
                          

LETTER

Ordering kinetics in active polar fluid
To cite this article: Shambhavi Dikshit and Shradha Mishra 2023 EPL 143 17001

 

View the article online for updates and enhancements.

You may also like
Comparison of contractile and extensile
pneumatic artificial muscles
Thomas E Pillsbury, Norman M Wereley
and Qinghua Guan

-

Defect order in active nematics on a
curved surface
D J G Pearce

-

Fingering instability of active nematic
droplets
Ricard Alert

-

This content was downloaded from IP address 103.151.209.237 on 21/03/2024 at 09:13

https://doi.org/10.1209/0295-5075/acdcb6
https://iopscience.iop.org/article/10.1088/1361-665X/aa7257
https://iopscience.iop.org/article/10.1088/1361-665X/aa7257
https://iopscience.iop.org/article/10.1088/1367-2630/ab91fd
https://iopscience.iop.org/article/10.1088/1367-2630/ab91fd
https://iopscience.iop.org/article/10.1088/1751-8121/ac6c61
https://iopscience.iop.org/article/10.1088/1751-8121/ac6c61


July 2023

EPL, 143 (2023) 17001 www.epljournal.org
doi: 10.1209/0295-5075/acdcb6

Ordering kinetics in active polar fluid

Shambhavi Dikshit
(a) and Shradha Mishra

(b)

Indian Institute of Technology (BHU) - Varanasi, 221005, India

received 23 January 2023; accepted in final form 8 June 2023
published online 26 June 2023

Abstract – We model the active polar fluid as a collection of orientable objects supplied with
active stresses and momentum damping coming from the viscosity of bulk fluid medium. The
growth kinetics of local orientation field is studied. The effect of active fluid is contractile or
extensile depending upon the sign of the active stress. We explore the growth kinetics for different
activities. We observe that for both extensile and contractile cases the growth is altered by a
prefactor when compared to the equilibrium Model A. We find that the extensile fluid enhances
the domain growth whereas the contractile fluid supresses it. The asymptotic growth becomes
pure algebraic for large magnitudes of activity. We also find that the domain morphology remains
unchanged due to activity and the system shows the good dynamic scaling for all activities. Our
study provides the understanding of ordering kinetics in active polar gel.

Copyright c© 2023 EPLA

Introduction. – The systems in which the energy con-
sumption occurs on individual constituent level and leads
to collective dynamics are active systems [1,2]. The ex-
istence of active systems is found from small microscopic
length scale, i.e., interacellular level like cytoskeletal actin
filaments [3], bacterial colonies [4], etc. to large macro-
scopic scale, i.e., up to few meters like animal herds [5],
birds flocks [6,7], etc. Active systems are defined as wet
when coupled to a momentum conserving solvent, in which
solvent-mediated hydrodynamic interaction becomes im-
portant [1,2]. Bacterial swarms in a fluid, cytoskeleton fil-
aments, colloidal or nanoscale particles propelled through
a fluid are examples of wet systems [8,9]. When no such
fluid is present, then the system is called dry. Dry systems
include bacteria gliding on a surface [10], animal herds or
vibrated granular particles and so on [11,12].

Starting with the seminal work of Vicsek [7], most of
the previous works on active system have focused on the
steady state properties [1,13–15]. The study of ordering
kinetics in active systems is made complex by the fact
that the system relaxes to a nonequilibrium steady state
(NESS). There have been very few studies [16–19] of the
coarsening kinetics from a homogeneous initial state to
the asymptotic NESS, though understanding it is of great
experimental interest. Previous studies of coarsening or
domain growth have primarily focused upon systems ap-
proaching to an equilibrium state [20–23]. Based on the
symmetry and conservation laws the domain growth is
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classified mainly in two types. The domain growth in sys-
tems with conserved order parameter is named Model B
and with nonconserved order parameter is called Model A,
and follows an algebraic growth law with growth exponent
z = 3 [22] and 2 [23], respectively. For the systems with
scalar order parameter and nonconserved growth kinetics,
the interfacial velocity of the growing domain is propor-
tional to the local curvature of the interface, which leads
to the size of the domain L(t) ∝ t1/2, Allen and Cahn
growth law [24]. On the other hand, for the systems with
conserved kinetics the interface has to pay a cost due to lo-
cal conservation of order parameter. That leads to the size
of the domain growing with time such that L(t) ∝ t1/3 fol-
lowing the Lifshitz-Slyozov-Wagner (LSW) theory [22,25].

For the systems having symmetries of two-dimensional
XY-model, with nonconserved growth kinetics and or-
der parameter with more than one components or vec-
tor order parameter, the asymptotic growth law is still
z = 2. The topological defects are vortices and antivor-
tices and the domain growth is driven by the annihilation
of these defects. The detailed calculation [26,27] shows
that there is logarithmic correction to the pure algebraic
growth L(t) ∝ (t/ ln(t))1/2. Equilibrium liquid crystals,
ferromagnetic materials with continuous symmetry, spin
glasses, two-dimensional superconductors, etc. are some
of the examples of systems with nonconserved vector or-
der parameter.

The domain growth in systems approaching towards a
thermal equilibrium state is very well studied in dry [22,
23,26,27] as well as wet systems with hydrodynamic
effect [28–31]. The understanding of the ordering kinetics
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in terms of the number of topological defects is explored
in many of the studies [32–36]. Recently some studies
are performed on the understanding of ordering of domain
growth in dry active systems [16,18,19,37]. But the order-
ing kinetics in active systems with fluid is rarely explored.
Some recent studies show the effect of hydrodynamics on
the ordering kinetics of apolar order parameter field [38]
and the effect of fluid on the steady state properties of ac-
tive polar fluid [39–41]. This motivates us to study the or-
dering kinetics of active polar systems with fluid or active
polar gel. The examples of active polar gels are bacteria
suspensions, active emulsions and active gels. [42,43].

The model contains a collection of orientable objects
supplied with active stresses and momentum damping
coming from the viscosity of bulk fluid medium. The or-
dering kinetics of the orientational field is studied after
a quench from the random disordered state. With time
the system orders and the size of ordered domain grows
with time. We characterise the domain growth and scal-
ing. The direction of spontaneous flow makes the system
respond like extensile and contractile in nature. For the
extensile case, particles act like pushers (pulling fluid in-
ward equatorially and emitting it axially) and for contrac-
tile case they are more likely pullers [44] (vice versa). We
observe that for both extensile and contractile cases the
growth is altered by a prefactor when compared to the
equilibrium Model A. We find that the extensile fluid en-
hances the domain growth whereas the contractile fluid
supresses it. The asymptotic growth becomes pure alge-
braic for large magnitudes of activity. For all activities,
system shows good dynamic scaling and domain morphol-
ogy remains unaffected with respect to the activity.

Model A. – The time evolution of a system with
nonconserved local order parameter for a collection of
orientable objects is described by the time-dependent
Ginzburg Landau equation [23,45],

∂Pα(r, t)
∂t

= −Γ0
δF0

δPα(r, t)
+ θα(r, t), (1)

where Γ0 is the mobility. The Ginzburg Landau free en-
ergy F0 is

F0 =
∫

ddr

{
1
2
aP(r, t)2 +

λ

2
|∇P(r, t)2| +

b

4
P(r, t)4

}
,

(2)
here P(r, t) is a vector field with components Pα(r, t), and
α = 1 and 2 in two-dimensions. The vector field P(r, t) is
the local orientation field and is defined by the average ori-
entation of the particles in a small coarse-grained region.
The size of the region is such that it consists of sufficient
number of particles to perform the statistical averaging.
θα(r, t) is Gaussian random white noise with properties
〈θα(r, t)〉 = 0 and 〈θα(r, t)θα(r

′
, t

′
)〉 = 2Δ0δ(t − t

′
)δαα′ .

a, b and λ are constants. (a < 0 ensures the broken
symmetry state, b > 0 and λ > 0 for stability and the

strength of noise Δ0 = 0). After substituting the form of
F0 from eq. (2) in eq. (1) and performing the functional
derivative of Ginzburg Landau free energy F0, we get the
time-dependent Ginzburg Landau (TDGL) [23] equation
for nonconserved vector field,
∂P(r, t)
∂t

= aΓ0P(r, t) − bΓ0|P(r, t)|2P(r, t) + λ∇2P(r, t).

(3)
The model described by eq. (3) is called as Model A ac-
cording to Halprin and Hohenberg [23]. The noise term
present in eq. (1) is turned off and we consider the deter-
ministic part of the TDGL equation as discussed in [21].
The Gaussian noise in eq. (1) is purely thermal in nature
and ensures that the system reaches the global minima at
late times. But most of the kinetic theories are developed
for the deterministic TDGL equation and thermal noise
is irrelevant for growth kinetics [21]. Equation (3) very
well explains the ordering kinetics in magnets with vector
order parameter [46] and liquid crystals [47]. Now we fur-
ther introduce the effect of hydrodynamic interaction on
the ordering kinetics of nonconserved field.

Active polar fluid. – Now we discuss the hydrod-
nyamics of active polar fluid or active polar gel. We
focus here on the active gel defined with a collection
of orientable objects supplied with active stresses and
momentum damping coming from the viscosity of bulk
fluid medium, compared to the friction due to substrate
or medium [32,33,41]. The equations are first proposed
by [33] for self-propelling objects but later developed
by [41] and [32] for the system of cytoskeleton in living
cells and polar actin filament, which become active only
in the presence of molecular motors that consume ATP. A
collection of artificial Janus rods which gain motility due
to electrophoresis is a good example of active polar gel and
can be easily designed in the laboratory [8]. The presence
of fluid introduces the hydrodynamic effect. If the hydro-
dynamic interaction is turned off then the model is purely
passive and the same as Model A. The model incorporates
the coupling between local order parameter and fluid.

We model the system by the coupled dynamics of the
orientation order parameter P(r, t) with a solvent local
velocity v(r, t) with additional active stresses. The system
is modeled by the coarse-grained coupled hydrodynamic
non-linear partial differential equations of motion for the
two fields. The fluid is introduced through the standard
Navier-Stokes equation of motion for fluid with additional
coupling to the polarisation, P(r, t) of particle through
active and passive stresses (deviatoric stress) as introduced
in [41].

In the presence of fluid, in addition to the term present
in eq. (3) coupling to the fluid velocity, eq. (3) will have
convective nonlinearity of type (v · ∇)P. Hence the mod-
ified equation for the P(r, t) will become

∂P(r, t)
∂t

+ v · ∇P(r, t) + ωαβPβ + v1vαβPβ =

aΓ0P(r, t) − bΓ0|P(r, t)|2P(r, t) + λ∇2P(r, t), (4)
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with the comoving and corotational derivative of the po-
larisation, P(r, t), where ωαβ = 1

2 (∂αvβ − ∂βvα) and
vαβ = 1

2 (∂αvβ + ∂βvα) are the vorticity and strain-rate
tensor respectively. The coupled velocity field is due to
momentum conserving solvent which satisfies the condi-
tion of incompressibility, i.e., ∇ · v = 0

The equation for fluid velocity, v(r, t), satisfying conser-
vation of mass (condition of incompressibility) and conser-
vation of momentum is given as

∂v
∂t

+ v · ∇v = η∇2v − ∇p+ ∇ · σtotal
αβ . (5)

Equation (5) is the Navier-Stokes equation with an addi-
tional force term due to stresses present in the fluid.

This term includes the fluid static part and fluid dy-
namic part that involves activity and flow coupling co-
efficient. In this case the total stress tensor becomes
σtotal

αβ = σαβ + σa
αβ where σαβ is fluid passive part and

σa
αβ gives the fluid active part. In polar liquid, mechanical

stress tensor can be decomposed into symmetric and anti-
symmetric part, where the symmetric part of stress tensor
is the actual thermodynamics flux and conjugate force is
the antisymmetric part of the velocity gradient vαβ . Hence
the constitutive equation for stress tensor gives [48]

σtotal
αβ = 2η1vαβ +

1
2
v1(Pαhβ +Pβhα− d

2
(Pγhγδαβ))+ξqαβ ,

(6)
here d = 2 for the two-dimensions. ξ is the transport
coefficient related to the activity of the system. The term
ξqαβ is self-propelled stress, first incorporated by [49] into
generalised hydrodynamics of orientable fluid. The sign
of the activity coefficient, ξ tends to change the nature
of the system. A negative ξ corresponds to a contractile
stress as in the polar active filament [41,48]. A positive ξ
shows an extensile stress as observed in certain bacterial
suspensions [1]. v1 is the flow coupling coefficient and
qαβ = PαPβ − 1

dδαβ . If the coefficient ξ = 0 turns off the
hydrodynamic coupling is purely passive, which represents
the Model A with fluid or, as we called it, Passive Model A.

The pressure term on the right-hand side of eq. (5) can
be eliminated by taking the curl (∇×) on both sides of
eq. (5), we find the equation for the vorticity of fluid ω =
∇ × v,

∂ω

∂t
+ (v · ∇)ω = η∇2ω + ∇ × (∇ · σtotal

αβ ), (7)

by integrating eq. (7), we get ω and then we solve Poisson’s
equation,

∇2ψ = −ω, (8)

where a scalar field ψ is defined such that

v = (∂yψ,−∂xψ). (9)

Then the updated flow field v(r, t) enters eq. (4). We study
the ordering kinetics of active polar fluid when quenched
from the random disordered state to ordered state. Later

everywhere the time and length scales are rescaled by
(aΓ0)−1 and

√
λ

aΓ0
, respectively, to make the equations

and parameters dimensionless.
We numerically integrate eqs. (4), (7) and (8) using Eu-

ler’s scheme with small steps Δx = 1.0 and Δt = 0.1. In
our numerical implementation, the first- and second-order
derivatives for an arbitrary function f(r, t) are discretized
as

∂f

∂t
=
f(t+ Δt) − f(t)

Δt
, (10)

∂f

∂x
=
f(x+ Δx) − f(x− Δx)

2Δx
, (11)

∂2f

∂x2
=
f(x+ Δx) − 2f(x) + f(x− Δx)

Δx2
. (12)

We fix the values of coefficients a, b, λ, η, Γ0 and v1 to
1 and tune the activity ξ. The activity ξ is tuned from
[−4, 8] to see the effect of both contractile and extensile
stresses generated due to fluid present. The system is
started from the random homogeneous state of orienta-
tion of polarisation and random initial scalar field in the
small range ψ ∈ [1.0–1.1] and then initial fluid velocity is
generated by using eq. (9). After that we calculate the
vorticity ω by taking the curl (∇×) of velocity v. Finally
using eqs. (4) and (7) we updated the local polarisation
P(r, t) and vorticity ω, respectively. The further scalar
field ψ and velocity v is updated using Poisson’s equa-
tion (8) and eq. (9), respectively. This whole process of
updates of local polarisation P and local fluid velocity
v is counted as one simulation step. We let the system
evolve for total time steps of t = 8 × 104 (the total real
time t = 8 × 103) and system size L× L = 512 × 512 and
1024×1024 with periodic boundary conditions in both the
directions. The data is averaged over the 25 independent
realisations for good statistics. We checked the numerical
stability of the system for the present set of parameters.

Results. – We first let the system evolve to the ordered
state after a quench from the disordered initial state. Af-
ter the quench, the point-like defects or disclinations are
observed. These defects are a spatially inhomogeneous
configuration of the director field or orientational order
field in our system. The strength of a disclination de-
pends on the rotation of orientation field around the de-
fect core in one loop. For a two-dimensional system, the
rotation of director field can be expressed in terms of a
single scalar field, θ, representing the angle formed by the
director n = (cosθ, sinθ) with the horizontal axis of the
Cartesian frame. This gives

1
2π

∮
dθ = k, (13)

where the integral is calculated along an arbitrary con-
tour and k is the winding number. If the contour encloses
a defect then the winding number k of vortex/antivortex
disclination is k = +1 and −1, respectively. For other
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Fig. 1: Panels (a)–(e) are plot of the left-hand size of eq. (13) for different activities −3, −1, 0, 1 and 3, respectively. Upper to
bottom panels are for different times 80, 800 and 8000. Panels (f)–(j) and (k–o) are corresponding angle θ(r, t) and magnitude
of fluid velocity |v(r, t)|, respectively, for the same set of activities as in (a)–(e) and at late time 8000. In (f)–(j) the circles and
squares represent the location of some of the vortices and antivortices with winding number k = +1 and −1, respectively.

places it should be almost zero. We calculate the value
of k for the set of values of activities and variation of
k on the two-dimensional plane is shown in fig. 1(a)–(e)
for ξ = −3,−1, 0, 1 and 3, respectively, and for differ-
ent times t = 80, 800 and 8000, starting from the upper
panel to the lower panel. We observe that as the system
evolves, the number of defects decreases and the larger
value of ξ, the more homogeneous configuration of the
orientation field P(r, t) is observed. The number of de-
fects decreases by increasing the activity ξ. This we con-
firm by the angle plot θ(r, t) = tan−1[P2(r,t)

P1(r,t) ], shown in
fig. 1(f)–(j), for the same set of ξ as in fig. 1(a–e) at late
time, t = 8000. The meeting points of dark and bright
colors are the location of defects. The circles and squares
in fig. 1(f)–(j) show the locations of some of the vortices
and antivortices with winding number k = +1 and −1,
respectively. Further in fig. 1(k)–(o) we plot the magni-
tude of fluid velocity v(r, t) = |v(r, t)| for the same set
of activities. The structure of fluid is very different for

100 1000
t

1

10

100

1000

N
 d

ef

����
���
���

Fig. 2: Number of defects vs. time is plotted for three different
activities −3, 0, 3. The black solid line of slope −1 is drawn.

active and passive cases. Very clearly fluid velocity devel-
ops eight-fold symmetric long ranged pattern around the
defect cores for active fluid, fig. 1(k), (l), (n) and (o). Such
pattern is absent and magnitude of fluid velocity is zero
for passive Model A, fig. 1(m).
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Fig. 3: Two-point correlation function C(r, t) vs. distance r at different times for two different ξ = 3 and −3 for system size
L = 1024 in (a) and (b), respectively. The inset figures show the scaled two-point correlation C(r/L(t)) vs. scaled distance
r/L(t).
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Fig. 4: Panel (a) shows the plot of characteristic lengths L(t) vs. time t on linear scale for positive ξ = 0, 1, 3, 4 and 5 and for
negative ξ =−3 and −4. Panel (b) shows the same plot on log-log scale. The two dahsed lines are lines of slope 1/2. (c) The
plot of t

(L(t)2)
vs. ln(t) for the ξ’s as in (a) and (b).

Next, we quantify the number of defects, Ndef with time
for three different cases, ξ = −3, 0 and 3. The Ndef is
calculated by taking the average number of vortices and
antivortices or (counting the number of points where the
winding number k = ±1 and then average is performed
over 10 independent realisations). From fig. 2, we see that
Ndef decreases with time as power law ∝ t−1. The higher
the activity ξ, the lower the number of defects observed.
A solid line of slope −1 is drawn to show the power law
decay of Ndef with time. We further explore the ordering
kinetics of the active polar gel for the different activities
in the following sections.

Dynamic two-point correlation function. – The
nature and evolution of the structure in the orientation
field is characterised by calculating the correlations in
the orientation order parameter field P(r, t), defined as
C(r, t) = 〈δP(r0 + r, t) · δP(r0, t)〉, where δP is the
fluctuation from mean and 〈. . .〉 denotes averaging over
directions, reference positions r0 and 25 independent re-
alisations. As the system coarsens with time, correlation
function increases as shown in fig. 3 for two different ξ’s,
3 and −3, panel (a) and (b), respectively. Further, we
define the characteristic length L(t) as the value of r at
which the correlation function C(r, t) decreases to 0.1 of
its value at r = 0. In the insets of fig. 3(a)–(b), we plot the
scaled two-point correlationsC(r/L(t)) vs. scaled distance

r/L(t). We find that all the curves for different times col-
lapse to a single curve for both contractile ξ = −3 and
extensile ξ = +3 systems. Hence for both the cases the
system shows the good dynamic scaling.

Growth law. – We characterise the domain growth by
examining the growth law, i.e., the scaling of character-
istic length L(t) vs. time t for different values and both
signs of ξ. In fig. 4(a) we show the variation of charac-
teristic length L(t)’s for different ξ vs. time t on linear
scale. The solid curve in fig. 4(a) is for the Passive Model
A, whereas the curves on top of it are for extensile case,
ξ > 0 and below are for the contractile case, ξ < 0. Very
clearly the characteristic length L(t) decreases on decreas-
ing ξ. In fig. 4(b) we show the same plot on the logarithmic
scale. The top and bottom dashed lines have slope 1/2.
Clearly for higher magnitude of ξ the curves become closer
to L(t) ∼ t1/2. Hence the hydrodynamic effect in active
polar fluid does not affect the asymptotic growth law as
found for the nonconserved Model A [23]. It only includes
a correction factor. Next we give the recipe to estimate
the correction factor.

In fig. 4(c) we plot the t/L2(t) vs. ln(t) for different
ξ values, to compare the results with the domain growth
of nonconserved two-component vector order parameter
field in two dimensions, where L(t) ∼ (t/ ln(L(t))1/2 [50].
Hence t/L2(t) should vary linearly with ln(t). Which is the
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Fig. 5: Static scaled two-point correlation C(r/L(t)) vs. scaled distance r/L(t) for ξ= 1 , 2, 3 and 5 in (a) and −1, −2 and −3
in (b) for system size L = 1024 at fixed t = 1500. (c) Plot of (1 − C(r/L(t)) vs. r/L(t) on log-log scale for different ξ. The
dashed line has slope 1.6.

case for passive limit ξ = 0 (linear variation of black solid
curve) in fig. 4(c). We assume the deviation from the linear
dependence or from the Passive Model A as a prefactor.
The approximated form of characteristic length for finite
ξ is L(ξ, t) = L0(ξ, t)

(
t/ ln(t)

)1/2, where the correction
factor L0(ξ, t) is obtained by the following procedure.

If the growth of domain remains the same as for the
Passive Model A, then the plot of t/L2(t) will be linear
in ln(t). We find that for all ξ values for the early times
t/L2(t) plot varies linearly with ln(t). It remains linear
for late time for passive case ξ = 0 and smaller activities
|(ξ)| < 3. Using the expression for the L(t) we can rewrite
t/L2(t) = ln(t)

L2
0(t,ξ)

. For larger times and larger |ξ| > 3, the
t/L2(t) plot saturates and becomes independent of time
t. Hence the correction L2

0(t, ξ) should vary as ∼ (ln(t)).
And the characteristic length simply goes as L(t) ∼ t1/2,
with a constant coefficient decreases with increasing activ-
ity. For larger ξ data curve starts to converge. Hence the
asymptotic growth becomes pure algebraic, the same as
for the nonconserved order parameter with discrete sym-
metry [23]. The larger active coupling of fluid for high
activity case breaks the rotational symmetry present in
continuous vector order parameter and leads the system
to behave like discrete spins of Ising type [51].

Static two-point correlation function. – We fur-
ther study the domain morphology for different activities.
We calculated the equal-time correlations in orientation
order parameter. The equal-time correlation function is
defined as before. In fig. 5 we show the plot of equal
time scaled two-point correlation function C(r/L(t)) vs.
scaled distance r/L(t) for different activities and fixed
time t = 1500. The characteristics length L(t) is defined
in the same manner. We find that the curves show the de-
viation from the data collapse when plotted as a function
of scaled distance r/L(t) as shown in fig. 3(a),(b) for the
extensile and contractile case, respectively. We further
characterise the morphology of domains by approximat-
ing small distance limit of the scaled two-point correlation
function C(r/L(t)) � (1 − (r/L(t))α), where α is defined
as the cusp exponent [20]. In fig. 5(c) we calculate the cusp

exponent α, by plotting 1 − C(r/L(t)) vs. r/L(t) on log-
log scale for three different cases: passive ξ = 0 and ξ = 3
and −3. Although the system does not show the static
scaling, for all activities the domain morphology remains
the same and is charactrised by the cusp exponent α ∼ 1.6
and it shows the deviation from the Porod law [52].

Summary. – Now we summarise the work. We study
the ordering kinetics of active polar gel. The active gel
is defined with 2 collection of orientable objects supplied
with active stresses and momentum damping coming from
the viscosity of the bulk fluid medium. The activity is
controlled by an active stress, which cannot be derived
from a free energy. The system can be contractile or
extensile depending upon the sign of coupling with the
orientation field. We study the growth kinetics of the
orientation field, when quenched from the disordered to
the ordered state. We find that for the extensile cou-
pling the growth is enhanced and for contractile case
it is suppressed with respect to passive system but the
asymptotic growth law remains the same as for the non-
conserved field. The activity leads to a correction to the
growth law of nonconserved vector order parameter. And
the asymptotic growth approaches pure algebraic growth
for large magnitude of activity. Hence the system be-
haves equivalently to the scalar nonconserved order pa-
rameter field [23]. We have also studied the effect of
activity on the dynamic and static scaling of orienta-
tion two-point correlation function. The system shows
good dynamic and no static scaling for different activi-
ties. Domains morphology remains unaffected due to ac-
tivity and shows a deviation from Porod’s law [52]. Our
results can be tested on the growth kinetics of wet po-
lar active systems and give a new direction to understand
the effect of fluid on the kinetics of orientable objects in
fluids.
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