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ABSTRACT. Coal is one of the most important mineral which is used as a fuel for generating energy in India, with the increasing ur- 

banization and industrialization, need for more fuel is increasing resulting in extraction of coal in more and more amount, therefore in 

order to fulfil the demand, mining activities has increased a lot with time, besides the extraction of coal, many other minerals are also 

being extracted for various purposes as well. Increase in such mining activities are leading to adverse change in air, water and land 

quality, changes in land use land cover pattern and variation in surface temperature, these continuous changes are therefore,  important 

to be studied in order to assess its impact on the environment for suture sustainability and better management of available resources. The 

current study has been done for the Korba district with special attention towards the mining areas as major area of the distr ict after 

agricultural and cultivation land is occupied with mining area and related industries which is on spreading at higher pace since last many 

years, due to which variation in surface temperature and changes in land use pattern can be seen in its vicinity which is increasing with 

the time. According to the shifting patterns of land use and land cover, both urban regions and coal mine areas have grown by  roughly 

35 and 12%, respectively. In the central area of Korba district, the number of mines has risen, and the mining area has expanded over the 

last thirty years. Through a temporal analysis of the data, the study found that between 2000 and 2021, both the mining zones and adjacent 

urban areas witnessed increased temperatures. This temperature rise can be linked to the expansion of mining operations and the defor-

estation that accompanies such activities.  
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1. Introduction 

Land use refers to man’s activities and the various uses 

which are carried out on land whereas land covers refer to natu- 

ral vegetation, water bodies, rock/soil, artificial cover, and oth- 

ers noticed to the land (Prakash and Gupta, 1998). Human ac- 

tivities, especially land use, have changed the physical geo- 

graphical environment greatly, the direct result of which is the 

changes of land cover (Simmons et al., 2008). Improper land 

use practices can adversely affect many natural processes lead- 

ing to adverse impact on the environment. Rapid growth of min- 

ing activities can also be attributed as one of the reasons for 

decrease and degradation of land. The mining of natural re- 

sources is invariably associated with land use and land cover 

changes (Prakash and Gupta, 1998). Due to the increasing de- 

mand for mineral resources driven by industries such as con- 

struction and manufacturing, the need for economic develop- 

ment and demand for raw materials driven by urbanization and 

infrastructure development such activities have also increased. 
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Mining of coal both surface and subsurface causes enormous 

damage to the flora, fauna, hydrological relations, and soil bio- 

logical properties of the systems. Many researchers in their 

study have discussed these changes due to mining activities and 

associated changes on land use and temperature. Singh et al. 

(2017) focused on investigating the land use change dynamics 

and their impact on surface temperature in the Jharia coalfield 

region of India using remote sensing and geographical informa- 

tion system (GIS) techniques (Abu et al., 2018). The study 

found that the land use/land cover changes, particularly due to 

coal mining activities, had a significant influence on surface 

temperature. The conversion of vegetation and agricultural 

lands into mining areas resulted in increased surface tempera- 

tures, contributing to the urban heat island effect. Chitade and 

Katyar (2010) found in heir study that there are significant 

changes in land use/land cover patterns due to the presence of 

open-cast coal mines. The study highlights the adverse effects 

of opencast coal mining on land use and emphasizes the impor- 

tance of sustainable land management practices to mitigate 

these impacts. Kayet et al. (2016) revealed in their research that 

the conversion of forested areas into agricultural and built-up 

lands had a noticeable impact on surface temperature dis- 

tribution within the region. The study indicated that areas with 

increased land use change experienced higher surface temper-  
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Figure 1. Location map. 

 

atures compared to areas with intact forest cover. Similarly, 

Cao et al. (2020) discussed significant spatial variations in land 

surface temperature associated with mining activities and em- 

phasized the need for effective monitoring and mitigation strate- 

gies to minimize the adverse effects of mining on land surface 

temperature in the area. Das et al. (2021) revealed in their re- 

search significant changes in land use/land cover patterns in the 

area, with urbanization and industrialization leading to the con- 

version of agricultural and vegetation areas into built-up areas 

which resulted in increased land surface temperatures, indicating 

the presence of an urban heat island effect. 

The economy of Korba district is dependent on agricul- 

ture, but in addition to its significant reliance on agriculture, it 

is also one of the mineral-rich districts of Chhattisgarh, which 

is rich in minerals. The district’s wealth of mineral resources 

makes it a significant hub for mines and activities related to min- 

ing. Some of the most well-known coal mines in the area in- 

clude Gevra, Dipika, and Kusmunda, among others; however, 

in addition to these mines, they also have many more that con- 

tain bauxite, dolerite, fireclay, limestone, and granite. There are 

a total of 65 quarry or mining leases that have been approved 

in the district of Korba. This includes 15 coal mines, 32 sand 

mines, six soil mines for the production of bricks, six mines for 

ordinary stones, five limestone mines, and one fireclay mine 

(KORBA, 2019). Not only does the process of extracting min- 

erals and other resources from land, which leaves the land defor- 

ested and degraded (Firozjaei et al., 2021), have an impact on 

the specific areas where these mining activities are being per- 

formed, but its clear impact can also be seen in the areas that are 

in and around the transformed portion of land. Mining areas are 

identified as LST hotspots due to several factors. Mining ac- 

tivities often involve the removal of vegetation cover and the 

excavation of land, leading to the exposure of bare soil and rocks. 

These surfaces have low albedo, meaning they absorb more so- 

lar radiation and retain heat, resulting in higher land surface 

temperatures (LST). Specially in case of coal mining where sig- 

nificant amounts of waste material is generated, such as slag and 

tailings, which have low thermal conductivity and tend to retain 

heat. This contributes to elevated LST levels in the vicinity of 

the coal mines (Saini et al., 2016). The study demonstrated that 

coal mining activities contributed to increased land surface tem- 

peratures in the mining areas compared to non-mining regions. 

This is a global problem (Samimi Namin et al., 2011; Ka- 

toria et al., 2013; Akter et al., 2021; Firozjaei et al., 2021; Li et 

al., 2022). Numerous academics are already hard at work study- 

ing the negative consequences that these mining activities have 

on the quality of surface and groundwater, changing patterns of 

land use, and affecting flora and fauna, among other things 

(Jaiswal and Jhariya, 2021). The purpose of the current research 

is to determine the shifts in Land Use and Surface Temperature 

with the assistance of change detection and to evaluate the ef- 

fects of changing land use on surface temperature (Basha et al., 

2018; Jaiswal and Jhariya, 2020) with specific reference to min- 

ing areas and activities related to mining. As a result, thermal  
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Figure 2. Adopted methodology. 

 

remote sensing data has been used, which is freely available, 

and after the extraction of datasets and its initial processing, 

a variety of temperature indices have been It is possible to de- 

termine the degree of link between the growing mining area 

and the rising surface temperature of the district by compar- 

ing the statistics for all five years beginning in 2000 and con- 

tinuing through 2021. As a result, the current study may prove 

useful in determining its significant effects on vegetation, for- 

est cover, and other aspects that are related to changes in sur- 

face temperature. 

In this particular research project, the task was carried out 

by utilizing time-saving and cost-effective approaches such as 

remote sensing and GIS. Image accuracy is also much improved 

compared to that of previous historical works because of the 

substantially higher resolution. The data from Landsat, the The- 

matic Mapper from Landsat 5, and the Operational Land Im- 

ager/Thermal Infrared Sensor from Landsat 8 have been uti- 

lized in this study. In addition to this, the temperature data col- 

lected by the Moderate Resolution Imaging Spectroradiometer 

(MODIS) has been utilized to validate the values that were re- 

trieved from Landsat. 

2. Study Area 

Korba District is located in northern Chhattisgarh, on the 

bank of the Hasdeo River, which originates in the Sonhat Hills, 

and is surrounded by the districts of Korea, Surguja, Raigarh, 

Bilaspur, and Janjgir. The district’s southern end is the end of 

Chhattisgarh’s plains; the district’s western end is a mix of  

lowland lands and Maikal hills, while the eastern Korba is gov- 

erned by the Deopahadi Range (Figure 1). 

Korba is notable for its coal mines, such as Gevra, Kus- 

munda, and Dipika. With prominent power plants like National 

Thermal Power Corporation Limited (NTPC), Chhattisgarh 

State Electricity Board (CSEB), and Bharat Aluminium Com- 

pany (BALCO), the district is known as the power capital of 

Chhattisgarh (https://korba.gov.in/). 

3. Materials and Methodology 

Landsats 5 and 7 Thematic Mapper and (ETM) and Land- 

sat 8 OLI datasets have been used for the years 2000, 2005, 

2010, 2015, and 2021 (Table S1). Time-series analyses for Land 

Use Land Cover (LULC) classification are done using the above 

data as it is the most extended series of datasets made available 

by United States Geological Survey (USGS). Further processing 

for the estimation of LST and change in land-use patterns was 

performed by the GIS and Image processing software for the 

same years. Thus, the study includes the methodology given 

below in Figure 2. for processing the dataset to get the desired 

output. 

 

3.1. LULC Classification 

The technique of visual interpretation has been adopted for 

the preparation of LULC pattern for the five years from 2000 

to 2021 (shown in Figure 3) for the study area. Due to the un- 

dulated surface throughout the district area, much of its area is 

covered with shadow or clouds, which causes a disturbance in 

the pixel values, resulting in inaccurate results from digital in- 

terpretation. Hence, the broad classification has been carried out 

based on Level 1 classification (Anderson et al., 1976). This 

classification was performed using the above method for at- 

taining accuracy in classifying the image for both years. 

 

3.2. LST Calculation 

Variation in the surface temperature for the Korba district 

has been estimated using the split-window algorithm (Sobrino 

et al., 1996, 2003; Mao et al., 2005, 2020; Zhao et al., 2009; Ra- 

jeshwari and Mani, 2014; Abdullah and Barua, 2022) by cal- 

culating the irradiance, brightness and normalized difference 

vegetation index (NDVI) values for all the spatial datasets using 
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Figure 3. LULC maps for (a) 2000, (b) 2005, (c) 2010, (d) 2015, and (e) 2021. 

 

 
 

Figure 4. LST maps of Landsat for (a) 2000, (b) 2005, (c) 2010, (d) 2015, and (e) 2021. 
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Figure 5. (a) Validation of sampling point temperature from MODIS (2000 ~ 2021) and (b) Change in LULC from 2000 to 2021. 

 

Table 1. Area Occupied (unit: km2) and their Difference from 2000 to 2021 for LULC Classes 

Serial 

Number 
LULC Classes 

Area in 

2000 

Area in 

2005 

Area in 

2010 

Area in 

2015 

Area in 

2021 

Area Difference 

(2000 ~ 2021) 

% Difference 

(2000 ~ 2021) 

1 Cultivation 2,777.44 2,765.83 2,764.05 2,761.23 2,750.79 −9.91 −0.14976 

2 Industrial Area 22.74 28.74 30.43 32.74 37.741 5.04 0.07619 

3 Mining Area 30.71 40.89 46.87 50.38 76.38 30.22 0.45681 

4 Settlement 32.50 44.29 52.26 70.26 104.78 71.62 1.08276 

5 Vegetation 3,536.51 3,525.79 3,513.76 3,495.94 3,443.37 −102.51 −1.54971 

6 Waterbody 214.89 209.25 207.39 204.22 201.73 5.54 0.08373 

 

different steps of processing (Figure S1). The whole processing 

for the retrieval for the years shows enormous variation in tem- 

perature for various land-use features (Figure 4) (Jasiwal and 

Jhariya, 2020, 2021); also expanded urban heat island (UHI) 

effect has been observed with increasing urbanization and min- 

ing area (Mao et al., 2020; Akter et al., 2021; Sankalp et al., 

2022). Single split-window algorithm (Sobrino et al., 1996, 2003; 

Zhao et al., 2009) has been used for estimation from Landsat-5 

and 8 images using the step-by-step processing mentioned in 

detail below. 

 

3.2.1. Spectral Irradiance Calculation 

The digital number (DN) values of the TIRS band are con- 

verted to top of atmosphere (TOA) radiance using the algo- 

rithm by the method of conversion utilizing additive and rescal- 

ing factors that are assigned to specific bands stated in the meta- 

data file. This transformation is done so that the radiance value 

may be calculated using the equation below (Jaiswal and Jhariya, 

2020; Akter et al., 2021): 

 

      L ML Qcal AL =  +  (1) 

 

where Lλ − the Toa radiance given in Watt/(m2 × srad × μm); 

ML − multiplicative rescaling factor for specific band; Qcal − 

calibrated and quantized standard pixel values of digital num- 

ber; AL − additive rescaling factor for specific band. 

 

3.2.2. NDVI Calculation 

The NDVI is derived from the infrared (IR) and near-in- 

frared (NIR) bands using the algorithm given below, NDVI has 

a range from −1 to +1, and it is used to help with the quantita- 

tive assessment of vegetation. Negative values indicate clouds, 

water, and other non-vegetated, non-reflected surfaces, whereas 

positive values indicate vegetation and other reflective surfaces: 

 

( ) ( )    /     = − +NDVI NIR RED NIR RED  (2) 

 

where NIR − values from NIR band; RED – value from red 

band. 

 

3.2.3. Calculating Fractional Vegetation Cover 

A projected percentage of the total study area that is vege- 

tated including various parts of plants, i.e., roots, stems, and 

leaves is referred to as the fractional vegetation cover (ρv), It 

not only reflects the size of the plant’s photosynthetic area and 

the density of the development of vegetation, but it also shows, 

to some extent, the growth trend of vegetation which is calcu- 

lated using the equation mentioned below (Choudhury et al.,  

1994; Zhang et al., 2019): 

 

( ) ( )   /      = − −v s vNDVI NDVI NDVI NDVI  (3) 

 

where ρv – fractional vegetation cover; NDVIv and NDVIs − 

NDVI values for vegetation and soil respectively. 

 

3.2.4. Calculation of Land Surface Emissivity 

The ability of a surface to radiate energy in compared to a 

black body is measured by its emissivity. The simple relation 

defines the relationship between reflectivity and emissivity for 

opaque solids (Li et al., 2013). To convert brightness tempera- 

ture to kinetic surface temperature, which has been determined 

using an algorithm, emissivity information is necessary: 
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( )  1     = − +s vLSE FVC  (4) 

 

where εv – emissivity from vegetation; εs – emissivity from soil; 

ρv (FVC) – fractional vegetation cover.  

The average value for the Landsat thermal band is 0.978. 

The vegetation emissivity εv may be estimated as 0.985 (Sobri- 

no et al., 2004): 

 

( )   / 1    /  l g osT TB BT  = +    (5) 

 

where Ts – the land surface temperature calculated in Kelvin; 

TB – the brightness temperature in degree; λ – the wavelength 

of emitted radiance which is 11.5 μm; ρ = h × c/σ = 1.438 × 10-2 

mk; h – the plank constant, which is 6.626 × 10-34 J·sec; c – 

the velocity of light, which is 2.998  × 108 m/sec; σ – the 

boltzmann constant, which is 1.38 × 10-23 J/K; ε – the surface 

emissivity: 
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where LST – the land surface temperature; C0 to C6 – the split-

window coefficient values (Sobrino et al., 1996, 2003; Zhao et 

al., 2009); TB10 and TB11 – the calculated brightness tem- 

perature for band 10 and band 11; ε – the mean LSE of TIR 

bands; W – the atmospheric water-vapour content; Δε – the dif- 

ference in LSE. 

 

3.3. Validation of LST from Landsat Data 

MODIS (MOD11A1) LST and Emissivity data which is re- 

trieved daily at the spatial resolution of 1 km (1000 meters) us- 

ing a split-window algorithm, has been downloaded. MODIS 

precalculated data product has been used for validating the re- 

sults for estimated surface temperature from, for this surface 

temperature product has been taken. It has been observed that 

almost 90% of results match correctly; for checking this, overall, 

77 sampling points (shown in Figure S2) (were taken throughout 

the district and based on it, a percentage of accuracy has been 

defined (Figure 5a). 

4. Result and Discussion 

4.1. Changes in LULC with Special Reference to the 

Mining Area 

LULC maps were classified into five major classes, viz. 

Vegetation, Cultivation, Waterbodies, Industrial and Settlement, 

and Mining Area using the remote sensing and GIS platform 

(Basha et al., 2018). The False-color composite (FCC) results 

of Landsat 5 and 8 have been analyzed to calculate the changes 

over the years. The total mining area in 2000 was 30.71 km2 

Showed a continuous spread, and in the year 2021 mining area 

increased to 76.38 km2 (Figure 5b). Also, the total area cov- 

ered by industrial and settlement areas was 55.24 km2 in 2000, 

which rose to 73.03, 82.70, 103.00, and finally 142.52 km2 in 

2005, 2010, 2015, and 2021, respectively, while the cultivation 

land has declined by 1.91%. Still, a significant change was seen 

in vegetation cover at about 95.5 km2 of the total vegetation 

cover was used for cultivation, mining, industrial or settlement 

purposes (Table 1). The change in their areas is described in 

Figure 6. Based on historical reports the unmeritable data, it 

has been calculated that during 2000 number of mining areas 

was less with a relatively lesser number of mines, while in the 

last three decades, the mining area has shown a high rate of in- 

crease. It has been observed that many regions regarded as min- 

ing areas in 2000 were left untreated after the extraction of min- 

erals from such regions. Area after the extraction of minerals is 

left barren, and no other activity, like cultivation, etc., can be 

performed in those areas due to soil infertility. 

 

4.2. Change in Retrieved LST Values 

LST values for all the years were calculated using the mono- 

window algorithm (Sobrino et al., 1996, 2003; Zhao et al., 2009) 

and based on obtained output from the developed maps (Figure 

S3), it can be observed that reflectance from urban, mining, in- 

dustrial and open land has higher values in comparison to natu- 

ral landscapes which means lower reflectance from cultivated, 

vegetative land and waterbody resulting in lower LST values in 

contrast to the built-up or barren land with higher reflectance 

value, Therefore, by the above output, it can be illustrated that 

there is variation in surface temperature of place depending on 

its LULC type which means the transformation of land use from 

cultivated, vegetation or barren land into a human-influenced 

feature like urban, industrial or mining area is giving rise to in- 

creased temperature in and around the place. 

 

4.3. Mining Impacts on LST 

For analyzing the impacts of mining activities on LST over 

time, the total area was divided into a grid of 9 × 9 km2. The 

midpoint for each column was taken to assess the temperature 

overall 77 such points were taken (shown in Figure S2). It has 

been observed that the areas, explicitly mining and industrial,  

have much higher temperatures, and the pixels with higher 

temperature values are spreading in the pattern of increasing 

mining areas (Figure S4). Moreover, it has been seen that the 

areas with no or lesser transformation show significantly less 

temperature variation. In contrast, the UHI effect highly affect- 

ed the mining and nearby developing regions. Specifically, the 

central part of the district, which has the majority of coal fields, 

mainly seemed to be affected by the increasing temperature 

(shown in Figure 7). 

Thus, a significant difference in LULC pattern and LST in 

the central part of the district can be seen in the last two decades, 

i.e., 2000 ~ 2021. A direct relationship can be established be- 

tween LST and LULC as there was a maximum temperature in 

the vicinity of mining areas, decreasing with the distance away 

more transformation has been done in urban and mining areas 

(Figure S5), resulting in higher temperatures for such sites. This 

variation in surface temperature with the changing land cover 
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Figure 6. The year-wise difference in % area from 2000 to 2021. 

 

 
 

Figure 7. High temperature in the vicinity of the mining area at two locations (a) and (b) in Korba district. 
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Figure 8. Cross-validation of Landsat derived LST with MODIS for (a) 2000, (b) 2005, (c) 2010, (d) 2015, and (e) 2021. 

 

Table 2. Classification of Threshold Temperature Values 

Threshold for 

Temperature 
T ≤ −1.5 sd 

−1.5 < T ≤  

−1 sd 

−1 < T ≤ 

−0.5 sd 

−0.5 < T ≤  

0.5 sd 

0.5 < T ≤  

1 sd 

1 < T ≤  

1.5 sd 
T > 1.5 sd 

Classification for 

Temperature 

Extremely  

Low 

Very  

Low 

Low Moderate High Very  

High 

Extremely 

High 

 
Table 3. Statistical Representation of Classified Area (in Percent) for Surface Temperature 

Year High Temperature (> 0.5 sd) Moderate Temperature (−0.5 ~ 0.5 sd) Low Temperature (< −0.5 sd) 

2000 30.729 26.147 43.125 

2005 32.875 31.625 35.500 

2010 35.639 39.860 24.501 

2015 30.729 26.147 43.125 

2021 32.875 31.625 35.500 

 

shows a direct correlation between increasing temperature with 

expanded mining and urban sprawl (Table S2). 

Cross-validation of retrieved mean LST values with same 

spatial reference was used for the validation step with MODIS- 

derived LST values and it was found that there was approx. av- 

erage difference of ±2 °C at most of the places while at few 

places, the difference was more which may be due to the differ- 

ence in scale of the two datasets (Jaiswal and Jhariya, 2023). 

The best graphical representation method for contrasting two 

quantitative variables is a scatterplot with linear regression where 

R2 indicates a model’s fit. The R2 coefficient of determination 

measures how closely regression predictions match real data 

points. The value of R2 from 0.7 and above is considered to be 

a good data match. This method is used by different researchers 

for comparing and correlation of their data (Bosilovich 2006) 

for the comparison of temperature values derived from Landsat 

data with MODIS-derived data (Duan et al., 2017). Obtained re- 

sults show the high value of R2 ranging between 0.94 to 0.97 

(Figure 8). 

 

4.4. Statistical Analysis of Estimated Surface Temperature 

Minimum, maximum, mean, and standard deviation values 

for five years were calculated from retrieved surface temperature 

images and statistically analyzed the surface temperature distri- 

bution (Table S3) over the area. Robust statistics is a group of 

techniques used for estimating the parameters of a parametric 

model when working with ideal assumption-based deviations 

(Hampel et al., 1986; Zhang et al., 2007) has been used for the 
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classification of surface temperature formula used for calculat- 

ing the threshold value is given below (Yang and Liu, 2020): 

 

      =  T A x sd  (7) 

 

where T – the threshold value for temperature; A – the average 

calculated surface temperature; x – the multiple of variance (0.5, 

1, and 1.5), and sd – the variance of surface temperature. 

By multiplying x with the standard deviation (sd) and add-

ing or subtracting the result from the mean (A), you can estab-

lish a threshold range or boundary for further analysis or clas-

sification of estimated temperature values. The ± sign indicates 

that you can choose to add or subtract the product of x and sd, 

depending on the desired threshold value for temperature. 

As per the calculated threshold values, the area’s tempera- 

ture has been divided into seven grades, i.e., shallow, deficient, 

low and moderated temperature, and so on; tabular distribution 

of threshold value of temperature according to the grades is giv- 

en in Table 2. 

The area (in pixels) that corresponds to each classified qual- 

ity has been computed for all five years, from 2000 to 2021, us- 

ing temperature grades as the basis. Statistics are generated, 

which show that a place with a temperature that is higher than 

0.5 times the standard deviation (sd) is classified as belonging 

to the High-temperature region, whereas an area that has a tem- 

perature that is lower than −0.5 sd is classified as belonging to 

the Low-temperature region, and those areas that fall within the 

variance value range of +0.5 to −0.5 are regarded as belonging 

to the Moderate-temperature region Table 3 shows the statisti- 

cal presentation of % area covered by each class. 

5. Conclusions 

In the state of Chhattisgarh, the district of Korba is recog- 

nized as the power capital of the state. It is one of the significant 

districts that contributes to mining and other related activities, 

which in turn leads to rapid urbanization and industrialization, 

which in turn results in negative effects that have an impact on 

the environment. The current study was carried out with the pur- 

pose of analysing these unfavourable effects of mining, with a 

specific emphasis on the coal mines in the area. This is due to 

the fact that the area contains the maximum number of coal 

mines in the area, which is the reason why a variety of thermal 

plants were also established nearby. These plants are giving 

their massive contribution toward polluting the ecosystem and 

increasing temperature, and the study was carried out with the 

help of freely available remotely sensed data and advanced GIS 

techniques. During the past three decades, the Korba district 

has been analysed with photos from five different phases. Ac- 

cording to the findings, between the years 2000 and 2021 con- 

tinuous increase in the mining and neighbouring urban areas 

with greater temperatures as well as the other locations with 

lower temperature data are decreasing annually. Even Never- 

theless, the frequency of temperature rises is more likely to oc- 

cur in metropolitan areas as compared to non-urban locations. 

The study highlights the use of remote sensing and GIS tech- 

nology for evaluating the impacts of mining activities, specifi- 

cally by utilizing satellite-derived thermal data. This technolo- 

gy has proven to be highly effective in monitoring and assess- 

ing the changes in land surface temperature associated with min- 

ing activities. By analysing thermal data from satellites, re- 

searchers can detect thermal anomalies and identify areas af- 

fected by mining operations. This information is valuable for 

understanding the extent and spatial distribution of mining im- 

pacts on land cover and surface temperature. 

Furthermore, the study suggests that combining remote sens- 

ing and GIS data with other sources of information, such as 

ground truth verification and data on surface and groundwater, 

can enhance the accuracy and comprehensiveness of the analy- 

sis. Ground truth verification involves on-site measurements and 

observations to validate and refine the remote sensing data. In- 

tegrating such additional data allows researchers to investigate 

the broader impacts of land use changes, including their effects 

on water resources, ecosystems, and other relevant parameters. 

Also, some simple mitigating measures can be implement- 

ed to overcome the increasing temperature in the vicinity of min- 

ing areas, which includes: 

• Planting trees and creating green belts around the mining 

areas can help regulate temperatures by providing shade 

and reducing the heat island effect. 

• Also mined areas which are left untreated can be restored 

as water bodies and wetlands can help in cooling the sur- 

rounding environment through evaporative cooling and cre- 

ating microclimates. 

• Heat-Resistant Infrastructure with materials and techniques 

that are resistant to heat and can minimize heat transfer can 

be introduced in order to mitigate temperature rise in the 

vicinity. 

In summary, the research highlights the capacity of remote 

sensing and GIS technology, specifically satellite-based ther- 

mal data, to monitor and assess the effects of mining on land 

use and land surface temperature. The integration of these tech- 

nologies with additional data sources and verification methods 

allows for more precise and holistic findings, leading to an im- 

proved comprehension of the environmental impact of human 

activities. By leveraging these technologies and adopting sim- 

ple measures, it becomes possible to promote sustainable prac- 

tices and better manage the environment. 
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