Material and Methods

2.1. Preparation of Bioglass

Bioglass (45S5) with the chemical compositions 45%SiO₂, 24.5%CaO, 24.5%Na₂O and 6%P₂O₅ in (wt%) was prepared from reagent grade chemicals. Chemical were used fine-grained quartz (Merck, India) for silica. Lime and soda were introduced in the form of their respective anhydrous carbonates (Merck, India). P₂O₅ was introduced in the form of ammonium dihydrogen orthophosphate [NH₄H₂PO₄] (Merck, India). All the materials were of analytical grade chemicals and used without further purification. Chemicals were weight, mixed and melted in 100 ml platinum crucible at $1400\pm 5^{\circ}$ C with air as furnace atmosphere for 4 hours. Melted glasses were poured into a mold to form in the desired shape, and it was milled to a powder form in a porcelain ball mill for 24 h in Fig. 2.1.

Figure 2.1: Melting of bioglass.

Chapter2

Figure 2.2: Flow chart preparation of bioglass.

2.2. Production of HA

In the present study, calcium nitrate tetrahydrate $(Ca(NO_3)_2.4H_2O)$ (CNT) (G.S. Chemical Testing Lab. & allied industries, India), phosphoric acid (H_3PO_4) (Loba Chemie Pvt. Ltd, India) and ammonia (NH_3) (Loba Chemie Pvt. Ltd, India)) were used as initial precursors. The schematic presentation of the procedure is given in Fig. 2.3.

Figure 2.3: Flow chart preparation of hydroxyapatite.

2.3. Preparation of biocomposites

The HA, HA+TiO₂, HA+ZrO₂, HA+Fe₂O₃+CoO, HA+TiO₂+Nb₂O₅ powder were mixed each in proportional weight ratios with bioglass (45S5) powder, compacted at 1500 MPa pressure into cylindrical, rectangular die size and pellets samples were sintered at 1000, 1100°C to prepare the composites similarly as shown in Table 2.1.

Table 2.1: Composition of	Bioglass and I	Biocomposite	(BC1, BC2, BC3, I	BC4).

	Composition (wt %)						
BG (4585)	45 SiO ₂	24.5 Na ₂ O	24.5 CaO	6 P ₂ O ₅			
Biocomposite	BG		1	НА			
BC1	95	5	5				
BC2	90	0	10				
BC3	8:	5	15				
BC4	80		20				
Biocomposite	BG]	HA				
BGHATi1	90		5				
BGHATi1	80		10				
BGHATi1	70		15				
BGHATi1	60		20				
Biocomposite	BG]	НА				
BHZ1	85		10				
BHZ2	70		20	10			
BHZ3	55		30	15			
BHZ4	40	40		20			
Biocomposite	BG	НА	Fe ₂ O ₃	СоО			
BGHAFeCo1	80	16.5	2.5	1.0			
BGHAFeCo2	70	23.5	5.0	1.5			
BGHAFeCo3	60	30.5	7.5	2.0			
BGHAFeCo4	50	37.5	10.0	2.5			
Biocomposite	BG	HA	TiO ₂	Nb ₂ O ₅			
BGHATiNb1	45	5	45	5			
BGHATINb2	40	10	40	10			
BGHATiNb3	30	20	30	20			
BGHATiNb4	25	25	25	25			

Figure 2.4: Preparation of biocomposite by powder metallurgy method.

2.4. Thermal Analysis

DSC (SETARAM Instrument, France) was carried out on powdered biocomposite samples in the air up to 900°C using powdered alumina as reference material at 10°C per min heating rate. The biocomposite nucleation and crystallization temperatures were carried out by DSC at higher crystallinity. When the sample was subjected to a controlled temperature condition, The TGA was used to measure the mass of a substance as a function of temperature.

Figure 2.5: DSC, TGA instrument.

2.5. X-ray diffraction analysis

Philips diffractometer (X'Pert MPD model) operating at 40 kV, 40 mA, and Cu-K α radiation was used to identify the crystalline phases in the powder. The scanning rate was 0.058/min at 1s time step and analyses were performed within a range of 20-80°.

Chapter2

Figure 2.6: X-ray diffraction instrument.

2.6. Preparation of SBF

Kokubo and his colleagues developed simulated body fluid that has an inorganic ion concentration similar to those of human body fluid to reproduce in vitro formation of apatite on bioactive materials (Kokubo T et al.,2006). The SBF solution was prepared by dissolving reagent-grade NaCl, KCl, NaHCO₃, MgCl₂.6H₂O, CaCl₂, KH₂PO₄ into the double distilled water. It was buffered at pH-7.4 with TRIS (trishydroxymethyl aminomethane) and 1N HCl at 37°C as compared to the human blood plasma (WBC). The ion concentrations of SBF are given in the Table 2.2.

Ion	Na^+	\mathbf{K}^+	Mg^{2+}	Ca^{2+}	Cl	HCO_2^{-}	HPO ₄ ²⁻	SO_4^{2-}
ION	114		1118	Cu	C1	11003	1110_4	504
Simulated body fluid solution	142.0	5.0	1.5	2.5	147.8	4.2	1.0	0.5
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						-		
Human blood plasma	142.0	5.0	1.5	2.5	103.0	27.0	1.0	0.5
-								

Table 2.2: The ions concentration of SBF solution and human blood plasma (mM/litre)[A. Agarwal et al.1997].

## 2.7. Fourier transform infrared (FTIR) spectroscopy

Evaluation of the attachment of silane to the biocomposite surface was done by Fourier transform infrared (FTIR) spectroscopy. Vertex 70 FTIR spectrophotometer (Bruker Optics, Ettlingen, Germany) were used to performed FTIR measurements. Biocomposite powder was dispensed over a diamond crystal of Attenuate Total Reflectance (ATR) accessory. A total of 16 scans were collected from 4000 cm⁻¹ to 400 cm⁻¹ at a 4 cm⁻¹ resolution.



Figure 2.7: Fourier transform infrared (FTIR) spectroscopy.

#### 2.8. pH Measurement

Bone-bonding ability of a material is often examined by immersion in simulated body fluid (SBF) which is an acellular fluid with ionic concentration nearly equal to those of human blood plasma. It has been shown that formation of hydroxycarbonate apatite (HCA) on materials surface in SBF is indicative of its bioactivity and is the first step for bonding to living bone *in vivo*.



Figure 2.8: pH meter.

### 2.9. Surface morphology of biocomposite sample by SEM and EDS

The evaluation morphology of the biocomposite samples was done by scanning electron microscopy (SEM) using Hitachi (TM3000 model) equipment. Energy dispersive spectrometry (EDS; Oxford ISIS 310, England) was used to determine the elemental composition and distribution for each specimen, utilizing an accelerating voltage of 15 kV, the working distance of 9 to 10 mm and electron voltage of 137 eV for the EDS detector.



Figure 2.9: SEM and EDS instrument.

### 2.10. Physical and Mechanical Properties measurement

The density of biocomposite samples was determined by the Archimedes principle using a digital balance (Sartorius, model: BP221S, USA). The density of the sample was obtained by employing the equation (2.1).

$$\rho = \frac{Wa}{Wa - Wb} \rho b \tag{2.1}$$



Figure 2.10: Density measurement instrument.

And the compressive strength of biocomposite samples was measured by a UTM (Shimadzu, Japan). The solid biocomposite samples were cubical (1cm×1cm×1cm). Using UTM, the samples were subjected to the compression load, and the test was performed at room temperature (cross speed 5mm/min). Four samples of each group were used for each point. The compressive strength was calculated using the following formulae.

Compressive strength ( $\sigma_c$ ) = F/A ------ (2.2)

F(N) is maximum compressive load during the test, and A is the initial area of the sample(cm²).



Figure 2.11: UTM machine.

***