LIST OF SYMBOLS

- e_{ij} = Components of strain tensor
- $e = e_{ii} = \text{Dilatation}$
- σ_{ij} = Components of stress tensor
- u_i = Components of displacement vector
- u = Displacement along x-direction
- v = Displacement along y-direction
- $T, \ \theta =$ Temperature distributions
- $T_0, \ \theta_0 =$ Reference temperatures
- F_i = Components of the body force vector
- \overrightarrow{q} = Heat flux vector
- q_i = Components of heat flux vector
- Q = Heat source
- ρ = Mass density of the material
- K = Thermal conductivity of the material
- K^{\star} = Rate of thermal conductivity of the material
- c_e = Specific heat at constant strain
- λ , μ = Lame's elastic constants
- $\gamma = (3\lambda + 2\mu)\alpha_t$ is thermoelastic constant
- α_t = Coefficient of linear thermal expansion
- τ_q = Phase-lag of heat flux vector
- τ_T = Phase-lag of temperature gradient
- τ_{v} = Phase-lag of thermal displacement gradient
- $\tau =$ Delay time parameter or thermal relaxation time parameter
- δ_{ij} = Kronecker delta
- $\delta(.) =$ Dirac delta function
- $\vec{\nabla} = \text{Gradient operator}$
- $\nabla^2 = \triangle =$ Laplacian operator

Throughout the thesis:

The sub-scripted comma notations are used to denote the partial derivatives with respect to the space variables. The over-headed dots denote partial derivatives with respect to time variable, t and the subscripts i, j, k take the values 1, 2, 3. However, the summation is implied by index repetition.