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Chapter 4 

REDESIGN OF CONVENTIONAL CONTROLLER FOR 

NONMINIMUM PHASE SYSTEM 

4.1 INTRODUCTION 

Systems that are causal and stable whose inverses are causal and unstable are known 

as nonminimum phase systems. It is acknowledged that the nonminimum phase 

portion of a plant (explicitly the right-half zeros and time delays) can bound the 

intensity of attainable requirement of a feedback control system. These restrictions are 

measured by the Bode sensitivity integrals [81].  

· A nonminimum phase system (NMPs) is defined as a system having zeros 

in the right-half s-plane (RHP) or time delays or both (Morari & Zafiriou, 

1989) [82]. 

· A nonminimum phase system is defined as a system having either a zero or 

a pole in the right-half s-plane (Kuo & Golnaraghi, 2010) [83]. 

System with pole and zero in the RHP is an unstable NMPs and system with zero in 

the RHP is stable NMPs. Nonminimum phase system show similar behaviour as all-

pass filters. All-pass filters carry mirror image zero in the right-half of the s-plane for 

every stable pole in the left-half plane. 
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The magnitude and phase of  are 
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                                      ( )1( ) 2 tanG j Tw w-Ð = -                                                     (4.3) 

The magnitude is always unity whereas the phase varies from 0
0
 to -180

0
 as ω is 

increased from zero to infinity. The complexity of the system increases when the 

system has long dead-time. Transport lag or dead-time has an excessive phase lag 

with no attenuation at high frequency. Pade’s approximation is used to handle the 

delay term [84]. Transport lag normally exist in thermal, hydraulic and pneumatic 

systems. 

The practical examples of nonminimum phase systems are 

Ø Aircraft Trajectory control 

Ø Continuous stirred tank reactor 

Ø Bicycle Counter-steering 

Ø Water heating system and many more  

 

4.2 DESCRIPTION OF  NON-MINIMUM PHASE SYSTEM 

An important class of nonlinear systems that has been studied extensively within 

control theory is that of having one of the systems zero in the right-half plane. For the 

NMP systems, the inverse of the RHP zeros and time delay is physically unrealizable 

for its non-causal property. The internal stability is a basic requirement for a practical 

closed-loop system and it is verified by checking the controllability and observability 

Grammians of the system. The system considered in this context is well modelled by 

proper linear time-invariant (LTI) systems with possible non-minimum phase 

components and time delay. The transfer function of the LTI system  is defined to 

be 

                                                                      (4.4) 
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where  is the gain, is the non-minimum phase,  is the minimum 

phase, ,  is the stable, unstable polynomials and   is the delay time [85]. 

NMP systems are slow in responding because of their faulty behaviour at the start of 

the response. 

4.2.1 Problem Formulation 

Consider an input-output delayed SISO system as discussed by [3]: 

                                                   ( ) ( ) TsP s G s e-=                                                       (4.5) 

where,  

                                             ( )
( )( )( )

0.1

1 0.5 1 0.1 1
G s

s s s s
=

+ + +
                                     (4.6) 

where is the open-loop transfer function, is the undelayed dynamics and 

represents the  delay-time. The above system is approximated by Pade’s first order 

approximation and the transfer function is given by: 

                        
( ) 5 4 3 2

0.1 0.025

0.05 0.6625 1.763 1.4 0.25
Pade

s
P s

s s s s s

- +
=

+ + + +                     (4.7) 

The controllability and observability grammians are determined to check the internal 

stability of the system. The controllability grammians is defined by: 

                                                                                          (4.8) 

The controllability grammians is positive definite if and only if  is controllable. 

The observability grammians is defined by: 

                                                                                       (4.9) 

The observability grammians is positive definite if and only if  is observable.  
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Figure 4.7 Step response of nonminimum phase system with and without Pade’s first 

order approximation 

The approximated system is both controllable and observable as the grammians are 

located in left-half of the s-plane. The step response of the nonminimum phase system 

approximated via Pade’s first order approximation is stable as shown Figure 4.1. The 

step response shows a single zero crossing which implies that there is one of the 

system’s zero is located in the right-half of the s-plane. As the settling time of the 

system is more as shown in Table 4.1 and also the oscillation in the system is large. 

Therefore, it requires an efficient controller to regulate the state in accordance to meet 

the design requirements which is shown in Table 4.2.  
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Table 4.1: Time-domain specification of nonminimum phase system 

 

Rise Time 

(sec.) 

Settling 

Time (sec.) 

Peak 

Time 

(sec.) 

Percentage 

Overshoot 

Steady-state 

error 

Y(s) 8.2187 106.3853 29.4260 44.8311 0.0348 

YPade(s) 8.2241 82.5025 27.8863 37.2502 0.0133 

Table 4.2: Controller design requirements 
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4.3 PID CONTROLLER 

The complexity associated with PID controller is to find the starting solution. Initially, 

the parameters were tuned using trial & error method which is quite a tedious task to 

reach towards the finite solution. In 1942 Ziegler-Nichols (ZN method) solve this 

problem of fine-tuning the parameters of PID controller. ZN tuning formula is a 

heuristic method of determining the ultimate values of the controller.  

At the ultimate value, the system is at the point of marginal instability and gives 

sustained oscillations in the output. The ultimate gain and ultimate frequency are used 

to get the PID controller settings. The PID settings proposed by ZN results in a large 

overshoot and an oscillatory response. The correlation between the ultimate period, 

the reset time and the derivative time was based on simulation of a large number of 

processes.  

The key criterion is a quarter decay ratios. Many other researchers have modified the 

ZN method to obtain significant performance improvement. Tyreus-Luyben [86] 

proposed settings for PI and PID controllers, but the method results in a long settling 

time. Smith [87] and Yu [88] proposed modification in the tuning based formulae on 

the ultimate values. Furthermore, most of the proposed methods, based on ultimate 

values of controllers, are implemented mostly on stable processes. Controller design 

for the unstable process with time delay is difficult.  

Many variants of the traditional Ziegler–Nichols PID tuning methods are available, to 

check the efficacy of the ZN method, Chien–Hrones–Reswick method is also used to 

control the nonminimum phase system. The Chien–Hrones–Reswick (CHR) method 

emphasizes the set-point regulation or disturbance rejection. In addition one 
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qualitative specification on the response speed and overshoot can be accommodated. 

Compared with the traditional ZN tuning formula, the CHR method uses the time 

constant T of the plant explicitly. 

Table 4.3: Parameters of PID controller tuned via conventional tuning formulae 

 

KP KI KD 

ZN method 1.237 0.0651 6 

CHR method 1.005 0.04331 4.054 

 

 

Figure 4.8 Step response of Nonminimum Phase System with PID Controller 
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Table 4.4: Time-domain specification of nonminimum phase system with PID 

controller 

 

Rise Time 

(sec.) 

Settling Time 

(sec.) 

Peak Time 

(sec.) 

Percentage 

Overshoot 

Steady-state 

error 

YZN(s) 3.4057 73.9244 18.8804 78.3240 0.0093 

YCHR(s) 5.3288 90.6222 24.2146 55.5081 0.0056 

where,  and  are the closed-loop transfer function of the nonminimum 

phase system when the parameters of the PID controller are tuned using Ziegler-

Nichols and Chien-Hrones-Reswich method.  is the step response of 

approximate model. 

 

Figure 4.9 Bode Response of Nonminimum Phase System with PID Controller 
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Table 4.5: Frequency-domain specification of nonminimum phase system with PID 

controller 

 
Gain Margin Phase Margin 

LZN(s) 3.35 dB 31.8
0
 

LCHR(s) 5.59 dB 33.4
0
 

where  and   are the loop gain of the nonminimum phase system 

controller via PID controller.  

4.3.1 Outcomes of PID Controller 

Both the techniques i.e. Ziegler-Nichols (ZN) and Chien–Hrones–Reswick (CHR) 

tuning formulae are fails to fulfill the controller design requirements. The ZN method 

provides large overshoot as compared to CHR method. Though, the settling time of 

ZN method is less compare to CHR method but it has poor steady-state error.   

The CHR method is better in terms of frequency domain specifications as the gain 

margin and phase margin of the system is better than the ZN method. These tuning 

formulae perform even worse when the delay of the system increases. To cope up 

from these drawbacks and to achieve the desired design requirements, a PID 

controller is designed on the basis of the methodology proposed by Smith’s in 1959. 

4.4 SMITH PREDICTOR CONTROL 

The control structure of Smith predictor [89-94] is shown below. The plant model is 

given by: 

                                               ( ) ( ) ˆˆ Ts

mG s G s e-=                                                   (4.10) 

If the model/ process are imperfect then the feedback signal  is given by-              
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                           ( ) ( ) ( ) ( ) ( )( ) ( )ˆˆ ˆTs Ts

fY s G s U s G s e G s e U s- -= + -                       (4.11) 

If a “perfect” model of the plant is considered then,  

                                                   
( ) ( )ˆG s G s=

                                                        (4.12)         

                                                        ˆT T=                                                               (4.13) 

This means that the feedback is only dependent on the model of the plant- 

                                                 ( ) ( ) ( )ˆ
fY s G s U s=                                                (4.14)                     

The relationship between the control variable and the system output is 

                                                        ( )
( )

( )1
Ts

U s Y s
G s e-

=                           (4.15) 

Therefore, 

                                            ( ) ( )Ts

fY s e Y s=                                               (4.16) 

This shows that the internal loop containing the plant model feeds back a signal that is 

a prediction of the output, since  represents a prediction in the time-

domain. The closed-loop transfer function of the system can be determined by using- 

                                                ( ) ( ) ( )TsY s G s e U s-=                                              (4.17) 

Therefore, 

                                           ( ) ( ) ( ) ( )( )c fU s G s R s Y s= -                                       (4.18) 
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( ) ( )1
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Y s G s e G s

R s G s G s

-

=
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                                            (4.19) 

According to Dorf & Bishop-2011 [95], the sensitivity expression in this case can be 

defined as 

                                                   ( )
( ) ( )

1

1 c

S s
G s G s

=
+

                                                (4.20) 
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Hagglund in 1992 [96] and1996 [97] combined the properties of the Smith predictor 

with a PI controller to control a first order plant with a time delay. In this thesis, a PID 

controller is designed using these properties. Firstly, a time-delay system is 

approximated using Pade’s first order approximation.  

                                          ( ) 8 2ˆ ( ,1)
8 2

Ts

d

s
G s pade e

s

- - +
= =

+
                                   (4.21) 

The transfer function is given as- 

                      ( ) 5 4 3 2

0.1 0.025
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The PID controller for this approximated system is given as- 

                              ( )
2

2
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c

s s
G s

s s

+ +
=

+
                                  (4.23) 

A PID controller based on Smith predictive qualities is defined as 

                                                 ( ) ( )Smith PIDT s T s=                                                  (4.24) 

                             ( ) ( )
( ) ( ) ( ) ( ) ( )ˆ ˆ ˆ1

c

c c d
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C s
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                              (4.25) 

 

Therefore, such a higher order controller needs reduction.  Applying, a generalized 

model reduction technique known as balanced realization to reduce to a lower order. 

The reduction techniques firstly balanced the system using ‘balreal’ command of 

MATLAB and then check the grammians of the system. The grammians with small 

Hankel singular values are neglected and the one with more dominance is selected. 
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The reduced order controller is given as: 

                            ( ) ( )( )
( )( )5

8.3717 0.5225 0.0002302

7.592 9.457 10

s s
C s

s s -

+ +
=

+ + ´
                              (4.26) 

The controller has an additional filter which tries to compensate the system 

performance. Though, the structure of the controller is not the exact form of PID 

controller but it provides and fulfills all the design requirements. This controller is 

applied to the original nonminimum phase system. The step response of the closed-

loop system and bode response of the loop transfer function is shown in comparison 

with the conventional control techniques. 

 

Figure 10.4 Step response of Nonminimum Phase System with Smith Predictor 
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Table 4.6: Time-domain specification of nonminimum phase system with Smith 

Predictor 

 

Rise Time 

(sec.) 

Settling Time 

(sec.) 

Peak Time 

(sec.) 

Percentage  

Overshoot 

Steady-state 

error 

Ysp(s) 17.1298 32.7164 43.7757 1.4133 0.0023 

where  is the closed-loop transfer function of the nonminimum phase system 

with Smith Predictor. 

 

Figure 4.11 Bode response of nonminimum phase system with Smith Predictor 

4.4.1 Outcomes of Smith Predictor 

The PID controller designed using Smith predictor control structure consequent in an 

inexact PID form. Though, it achieves all the design requirements, but it also poses an 

additional feed-forward filter and required a tedious model reduction technique to 

reduce the order of the controller. 
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Therefore, in order to design an exact PID control structure and to fulfill all the design 

requirements, a meta-heuristic technique known as grey wolf optimizer (GWO) is 

used for the control of nonminimum phase system. 

4.5 GREY WOLF OPTIMIZER 

Grey wolf (Canis Lupus) belongs to a Canidae family. It is a general-purpose 

stochastic search method, offers several advantages like 

Ø Robust and reliable performance 

Ø Global search capability 

Ø  Little or no information required 

 

The grey wolves are considered as apex predators, meaning that they are at the top of 

the food chain. They mostly prefer to live in a group. They are characterized by power 

full teeth, bushy tail and they usually hunts in packs. Their natural habitats are found 

in mountains, forests, plain of North America, Asia and Europe. The technique is 

developed by Seyedali Mirjalili, Seyed Mohammad Mirjalili and Andrew Lewis in 

2014. 

4.5.1 Methodology of GWO  

Grey wolves commonly have a group size of 5-12 wolves on an average. They have a 

very strict social dominant hierarchy as shown in Figure 4.6. 
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The alphas either male or female is considered to be the leader among them and 

responsible for making decisions about the hunting of the prey. This makes alpha as 

the most dominating members of the hierarchy. The wolf that assists alpha in decision 

making is called beta, which is the second level of the hierarchy. The third level of 

hierarchy is known as delta, which acts as a subordinate and help alpha as well as beta 

during hunting process.  

The level of respect is directly proportional to the dominance of the wolf. The delta 

wolf dominates the rest of the omegas. The omega wolves are the followers and have 

the lowest level in the hierarchy. They allowed to eat last and considered as an 

unimportant individual in the group. The hunting process of grey wolf incorporates 

the following steps: 

Ø Tracking, chasing, and approaching the prey. 

Ø Pursuing, encircling, and harassing the prey until it stops moving. 

Ø Attack towards the prey. 

 

4.5.2 Mathematical model of GWO 

The mathematical model of GWO comprises of social hierarchy, encircling prey, 

hunting behavior, attacking prey, and search for the prey. 

 

 

Figure 4.6 Hierarchy of GWO 
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4.5.2.1 Social Hierarchy 

The social hierarchy of GWO incorporated with four different levels of dominance. 

The most dominating wolf is considered as an alpha , then beta , delta  

which act as a subordinate and the rest of the wolves are the followers known as the 

omegas . The fitness of the wolves is directly associated with the dominating 

behaviour of the wolf, i.e. alpha is considered to be the fittest wolf among them. 

4.5.2.2 Encircling Prey 

To model the encircling behavior of the wolves, following equations are required: 

                                                   (4.27) 

where  and  are coefficient vectors,  is the position vector of the prey,  

indicates the position vector of a grey wolf,  is the current iteration and components 

of  linearly decreased from 2 to 0 over the course of iterations and ,  are random 

values in the range of [0, 1]. 

4.5.2.3 Hunting Behavior 

Grey wolves generally search for an easy prey and have the ability to recognize the 

location of prey and encircle them. The group of wolves is guided by alpha. Beta and 

delta plays a vital role during the hunting process and we assume that they have better 

knowledge about the potential location of the prey. Therefore, we save the first three 
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solutions and update the position of others on the basis of the best search agents and 

the formulas are: 

where  and  is the best search agent for 

iteration . The three best solutions are updated as alpha, beta and delta. The other 

wolves update their positions on the basis of the current location of alpha, beta and 

delta. 

4.5.2.4 Attacking Prey 

The hunting process of grey wolf is completed when the prey stops moving. To 

shorten the gap between the position of the grey wolves and the prey is depend on the 

value of . As  decreases the gap between the position of grey wolf and prey 

reduces. Therefore, to reduce  the value of  should be decreased. In this thesis, the 

value of  is calculated as: 
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whereas  is decreased from  to  as the iteration increases and  is the 

maximum value of the performance index. This encircling mechanism of GWO shows 

some properties of exploitation.  

4.5.2.5  Search for Prey 

Grey wolves search for the prey, according to the position of alpha, beta and delta. 

The searching for prey is diverged to different locations. This shows the exploration 

property of the GWO algorithm. The exploration is due to random variable , which 

lies in the range [0, 2]. 

4.6 VALIDATION TOOL FOR OPTIMIZATION 

The objective of the optimization technique is to minimize the performance index as 

mentioned below: 

· Integral Square Error 

                                2
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( )ISEJ e t dt

¥

= ò                                                 (4.45)        

· Integral Absolute Error 
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( )IAEJ e t dt
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= ò                                                 (4.46) 

· Integral Time weighted Square Error 
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· Integral Time weighted Absolute Error 

                                                       
0

. ( )ITAEJ t e t dt

¥

= ò                                              (4.48) 

4.7 CONTROLLER DESIGN USING GREY WOLF OPTIMIZER 

The GWO algorithm fine-tunes the parameters of PID controller as shown in the 

flowchart. The number of iteration required to search for the optimum solutions are 

100 and number of wolves chosen are 12. The best parameter of the PID controller 

obtained using GWO algorithm is shown in Table and the procedure is shown in    

Figure 4.7. 
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Figure 4.7 Flowchart for obtaining parameters of PID controller using GWO  

Table 4.7: Parameters of PID controller obtained using GWO algorithm 

 

KP KI KD 

GWO 0.736799776 0.00001334 2.42268967 

 

Yes 

No 

Define the search space accordingly 

Generate population based on the parameters tuned using conventional 

techniques 

Evaluate fitness of each variable 

Sort and rank as alpha, beta, delta and omegas 

Initialize parameters  and  

Calculate new position of each variable on the basis of their rank  

Is performance index 

is minimized and 

desired requirements 

are fulfilled? 

Return best value for PID controller 

Start 
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Figure 4.8 Step Response of Nonminimum Phase System with GWO algorithm 

Table 4.8: Time-domain specification of nonminimum phase system with GWO 

algorithm 

 Rise Time 

(sec.) 

Settling 

Time (sec.) 

Peak 

Time 

(sec.) 

Percentage 

Overshoot 

Steady-

state 

error 

YGWO(s) 10.4089 22.4561 28.003 1.983 0.000246 

where  is the closed-loop transfer function of the nonminimum phase system 

when the parameters are tuned using grey wolf optimizer. 



 

 

 Page 76 

 

 

Figure 4.9 Bode Response of Nonminimum Phase System with GWO algorithm 

Table 4.9: Performance indices of nonminimum phase system using GWO algorithm 

 

ISE IAE ITSE ITAE 

GWO 

algorithm 
11.9738 14.3932 69.54 107.71 
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4.8 OUTCOMES OF VARIOUS CONTROLLERS 

 

Desired 

Specifications 

Ziegler-

Nichols 

method 

Chien- 

Hrones- 

Reswich 

method 

PID 

controller 

using Smith 

Predictor 

PID 

controller 

using 

GWO 

Settling 

Time 
≤50 × × √ √ 

Peak 

Overshoot 
≤15% × × √ √ 

Steady-

state error 
0 × × × × 

Gain 

Margin 
≥6dB × × √ √ 

Phase 

Margin 
≥450

 × × √ √ 

 

 

4.9 CONCLUSION 

The controller is successfully designed based on classical and modern approaches to 

control the non-minimum phase system. Two popular classical tuning criterion known 

as Ziegler-Nichols and Chien–Hrones–Reswick methods were used for tuning the 

parameters of the PID controller. 

The PID controller is also designed on the basis of Smith predictor approach. This 

method utilizes a plant model to predict the future output of the plant. This results in a 

control law that acts immediately on the reference input avoiding instability and 



 

 

 Page 78 

 

sluggish control. The PID controller is an inaccurate structure and therefore, an 

optimized technique is used to design a perfect PID controller for nonminimum phase 

system.  

The Grey wolf optimizer successfully tunes the parameters of PID controller and 

stabilizes the system’s performance both in time-domain as well as in frequency-

domain. The eminent properties of optimization technique like exploration and 

exploitation are guaranteed by the GWO algorithm. The effectiveness of the proposed 

techniques is validated by comparing it with the conventional control techniques.  
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