represent idealized situations are often improved by including

stochastic effects. Here, we have added the effect of presence of some noise in the boundary load

of elastic medium and represented it as a stochastic load. We have compared our results with the

corresponding results of deterministic case. From numerical results, we observe that all the phys-

ical field variables for the deterministic case are matched with the corresponding physical fields

reported by Sherief (1994). We also note that the mean of all the sample paths of the stochastic

physical fields coincides with its deterministic part for each field variable at all the three times

t = 0.15, 0.10 and 0.05. It is further observed that both the numerical and analytical results in-

dicate that the physical fields vanish after some distance from the boundary in the stochastic as

well as deterministic type distributions. We observe a significant change in the variations of de-
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terministic and stochastic fields at all time. The fluctuation in stochastic distributions of the fields

increases with the increase of time. However, the reasons of influence is almost the same for

deterministic and stochastic fields at all time. The temperature distribution is observed to be con-

tinuous throughout the physical domain. However, the stress field has the finite jump discontinuity

in which at lower times at t = 0.10 and 0.05, it is occurred at two different points of the domain

while at higher time, i.e. at time t = 0.15, the finite jump discontinuity is appeared at four different

points of the domain. It is also indicated that the deviation of all the stochastic distributions from

its mean decreases with the distance from the bounding plane which is the source of the noise. The

fluctuation on the solution due to the noise on the boundary travels inside the medium with a finite

speed as it is also seen for the deterministic waves which move inside the medium with a finite

speed.
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