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Chapter 2 

BACKGROUND ON NONLINEAR CONTROL SYSTEM & 

OPTIMIZATION 

2.1 INTRODUCTION 

In general, all physical systems have some kind of nonlinearities. Sometimes it may 

even be desirable to introduce a nonlinearity deliberately in order to improve the 

performance of the system to make its operation secure. This may also result in 

making the system more economical than is possible with linear components alone. 

Nonlinear systems differ from the usual linear system in several ways. Perhaps the 

most significant of these is the fact that the principle of superposition is not applicable 

to nonlinear systems i.e. altering the size of the input does not change the shape of the 

response of the linear system, whereas for the nonlinear system there is a considerable 

change in both the percentage overshoot and the frequency of oscillation. Similar 

observations may be made about the stability. In linear systems, stability is a 

characteristic of the system, independent of the magnitude of the input or the initial 

conditions. In the case of nonlinear systems, stability may depend on the magnitude of 

the input as well as the initial condition. Furthermore, application of a sinusoidal input 

to a stable linear system causes the steady-state output to be a sinusoid of the same 

frequency, which will, in general, differ from the input in phase and magnitude. In 

nonlinear systems, on the other hand, the steady-state output may contain harmonics 

of the input, and in some cases even sub-harmonics may arise. 

Other unusual feature of nonlinear system includes such limit cycles and jump 

phenomena. The former means that independent of the magnitude of the input or 

initial conditions, the system may produce oscillations of a certain period and 
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amplitude, which may not be sinusoidal. The latter imply jumps in magnitude and 

phase as the frequency is changed near resonance [50].  

2.2 TYPES OF NONLINEARITIES 

In most control systems we cannot avoid the presence of certain types of 

nonlinearities. These can be classified as static or dynamic. A device for which there 

is a nonlinear relationship between the input, , and the output, , that does not 

involve a differential equation is called a static nonlinearity. On the other hand, the 

input and the output may be related through a nonlinear differential equation. Such a 

device is called a dynamic nonlinearity [51-53]. The basic features of some common 

nonlinearity are: 

Ø Saturation: it is one of the most common static nonlinearities. A simple 

example is an amplifier for which the output is proportional to the input only 

for a limited range of values of the input. As the magnitude of the input 

exceeds the range, the output approaches a constant. 

Ø Dead zone: In many physical devices the output is zero until the magnitude of 

the input exceeds a certain value. For example, while developing the 

mathematical model for a dc servo-motor, any voltage applied to the armature 

windings will cause the armature to rotate, if the field current is maintained 

constant. In practice, rotation will result only if the torque produced by the 

motor is sufficient to overcome the static friction. 

Ø Relays: a relay is often used in control systems as it provides large power 

amplification relatively economical.  
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Ø Friction: A frictional force opposes motion whenever there is sliding contact 

between mechanical surfaces. The predominant part of the frictional forces is 

called viscous friction, which is proportional to the relative velocity between 

the moving surfaces. In addition to viscous friction, there are two components 

of the total friction forces that are nonlinear. One of them is coulomb friction, 

which produces a constant force opposing motion. The other is called stiction, 

which is the force required to initiate the motion, and always greater than the 

force of coulomb friction. 

 

2.3 STABILITY OF NONLINEAR SYSTEMS 

The stability of a nonlinear system depends not only on the physical properties of the 

system but also on the magnitude and nature of the input as well as the initial 

conditions. Hence, the study of stability of nonlinear systems is more complicated 

than for linear systems. Several definitions of stability have been used in the literature 

of nonlinear systems. Here only the case of an autonomous or unforced system is 

discussed [54]. Consider an autonomous nonlinear continuous-time system, 

represented by the state equations 

                                                                                                               (2.1) 

                                                                                                               (2.2) 

where  is the dimensional state vector,  is the m-dimensional input vector, 

 is the dimensional output vector, and the vectors and are nonlinear functions 

of and . The system is said to be autonomous if the input  is identically zero. 

For this case, Eq. (2.1) is reduced to 
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                                                                                                                   (2.3) 

A point of equilibrium is obtained for any value of the vector  that . In general 

a nonlinear system may have many points of equilibrium. Some of these may be 

points of stable equilibrium, while others may be points of unstable equilibrium. A 

good example is the bi-stable multi-vibrator, an electronics circuit with three states of 

equilibrium, two of which are stable and one stable. Consequently, it is necessary to 

examine stability at each point of equilibrium. It is common practice to transform 

coordinates in the state space so that the origin becomes the point of equilibrium. This 

is convenient for examining local stability and can be done for each point of 

equilibrium [55]. 

Let us now consider a hyper-sphere of finite radius surrounding the origin of the state 

space (the point of equilibrium), that is the set of points described by the equation  

                                                                                           (2.4) 

in the n-dimensional state space. Let this region be denoted by  

 

 

 

 

 

 

 

 

 

 

Stable 

Figure 2.1 Stability in the sense of Lyapunov 

Unstable 
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The system is said to be stable in the sense of Lyapunov if there exist a region  

such that a trajectory starting from any point in this region does not go outside 

the region  as shown in Figure 2.1 for the two-dimensional case. 

The system is said to be asymptotically stable if there exist a  such that the 

trajectory starting from any point  within  does not leave  at any time 

and finally returns to the origin as shown in Figure 2.2. 

 

 

 

 

 

 

 

 

The system is said to be monotonically stable if it is asymptotically stable and the 

distance of the state from the origin decreases monotonically with time as shown in 

Figure 2.3. 

 

 

 

Figure 2.2 Asymptotic stability in the sense of Lyapunov 

 

 

 



 

 

 Page 26 

 

 

 

 

 

 

 

 

 

 

 

A system is said to be globally stable if the regions  and  extend to infinity. 

A system is said to be locally stable if the region  is small and when subjected to 

small perturbations the state remains within the small specified region . 

2.4 LINEARIZATION 

Linearization is based on the Taylor series expansion of a nonlinear function about an 

operating point. For example, consider a nonlinear function, . It can be written as 

                          (2.5) 

We get a linear approximation of Eq. (2.5) if we ignore all terms except the first two. 

Clearly, this will be a good approximation if either  is very small, or the 

higher order derivatives of  are very small. This is the main idea behind the 

incremental linear models used for the analysis of electronic circuits [56]. 

Figure 2.3 Monotonic stability in the sense of Lyapunov 
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We shall now generalize this to the case of the state equations for nonlinear systems. 

Assuming that the dimension of  is , therefore Eq. (2.1) can be re-written as 

                                                                                          (2.6)   

Ignoring the higher-order terms in Taylor series expansion of this vector differential 

equation leads to the linearized model (assuming , that is, the coordinates have 

been transformed to make the origin the point of equilibrium, and ) 

                                                                                                            (2.7) 

where 

                                                                                         (2.8) 

and 

                                                                                        (2.9) 

 and  are said to be Jacobian matrices. Again, this linear model will be valid only 

for small deviations around the equilibrium point. Nevertheless, it can be used for 

investigating local stability around the equilibrium point by simply applying the 

Routh criterion to the characteristic polynomial of . 



 

 

 Page 28 

 

2.5 STABILITY ANALYSIS USING LYAPUNOV’S DIRECT METHOD 

The simple stability criteria developed for linear systems are not applicable to linear 

systems since the concept of roots of a characteristic polynomial are no longer valid. 

As stated in section 2.3, many different classes of stability have been defined for 

nonlinear systems. Now, the stability is to be discussed in the sense of Lyapunov. 

Consider a region  in the state space enclosing an equilibrium point . Then this is 

point of stable equilibrium provided that there is a region  contained within  

such that any trajectory starting in the region  does not leave the region . 

With this definition it is not necessary that the trajectory approach to the equilibrium 

point. It is only required that the trajectory be within the region . This permits the 

existence of oscillations of limited amplitude, like limit cycles. 

Lyapunov’s direct method provides a means for determining the stability of a system 

without actually solving for the trajectories in the state space. It is based on the simple 

concept that the energy stored in a stable system cannot increase with time. Given a 

set of nonlinear state equations, one first defines a scalar function  that has 

properties similar to energy and then examines its derivatives with respect to time. 

THEOREM 2.1 

A system described by  is asymptotically stable in the vicinity of the 

equilibrium point at the origin of the state space if there exist a scalar function  such 

that 

1.  is continuous and has continuous first partial derivatives at the origin. 

2.  for  and . 
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3.  for all  . 

These conditions are sufficient but not necessary for stability.  is often called a 

Lyapunov function. 

THEOREM 2.2 

A system described by  is unstable in a region  about the equilibrium at the 

origin of the state space if there exist a scalar function V such that 

1.  is continuous and has continuous first partial derivatives at the origin. 

2.  for  and . 

3.  for all  . 

Again these conditions are sufficient but not necessary. 

2.6 CONTEMPORARY METHODS OF OPTIMIZATION 

In recent years, some optimization methods that are conceptually different from the 

traditional mathematical programming techniques have been developed. These 

methods are labeled as modern or nontraditional methods of optimization. Most of 

these methods are based on certain characteristics and behavior of biological, 

molecular, swarm of insects, and neurobiological systems. The following methods 

are: 

· Genetic algorithms 

· Simulated Annealing 

· Particle swarm optimization 

· Ant colony optimization 

· Grey Wolf Optimizer 
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· Teaching Learning Based Optimization 

· Fuzzy Logic Control 

Most of these methods have been developed only in recent years and are emerging as 

popular methods for the solution of complex engineering problems. Most require only 

the function values (and not the derivatives). The genetic algorithms are based on the 

principles of natural genetics and natural selection [57-58]. Simulated annealing is 

based on the simulation of thermal annealing of critically heated solids. Both genetic 

algorithms and simulated annealing are stochastic methods that can find the global 

minimum with a high probability and are naturally applicable for the solution of 

discrete optimization problems. The particle swarm optimization is based on the 

behavior of a colony of living things, such as a swarm of insects, a flock of birds, or a 

school of fish. Ant colony optimization is based on the cooperative behavior of real 

ant colonies, which are able to find the shortest path from their nest to a food source. 

The grey wolf optimizer is based on the hunting behavior of wolves and whereas, 

teaching learning based optimization is based on the outcome of effective learning 

amongst the learners. The latter two techniques are developed in the recent years and 

gained popularity amongst the former techniques in providing effective and efficient 

solution in coping up all the design requirements. 

In many practical systems, the objective function, constraints, and the design data are 

known only in vague and linguistic terms. Fuzzy optimization methods have been 

developed for solving such problems [59-60].  

2.6.1 Process of Optimization 

The evolutionary optimization process is mainly depends on identifying the 

parameters that needs to be optimized. Reducing the number of parameters usually 
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reduces the complexity of the optimization task, thereby achieving a faster 

convergence of the optimization algorithm. However, teaching learning based 

optimization can typically handle a large number of parameters efficiently. Also, by 

constructing too many of the parameters may result in eliminating the optimal 

solution. Therefore, a careful trade off exists between the complexity of the 

optimization task and convergence of the optimization technique. The optimization 

process mainly covers following steps as shown in Figure 2.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Step 1. What are the free parameters of the 

system? 

Step 2. What is the interpretation function? 

Step 3. What is the initial population? 

Step 4. What are the critical measures of 

performance and how are they integrated to 

form a fitness function? 

Figure 2.4 Four Stages of Optimization Process 
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2.7 FUZZY PARAMETERS 

Fuzzy expert knowledge can be divided into two basic components: Domain 

knowledge and Meta Knowledge. The Domain knowledge is generally the conscious 

operating knowledge about a particular system such as the membership functions and 

the fuzzy rule set. The Meta knowledge is the unconscious knowledge that is also 

needed to completely define a fuzzy system such as the mechanism of executing the 

fuzzy rules, methods of implication, rule aggregation, and defuzzification. Most of the 

existing methods in evolutionary fuzzy systems attempt to optimize parameters of the 

domain knowledge only (namely membership functions and rule set) while ignoring 

the effect of meta-knowledge. Consequently, there are 4 basic methods of 

optimization as follows 

· Automatic optimization of membership functions while there is a fixed and 

known rule set; 

· Automatic selection of the rule set with fixed membership functions; 

· Optimization of both the membership functions and rule set in two steps. First 

selecting the optimal rule set with fixed known membership functions and 

then tuning the membership functions with the resulting rule set; and 

· Simultaneous optimization of fuzzy rule set and membership functions. 

Note that the number of membership functions or rules can also be optimized in the 

algorithm. There may be various reasons for a method to be selected. Some of those 

advantages and disadvantage are mentioned below: 

· Since the rule set and membership functions are codependent, they should be 

defined simultaneously. This can lead to more optimal solutions. [61, 62]; 
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· Since the performance of a fuzzy system is more dependent on fuzzy rules 

rather than membership functions, fine tuning of the fuzzy system is better 

possible by tuning of membership functions. So it seems that it is better first to 

select the optimal rule set (coarse tuning) and then tune the membership 

functions (third method); 

· Even though various methods exist to encode both the rule base and 

membership functions, such encoding can have several potential difficulties. 

In addition to the level of complexity and large number of optimization 

parameters, the problem of competing conventions may arise and the 

landscape may unnecessarily become multi-modal. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


