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Chapter 5 

INTELLIGENT & OPTIMAL CONTROLLER DESIGN FOR          

NONLINEAR SYSTEM  

5.1 INTRODUCTION 

One of the more popular new technologies is intelligent control, which is defined as a 

combination of control theory, operations research, and artificial intelligence (AI). 

Judging by the billions of dollars worth of sales and close to 2000 patents issued in 

Japan alone since the announcement of the first fuzzy chips in 1987, fuzzy logic still 

is perhaps the most popular area in AI. Thanks to tremendous technological and 

commercial advances in fuzzy logic in Japan and other nations, today fuzzy logic 

continues to enjoy an unprecedented popularity in the technological and engineering 

fields including manufacturing.  

Fuzzy logic technology is being used in numerous consumer and electronic products 

and systems, even in the stock market and medical diagnostics. The most important 

issue facing many industrialized nations in the next several decades will be global 

competition to an extent that has never before been posed. The arms race is 

diminishing and the economic race is in full swing. Fuzzy logic is but one such front 

for global technological, economical, and manufacturing competition. 

In order to understand fuzzy logic it is important to discuss fuzzy sets. In 1965, Zadeh 

[1] wrote a seminal paper in which he introduced fuzzy sets, i.e., sets with unsharp 

boundaries. These sets are generally in better agreement with the human mind that 

works with shades of gray, rather than with just black or white. Fuzzy sets are 

typically able to represent linguistic terms, e.g., warm, hot, high, low. Nearly ten 

years later Mamdani [2] succeeded in applying fuzzy logic for control in practice. 
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Today, in Japan, U.S.A, Europe, Asia and many other parts of the world fuzzy control 

is widely accepted and applied. In many consumer products like washing machines 

and cameras, fuzzy controllers are used in order to obtain intelligent machines 

(Intelligent Machine Quotient- ) and user friendly products. A few interesting 

applications can be mentioned: control of subway systems, image stabilization of 

video cameras, image enhancement and autonomous control of helicopters [3]. 

Although the U.S and Europe hesitated in accepting fuzzy logic, they have become 

more enthusiastic about applying this technology. Fuzzy set theory is developed 

comparing the precepts and operations of fuzzy sets with those of classical set theory. 

Fuzzy sets will be seen to contain the vast majority of the definitions, precepts, and 

axioms that define classical sets.  

In fact, very few differences exist between the two set theories [4]. Fuzzy set theory is 

actually a fundamentally broader theory than current classical set theory, in that it 

considers an infinite number of degrees of membership in a set other than the 

canonical values of 0 and 1 apparent in classical set theory. In this sense, one could 

argue that classical sets are a limited form of fuzzy sets. Hence, it will be shown that 

fuzzy set theory is a comprehensive set theory. Conceptually, a fuzzy set can be 

defined as a collection of elements in a universe of information where the boundary of 

the set contained in the universe is ambiguous, vague, and otherwise fuzzy. It is 

instructive to introduce fuzzy sets by first reviewing the elements of classical (crisp) 

set theory [5-7]. 

In this chapter the fuzzy logic control is used to control the nonlinear system. The 

nonlinear system considered in this chapter is the inverted-pendulum system mounted 

on a cart. The inverted pendulum system is one of the most important problems in 

control theory and has been studied extensively in control literature. The system is 
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nonlinear, unstable, nonminimum phase and under-actuated.  Because of their 

nonlinear nature inverted pendulum have maintained their usefulness and are used to 

illustrate many of the ideas emerging in the field of nonlinear control. 

The inverted pendulum can be considered as the simplest robotic system, with only 

one rigid body and only one rotational joint. The inverted pendulum system has a 

stable equilibrium point when the pendulum is in a pending position and an unstable 

equilibrium when the pendulum is in an upright position. The model is strongly 

nonlinear when it is moved from the pending position to the upright position [8].  

Since the 1950’s, it is used for teaching linear feedback control theory to stabilize 

open-loop unstable systems [9]. The first solution to this problem was described in 

1960 by Roberge [10] and then by Schaefer and Canon in 1966 [11]. Siebert [12] used 

this system as a typical model for root-locus analysis and Kwakernaak [13] used to 

solve the linear optimal control problem. The recent concise review in explains and 

discusses, for example, the design of type-2 fuzzy systems using optimization 

methods. 

According to the control purposes of inverted pendulum, the control of inverted 

pendulum can be divided into three aspects. The first aspect is that it is widely 

researched for the swing-up control of inverted pendulum. The second aspect is the 

stabilization of the inverted pendulum. The third aspect is tracking control of the 

inverted pendulum.  

5.2 MATHEMATICAL MODEL OF INVERTED PENDULUM SYSTEM 

The inverted pendulum system is a perfect benchmark problem for the design of a 

wide range of control techniques. Inverted-pendulum system is mounted on a motor 

driven cart, said to be a highly nonlinear system because it may fall at any time and in 
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any direction. To control such a system, a suitable controlled force is required, which 

is able to drive the cart in such a manner so that the pendulum gets stabilized within 

the stipulated time. 

The free-body diagram of the system is shown in Figure 5.1, and assuming that the 

centre of gravity of the pendulum rod is at its geometric centre. The cart of the 

inverted pendulum system can move in both the direction connected through a belt. 

The movement of the belt is via pulley which is linked with a DC motor (24 V, 400 

rpm). 

 

 

The dynamics of the inverted pendulum system is obtained using the Lagrangian 

equation of motion.  

                                              
i i

d L L

dt q q
t

æ ö¶ ¶
- =ç ÷¶ ¶è ø&

                                                      (5.1) 

Figure 5.1 Free-body diagram of Inverted pendulum 
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where  is the Lagrangian function, is the position vector and . The 

Lagrangian function is defined as the difference between the kinetic energy and 

potential energy of the system. 

                                                 E EL K P= -                                                             (5.2) 

where  represents the kinetic energy and  is the potential energy of the system. 

Therefore, to determine the equation of motion of inverted pendulum system, we first 

defined the co-ordinates of the system. The x position of the pendulum is  

and y position is , so the kinetic energy is- 

                      ( ) ( )
2 2

21 1 1
sin cos

2 2 2
E

d d
K Mx m x l m l

dt dt
q qæ ö æ ö= + + +ç ÷ ç ÷

è ø è ø
&                 (5.3) 

First taking time-derivatives, then squaring, then noting that  

gives- 

                                 ( ) 2 2 21 1
cos

2 2
EK M m x mlx mlq q q= + + +& && &                             (5.4) 

The potential energy of the inverted pendulum system is given as- 

                                                  ( )1 cosEP mgl q= +                                                (5.5) 

Therefore, the Lagrangian function is given by- 

 
(5.6) 

  The Lagrangian equation of motion for cart is defined as- 

( ) ( )2 2 21 1
cos 1 cos

2 2
L M m x mlx ml mglq q q q= + + + - +& && &



 

 

 Page 84 

 

                                               
i i

d L L
u

dt x x

æ ö¶ ¶
- =ç ÷¶ ¶è ø&

                                                     (5.7) 

Since, 

and 

                                             ( ) cos
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Therefore, 

                        ( ) ( )2cos sin
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The Lagrange equation corresponding to the pendulum is given by- 
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Whereas, 
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Therefore, 
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                                ( )cos sin 0
d L L

ml x l g
dt

q q q
q q
¶ ¶æ ö - = + - =ç ÷¶ ¶è ø

&&&&
&

                       (5.14) 

Therefore, the equations of motion for inverted pendulum system are- 

                               
( ) ( )21

sin cosx u ml ml
M m

q q q q= + -
+
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                                 ( )1
sin cosg x

l
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Both these equations have dependency on each other. Therefore, to cope up from this 

dependency, deriving the state-space equation of the inverted-pendulum system. Let 

us also assume that, 

                                                          1x x=                                                           (5.17) 

                                                     2 1x x x= =& &                                                 (5.18) 

                                                                    3x q=                                                                       (5.19) 

                                                               4 3x xq= =& &                                                          (5.20) 

Therefore, the equation of motion for inverted pendulum system is 

                                           ( ) ( )2
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1
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After simplifying the dependency of these two equations gives the equation of cart 

and pendulum- 
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(5.24) 

The linear model for the system around the upright stationary point is derived by 

assuming x0=0, u0=0. i.e., 
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After simplifying and by doing partial derivative of each term the linearized state-

space equation becomes: 
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(5.26) 

                                             

1 0 0 0 0

0 0 1 0 0
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(5.27) 

The above system is a single input multi output system. The control input  is the 

driving force.  
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Table 5.1: Parameters of Inverted Pendulum System 

Mass of cart (M) in kg 2.4 

Mass of pendulum (m) in kg 0.23 

Length of the pendulum (L) in mts. 0.4 

Moment of inertia of pendulum (I) in kgm
2
 0.01 

Friction coefficient of cart (b) in N/m/sec 0.05 

Gravitational constant (g) in m/sec
2
 9.8 

 

The state-space equation of the inverted pendulum system is obtained by using the 

values as given in Table 5.1. 

0 1 0 0

0 0.0195 0.2381 0
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(5.28) 
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The open-loop response of the inverted pendulum system is shown in Figure 5.2 and 

Figure 5.3. 
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Figure 5.2 Open-loop response of cart’s position 

 

Figure 5.3 Open-loop response of pendulum’s angle 
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The response of inverted-pendulum system is unstable as the output reaches to infinite 

with finite input signal. Therefore, in order to stabilize the pendulum in an upright 

position, the movement of the cart is to be regulated by using a proper control 

functioning. The control methodology the control design requirements are mentioned 

below:  

5.2.1 Controller Design Requirements 

To examine the performance of the controller following design specification are 

required:  

· The percent overshoot of cart position (x) is ≤ 15% 

· The rise time of cart position (x) ≤ 2 sec. 

· The settling time of cart position (x) and pendulum angle ≤ 15 sec. 

· Steady-state error is within 2%. 

 

5.3 CONTROL METHODOLOGY 

The following control methods are presented here to control the nonlinear inverted-

pendulum system. 

5.3.1 PID Control 

To stabilize the inverted pendulum in the upright position and to control the cart at the 

desired position using the PID control approach, two PID controllers are required: 

Angle PID controller and cart PID controller. The equations of the PID control are 

given as: 
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(5.29)

 

( ) ( ) ( ) ( )x

c p x i x d

de t
u t K e t K e t dt K

dt
= + +ò

 
(5.30)

 

,  and  are the parameters of PID controller.  

 

 

Figure 5.4 Block diagram of closed-loop control system 
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Table 5.2: PID controller parameters for controlling the inverted-pendulum system 

 

’

’ ’

’ ’

’ ’
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         Figure 5.5 Closed-loop response of cart’s position with PID controller 

 

Figure 5.6 Closed-loop response of pendulum’s angle with PID controller 
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Table 5.3: Time-domain specification of inverted-pendulum system with PID 

controller 

 

Rise 

Time 

(sec.) 

Settling 

Time (sec.) 

Peak 

Time 

(sec.) 

Percentage 

Overshoot 

Cart 3.5 36.23 7.65 65.50 

Pendulum 5.4 32.45 8.40 12.50 

5.3.1.1 Outcomes of PID Controller 

Two PID controllers are designed to stabilize the pendulum’s angle and the cart’s 

position. The parameters of the PID controllers are obtained using trial & error 

method. The settling time and percentage overshoot of the system is too high. This is 

main drawback of the PID controller that it stabilizes the inverted-pendulum system 

but it fails in achieving the controller design requirements. The inverted pendulum 

system required an efficient controller so that it may able to reduce the oscillations 

and it could be able to control the system within the specified time. 

5.3.2 OPTIMAL CONTROL 

Optimal control refers to a class of methods that can be used to synthesize a control 

policy which results in the best possible behavior with respect to the prescribed 

criterion (i.e., control policy which leads to maximization of performance).   

The main objective of optimal control is to determine control signals that will cause a 

process (plant) to satisfy some physical constraints and at the same time extremize 

(maximize or minimize) a chosen performance criterion i.e. the performance index 

(PI) or cost function.  The optimal control problem is to find a control which causes 
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the dynamical system to reach a target or follow a state variable (or trajectory) and at 

the same time extremize the Performance Index [14-20].  

5.3.2.1 Linear Quadratic Regulator 

Linear quadratic regulator (LQR) is one of the optimal control techniques, which 

takes into account the states of the dynamical system and control input to make the 

optimal control decisions. The Linear Quadratic Regulator (LQR) is design on the 

basis of algebraic Riccati equation (ARE). After linearization of nonlinear system 

equations about the equilibrium position having initial conditions as 

, the linear state-space equation is obtained as- 

                                                                                                     (5.31) 

where  

The state feedback control  leads to 

                                                                                    (5.32) 

where  is derived from minimization of the cost function. 

                                                                           (5.33) 

where  and are positive semi-definite and positive definite symmetric constant 

matrices, respectively. The LQR gain vector is given by- 

                                                                                       (5.34) 
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where  is a positive definite symmetric constant matrix obtained from the solution of 

ARE given as- 

                                                      (5.35) 

Under the specified conditions, it is desired to minimize  and regulate the states to 

zero such that  with respect to control input . The solution 

obtained is the optimal control input and the trajectory obtained is the optimal 

trajectory. 

· Selection for Weighting Matrices 

, , are usually chosen as diagonal matrices, with 

     

    

           

  

With the choice of weighting matrix as- 

3000 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

Q

é ù
ê ú
ê ú=
ê ú
ê ú
ë û

 and            R=1 (5.36) 

The LQR gain vector is obtained as 

                       [ ]54.77 59.34 340.65 131.90K = - -                          (5.37) 
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Figure 5.7 Closed-loop response of cart’s position with LQR controller 

 

Figure 5.8 Closed-loop response of pendulum’s angle with LQR controller 
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Table 5.4 Time-domain specification of inverted-pendulum system with LQR 

controller 

 

Rise Time 

(sec.) 

Settling Time 

(sec.) 

Peak Time 

(sec.) 

Percentage 

Overshoot 

Cart 1.0651 3.8877 4.61 34.81 

Pendulum 1.000012 3.78 1.42 27.10 

 Outcomes of Linear Quadratic Regulator

The linear quadratic regulator successfully stabilized the pendulum in the upright 

position as per the desired requirements. The pendulum stabilized within 4 seconds 

with one overshoot and one undershoots. The cart’s response is also satisfactory and it 

also stabilized within 4 seconds. 

The only drawback associated with the LQR is that it is unable to bring the cart 

towards the reference point. Thus LQR fails in tracking the reference input. 

The reference tracking can be obtained while designing an intelligent controller which 

can able to track the reference signal.  

5.3.3 FUZZY LOGIC CONTROL 

As we know, and pointed out explicitly by Driankov et al. (1995), conventional PID 

controllers are generally insufficient to control processes with additional complexities 

such as large time delays, significant oscillatory behavior, parameter variations, 

nonlinearities, and MIMO plants.  

To improve conventional PID controllers, fuzzy logic is adapted. The fuzzy logic 

control was proposed by Lofti A. Zadeh in 1965. The fuzzy algorithm can make 

human knowledge into the rule base to control a plant with linguistic descriptions.  It 
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relies on expert experience instead of mathematical models. The advantages of fuzzy 

control include good popularization, high faults tolerance, and suitable for nonlinear 

control systems.  

The primary motivation and “banner” of fuzzy logic is the possibility of exploiting 

tolerance for some inexactness and imprecision. Precision is often very costly, so if a 

problem does not require precision, one should not have to pay for it. The traditional 

example of parking a car is a noteworthy illustration. If the driver is not required to 

park the car within an exact distance from the curb, why spend any more time than 

necessary on the task as long as it is a legal parking operation?  

Fuzzy logic and classical logic differ in the sense that the former can handle both 

symbolic and numerical manipulation, while the latter can handle symbolic 

manipulation only. In a broad sense, fuzzy logic is a union of fuzzy (fuzzified) crisp 

logics [2].  

To quote Zadeh, “Fuzzy logic’s primary aim is to provide a formal, computationally-

oriented system of concepts and techniques for dealing with modes of reasoning 

which are approximate rather than exact.” Thus, in fuzzy logic, exact (crisp) 

reasoning is considered to be the limiting case of approximate reasoning. In fuzzy 

logic one can see that everything is a matter of degrees. 

5.3.3.1 Why Fuzzy Control? 

Fuzzy logic is a technique to embody human like thinking into a control system. A 

fuzzy logic controller can be designed to emulate human deductive thinking, that is, 

the process people use to infer conclusions from what they know.  
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Traditional control approach requires formal modeling of the physical reality. Fuzzy 

control incorporates ambiguous human logic into computer programs. It suits control 

problems that cannot be easily represented by mathematical models: 

� Weak model 

� Parameter variation problem  

� Unavailable or incomplete data 

� Very complex plants 

� Good qualitative understanding of plant or process operation 

Because of its conventional approach, design of such controllers leads to faster 

development/ implementation cycles. Two typical fuzzy control systems are popularly 

known as Mamdani type and Takagi-Sugeno (T-S) type. Mamdani System: Mamdani 

type fuzzy systems employ fuzzy sets in the consequent part of the rules. T-S System: 

Takagi-Sugeno Fuzzy systems employ function of the input fuzzy linguistic variables 

as the consequent of the rules. 

5.3.3.2 How Does Fuzzy Logic Controller Work 

Determine the input and output relationship and choose a minimum number of 

variables for input to the FLC engine (typically error and rate of change of error for 

fuzzy PID controller). Using the rule-based structure of FLC, break the control 

problem down into a series of IF X AND Y THEN Z rules that define the desired 

controller output response for a given system input conditions. Create FLC 

membership functions that define the meaning of Input/Output terms used in the rules. 

Test the system, evaluate the results, tune the rules, membership functions, and 

continuously simulate until results are obtained. 
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5.3.3.3 Complete Architecture of Fuzzy Logic Controller 

 

Figure 5.9 Architecture of Fuzzy Logic Control 

The fuzzy controller is composed of the following four elements: 

 1. A rule-base (a set of If-Then rules), which contains a fuzzy logic 

quantification of the expert’s linguistic description of how to achieve good control. 

 2. An inference mechanism (also called an “inference engine” or “fuzzy 

inference” module), which emulates the expert’s decision making in interpreting and 

applying knowledge about how best to control the plant. 

 3. A Fuzzification interface, which converts controller inputs into information 

that the inference mechanism can easily use to activate and apply rules. 
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 4. A defuzzification interface, which converts the conclusions of the inference 

mechanism into actual inputs for the process.  

 

 

 

 

 

Figure 5.10 Conceptual Mechanism of Fuzzy logic control 

5.3.3.4 Inverted Pendulum with Fuzzy Logic Control 

Rules: 

1. If error is negative large and change-in-error is negative large then force is 

positive large. 

2. If error is zero and change-in-error is positive small then force is negative 

small. 

3. If error is positive large and change-in-error is negative small then force is 

negative small. 

Rule Set 

Output Input 
Human Expert 

Input 

 

Approximate 

Output Fuzzification Inference  

Engine 
Defuzzification 
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Figure 5.11 Movement of Inverted-pendulum system mounted on a cart 

5.3.3.5 Simulink Model of Inverted Pendulum with FLC 

 

Figure 5.122 Simulink model of inverted-pendulum system with fuzzy logic control 
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Figure 5.13 Closed-loop response of cart’s position with Fuzzy Logic controller 

 

Figure 5.14 Closed-loop response of pendulum’s angle with Fuzzy Logic controller  
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Table 5.5: Time-domain specification of inverted-pendulum system with Fuzzy Logic 

controller 

 

Rise Time 

(sec.) 

Settling Time 

(sec.) 

Peak Time 

(sec.) 

Percentage 

Overshoot 

FLC-PID-Cart 3.68 21.55 8.5 20.50 

FLC-PID-

Pendulum 
5.3 8.45 7.85 1.45 

5.3.3.6 Outcomes of Fuzzy Logic Control 

The fuzzy logic controller successfully stabilizes the position of the cart and as well as 

the angle of the pendulum. Two FLC controllers are required to stabilize the inverted-

pendulum system. Simulation result shows the effectiveness of the FLC in 

comparison with conventional PID control and LQR control.  The angle of the 

pendulum stabilize within 10 seconds with proper overshoot and position of the cart 

shows better response then the above said controllers.     
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