
Chapter 6 

 
 
 
 
Numerical solution of Euler equations with gravity using 
HLLC method 

6.1 Introduction 

Conservation laws accompanied with gravitational source term can be seen in many 

PDE models such as shallow water equations and Euler equations with gravitation. 

Euler equations with gravity are very useful in the mathematical modeling of 

atmospheric flows and stellar structure simulations in astrophysical phenomena. In real 

life situations, the Euler equations with gravity include source term, that is, terms that 

are functions of the unknown vector. For the solution of this problem efforts have been 

made to develop the best method for the handling of source term. This resulted in the 

development of a wide range of well balanced and non-hydrostatic numerical schemes. 

The main theme of well balanced scheme is based on the preservation of the motionless 

steady state or the hydrostatic reconstruction of solutions.  

Well balanced schemes for Euler equations with gravity were developed using the 

relaxation schemes of Berthon et. al.  (2014, 2016), in which an approximation of the 

hydrostatic solution is incorporated in the approximate Riemann solver. Guillard et al. 

(1999) studied the properties of upwind schemes in low Mach number limits. Ismail et 

al. (2009) discussed the flux functions which are entropy consistent at the shock. Xing 

and Shu (2013) presented a well balanced finite volume weighted essentially non 

oscillatory (WENO) scheme for Euler equations with gravity. Kappeli and Mishra 
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(2014) presented a second order well-balanced scheme that uses hydrostatic 

reconstruction for an isentropic flow with general equation of state. It can be seen in 

Landau and Lipschitz (1987) that an isentropic hydrostatic atmosphere is only neutrally 

stable. Leveque (2011) used the path integral method to formulate a wave propagation 

algorithm that is well-balanced for isentropic solutions. Leveque and Bele (1999) 

extended the path integral to obtain well balanced solutions of isothermal equations. 

Fuchs et al. (2010) developed a well balanced numerical scheme for ideal, 

compressible, MHD equations with constant gravitational acceleration for non 

isothermal hydrostatic solutions. Luo et. al. (2011) derived a well-balanced gas-kinetic 

scheme for isothermal stationary solutions of flow under gravitational field. Using the 

source term formulation of Xing et. al. (2013), Touma et. al. (2016) developed a non 

staggered central scheme which is well balanced for isothermal stationary solutions of 

Euler equations with gravity. For shallow water equations with variable bottom 

geometry, different numerical solutions to the Riemann problem have been suggested in 

Alcrudo et. al. (2001), Chinnayya et. al. (2004), Lefloch et. al. (2007), Bernetti et. al. 

(2007), Rosatti et. al. (2010) and Lefloch et. al. (2011). All the numerical schemes 

discussed above were constructed to devise a good balance in case of steady state 

equilibrium retaining as valid approximate solutions obtained in the basic works of Roe 

(1981) and Harten et. al. (1983). The occurrence of source term affects the 

characteristics of the exact solution, see Shu et. al. (1988), Toro at. Al. (1994) and 

Gupta et. al. (2016). The existence of source term modifies the solution of the Riemann 

problem, and the characteristic constant defined for the case when source term is absent 

in Godunov (1959) and Roe (1981) is no longer valid. Thus, the presence of source term 

creates problem in the correct numerical simulation of the model under consideration. 
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Another approach is to use operator splitting procedure for the treatment of source term. 

It is shown in Chen et. al. (2004) that, the solution of shallow water equations with 

operator splitting converges to the exact solution. Here the one dimensional 

conservation equations with source term are broken into two parts. The first part 

consists of the conservation law problem and the second part consists of the transient 

problem. For the numerical solution of conservation laws, the paper of Godunov (1959) 

was the initial landmark for the construction of most widely used numerical schemes. 

The Godunov type method uses the solution of local Riemann problem at the cell 

interfaces. Following the Roe method (1981), The HLL method (1983) developed by 

Harten et. al. is the most disseminated approximate Riemann solver. In the HLL method 

the fluxes at cell interfaces are approximated under the assumption that the intermediate 

state is bounded by two waves. When the hyperbolic system has more than two 

equations, there are more waves in the solution, which has to be taken care of. For the 

resolution of this problem Toro et al. (2009) proposed the introduction of contact 

discontinuity that resulted in the HLLC method. The HLLC method has the ability to 

resolve contact discontinuities. 

In the present work, the numerical solution of Euler equations with gravity is obtained 

using the HLLC scheme for the numerical calculation of fluxes. The source term has 

been treated using the operator splitting procedure. The discontinuity due to source term 

is assumed at the cell interfaces. The method is then applied on some test problems. The 

numerical results show a close agreement between our non-hydrostatic scheme and the 

earlier well balanced schemes.  
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6.2 Governing equations 

The system of one dimensional Euler equations governing the conservation of mass, 

momentum and energy of an inviscid, non-heat conducting fluid with static 

gravitational potential are given by 

2
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t x
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                                                                                   (6.1) 

Here ρ  denotes the fluid density, u  the velocity, p  the pressure, E  the total energy 

per unit volume excluding the gravitational energy, and φ  is the time independent 

gravitational potential. The pressure is given by  

21( 1)[ ], ,
2

p

v

c
p E u

c
γ ρ γ= − − =                                                                                  (6.2) 

where γ  is the ratio of the specific heats at constant pressure and volume, taken to be 

constant.  

In compact notation the system of equations (6.1) can be written as 

( ),U F S U
t x

∂ ∂
+ =

∂ ∂
                                                                                                        (6.3) 

with  

2

0
, , ,

( )

u
U u F p u S x

E E p u u x

ρ ρ
ρ ρ ρ φ

ρ φ

     
     = = + = − ∂ ∂     
     + − ∂ ∂     

                                                          (6.4) 

where U  is the vector of conserved variables, F  is the corresponding flux vector and 

S is the vector of source terms. The Jacobian matrix for the convective part is given as 
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2
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.                                (6.5) 

The convective part is strictly hyperbolic with eigenvalues 1 2 3, ,u a u u aλ λ λ= − = = + ,  

where /a pγ ρ=  . The right eigenvectors corresponding to the eigenvalues are 

1 2 3

2

1 1 1
, , ,

/ 2
e u a e u e u a

H ua u H ua

     
     = − = = +     
     − +     

                                                               (6.6) 

where H is the enthalpy given as ( ) /H E p ρ= + .  

6.3 One dimensional flow and Riemann problem  

To obtain the numerical solution of the system, a computational domain [0, L] of length 

L is considered. The domain is divided into cells of constant length size x∆ , the ith

1/2 1/2[ , ]i ix x− +

 cell 

is given by  with 1/2ix i x+ = ∆  and the position of the center of the cell I  is 

given by ( 1/ 2)i x− ∆ . Let t∆  be the time step size and nt n t= ∆  a generic time; the cell-

average value of the solution ( , )U x t for the ith cell at time nt  is indicated by n
iU  , i.e.,   

1/2

1/2

1 ( , )i

i

xn n
i x

U U x t dx
x

+

−

=
∆ ∫  ,                                                                                            (6.7)  

Thus, n
iU  is a piecewise constant approximation of the solution at time nt . 
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Figure 6.1 The grid discretization in the x -direction. 

Consider the initial value problem for the system  

( ),U F S U
t x

∂ ∂
+ =

∂ ∂
                                                                                                         (6.8)    

with the following initial conditions at each 1/ 2i +  edge 

 
1

if 0,
( ,0)

if 0.
i

i

U x
U x

U x+

<
=  >

                                                                                              (6.9)  

The Riemann problem for Euler equations, abbreviated as RP is a problem involving 

two separate states say n
iU  and 1n

iU + . At the point 1/ 2i + , the interface of the cells 

i and 1i + , there is an initial discontinuity due to the fact that state variables on either 

side of this point are different. The solution to this 1( , )n n
i iRP U U +  results in three waves 

emanating from the point 1/2ix + , corresponding to the eigenvalues of the Jacobian matrix 

given as 1 2 3, ,u a u u aλ λ λ= − = = + , where /a pγ ρ= . Out of these, the left and right 

waves can be shock or rarefaction indifferently whereas the middle one is always a 

iI  1iI +  1iI −  

t∆  

x∆  
nt  

1nt +  

x  
1I  

1/2ix −  1/2ix +  
0  L  

NI  

t  



 
 

Chapter 6: Numerical solution of Euler equations with gravity using HLLC method 
 

119 

 

contact discontinuity. The figure 6.2 represents a typical Riemann problem with initial 

data states LU and RU . The region LU lies to the left of the left wave, while RU  lies to 

the right of the right wave. The region in between the waves of speed LS  and that of 

speed RS  is depicted by the star region with *
LU  and *

RU , the regions to the left and right 

of the contact discontinuity respectively. The solution to the given Riemann problem 

may lie in any of the four regions considered above based on the position of the point at 

which the solution is sought. This solution can be calculated using the exact 

mathematical method, which are time consuming or can be approximated by using 

approximate Riemann solvers, which are computationally efficient and gives better 

results with Godunov type methods. In the present case, the given Riemann 

problems, ( )1U , Un n
i iRP + , ( )1U , Un n

i iRP − are solved using the HLLC approximate 

Riemann solver which takes into account the contact wave present in the solution. 

 

Figure 6.2 Wave structure in the solution of Riemann problem 

However, the presence of source term in the problem modifies the solution of the 

Riemann problem. The solution may not preserve the wave structure of the Riemann 

problem obtained in the absence of source term. 



 
 

Chapter 6: Numerical solution of Euler equations with gravity using HLLC method 
 

120 

 

6.4 Method of solution 

The hyperbolic system of conservation law with source term 

( ) ( )t xU F U S U+ =  ,                                                                                                  (6.10) 

can be simplified as the homogeneous problem by considering no source term 

( ) 0t xU F U+ =  .                                                                                                        (6.11) 

Another simplification results by considering that there are no spatial variations. 

( )dU S U
dt

=  .                                                                                                              (6.12) 

There are essentially two approaches to solve the inhomogeneous systems of the form 

(6.10), see Toro (2009). One approach is to preserve some coupling between the two 

processes in (6.10). These two processes might be represented by the systems (6.11) and 

(6.12). Another approach is to split (6.10) into homogeneous problem (6.11) and source 

problem (6.12). Here we follow the second approach.  

The hyperbolic conservation law with source term 

( ) ( ),
( , ) ,
t x

n n

U F U S U
U x t U

+ =

=
                                                                                                   (6.13)     

can be solved numerically by splitting it into the homogeneous problem 

( ) 0,
( , ) ,
t x

n n

U F U
U x t U

+ =

=
                                                                                                         (6.14)      

and the source problem 

1( ), (0) ndU S U U U
dt

+= = ,                                                                                          (6.15) 

where 1nU + is the solution of the advection problem (6.14). 

The Riemann problem (6.14) can be solved approximately by utilizing a conservative 

method of Godunov type to get 
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1
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2 2
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i i i i
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+
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∆
= + −

∆
.                                                                                        (6.16)    

The ordinary differential equation (6.15) can be solved by using the methods for the 

numerical solution of the system of ordinary differential equations. In the present work 

we have employed the Euler method (See Toro (2009)). Thus the final solution of (6.13) 

is given by 

1
1 1
2 2

1 1 1

,

( ),

n n n n
i i i i

n n n
i i i

tU U F F
x

U U tS U

+

− +

+ + +

 ∆
= + − 

∆  
= + ∆

       (6.17) 

where U  is the vector of conserved variables, U  is the solution of the homogeneous 

equation, S is the source term and F  is the numerical flux at the cell interface 1/ 2i +  

and 1/ 2i − given by  

1 1
2 2

(0)n n

i i
F F U

+ +

 
=  

 
, 1 1

2 2

(0)n n

i i
F F U

− −

 
=  

 
 ,          (6.18) 

where, 1
2

(0)n

i
U

+
and 1

2

(0)n

i
U

−
 represents the solution of local Riemann Problem 

( )1U , Un n
i iRP +  and ( )1U , Un n

i iRP −  respectively along the line / 0x t = . 

6.5 HLLC method 

Consider the figure 6.2, in which the whole of wave structure arising from the exact 

solution of the Riemann problem is contained in the control volume[ , ] [0, ]L Rx x t× ∆ , 

that is 

,L L R Rx tS x tS≤ ∆ ≥ ∆  ,                                                                                                (6.19) 

where LS and RS are the fastest signal velocities perturbing the initial data states LU and 

RU respectively, and t∆ is the time step chosen. 
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Integrating the equation 

0U F
t x

∂ ∂
+ =

∂ ∂
 ,                                                                                                           (6.20)         

in the control volume[ , ] [0, ]L Rx x t× ∆ , we have 

0 0

( , ) ( ,0) ( ( , )) ( ( , ))
R R

L L

x x t t

L R
x x

U x t dx U x dx F U x t dt F U x t dt
∆ ∆

∆ = + −∫ ∫ ∫ ∫  ,    

or  

( , ) ( )
R

L

x

R R L L L R
x

U x t dt x U x U t F F∆ = − + ∆ −∫  ,                                                               (6.21) 

which is the required consistency condition. 

Splitting the integrals on the left hand side of (6.16) into four integrals, we get 

( , ) ( ) ( ) ( , ) ( , )
R M R

L L M

x tS tS

L L L R R R
x tS tS

U x t dx tS x U x tS U U x t dx U x t dx
∆ ∆

∆ ∆

∆ = ∆ − + −∆ + ∆ + ∆∫ ∫ ∫  .  (6.22) 

Comparing equation (6.21) and (6.22), we have 

1 ( , ) ( , )
( )

M R

L M

tS tS
R R L L L R

R L R LtS tS

S U S U F FU x t dx U x t dx
t S S S S

∆ ∆

∆ ∆

  − + −
∆ + ∆ = 

∆ − −  
∫ ∫  ,                (6.23) 

or 

* * 1 ( , )
( )

R

L

t S
M L R M

L R
R L R L R L t S

S S S SU U U x t dx
S S S S t S S

∆

∆

   − −
+ = ∆   − − ∆ −   

∫  .                                  (6.24) 

Integrating the equation (6.20) in the control volume[ ,0] [0, ]Lx t× ∆ , we obtain  

0

0( , ) ( )
L

L L L L
t S

U x t dx t S U t F F
∆

∆ = −∆ + ∆ −∫  ,                                                               (6.25) 

where 0 LF is the flux ( )F U  along the t − axis. Solving for 0 LF we find 
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0

0
1 ( , )

L

L L L L
t S

F F S U U x t dx
T ∆

= − − ∆∫  .                                                                         (6.26) 

Evaluation of the integral form of the conservation laws on the control volume 

[0, ] [0, ]Rx t× ∆  yields 

0
0

1 ( , )
Rt S

L R R RF F S U U x t dx
T

∆

= − + ∆∫  .                                                                         (6.27) 

It is easy to see that 

0 0L RF F=  .                                                                                                                  (6.28) 

results in the consistency condition (6.21). 

After several manipulations, the HLLC approximate solver is given as (Toro (2009)) 

*

*

, if / ,
, if / ,

( , )
, if / ,
, if / .

L L

L L M

R M R

R R

U x t S
U S x t S

U x t
U S x t S
U x t S

<
 ≤ ≤= 

≤ ≤
 ≥

                                                                              (6.29) 

with a corresponding HLLC numerical flux defined as (Toro (2009)) 

*

1/2 *

, if 0 ,
, if 0 ,
, if 0 ,
, if 0 .

L L

L L MHLLC
i

R M R

R R

F S
F S S

F
F S S
F S

+

≤
 ≤ ≤= 

≤ ≤
 ≥

                                                                                     (6.30) 

and the intermediate fluxes *
LF  and *

RF  as 

* *( )K L K K KF F S U U= + −  ,                                                                                           (6.31) 

for K L= or K R= , with the intermediate states given as 

[ ]

*

1

( ) ( ( ))

K K
K K M

K M
K K M K M K K K K

S uU S
S S

E S u S p S u
ρ

ρ ρ

 
   −

=    −   + − + − 

.                      (6.32)   
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6.6 Wave speed estimates and time step size 

For the computation of numerical fluxes, the selection of wave speed estimates is very 

important, as it has a great effect on the quality of numerical solutions. The direct wave 

estimates are the simplest methods providing maximum and minimum wave velocities. 

The simplest of them is the one suggested by Davis (1988) 

, .L L L R R RS u a S u a= − = +                                                                                          (6.33)    

and 

{ } { }min , , max , .L L L R R R L L R RS u a u a S u a u a= − − = + +                                (6.34)      

Einfeldt (1988) suggested to combine the estimates (6.34) with Roe average (Roe 

(1981)) eigenvalues for the left and right nonlinear waves, that is 

,L RS u a S u a= − = +     ,                                                                                               (6.35)  

where u  and a  are the Roe average particle and sound speeds respectively, given as 

1/22( ) ( ) , ( 1)( / 2) .L L R R L Ru u u a H uρ ρ ρ ρ γ = + + = − − 


                              (6.36) 

where the enthalpy ( ) /H E p ρ= + , is approximated as 

( ) ( )L L R R L RH H Hρ ρ ρ ρ= + +  .                                                                  (6.37) 

A different approach for finding the wave estimate is based on pressure and was 

proposed by Toro (2009), given as 

,L L L L R R R RS u a T S u a T= − = +  .                                                                                 (6.38)   

with 

( )

*

1/2* *

1, if

1 ( 1) (2 ) 1 , if

K

K
K K

p p
T

p p p pγ γ

 ≤= 
 + + − > 

 ,                                                (6.39) 

where *p is the pressure inside the unknown region. To use (6.38), we need an approxi- 
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mation of pressure inside the star region.  The approximate value of pressure can  

be taken to be the PVRS approximation  

 0 max( , )
( ) / 2 ( )( )( ) / 8

PV

PV L R L R L R L R

p TOL p
p p p c c v vρ ρ

= 
= + + + + − 

.                                              (6.40) 

Two shock approximation 

 ( ) ( )
( )

0

1/2

max( , )

( ) ( ) ( ) ( ) ( )

( )

TS

TS L L R R R L L R

K K K

p TOL p

p g p p g p p v v g p g p

g p A p B

= 
= + − − + 

= +   

.                                    (6.41)  

Two rarefaction approximation 

 
2 /( 1)

( 1)/2 ( 1)/2

( 1)( )
/ ( ) / ( )

L R R L
TR

L L R R

c c v vp
c p c p

Γ Γ−

Γ− Γ Γ− Γ

 + − Γ − −
=  + 

.                                                       (6.42)    

In the present paper, we have used the estimates given as 

{ }min ,L L L LS u a u a T= − −  ,                                              (6.43)     

{ }max ,R R R RS u a u a T= + +  ,                                                                                      (6.44) 

where ,u a   are given in (6.36) and ,L RT T  are given in (6.39). 

The intermediate speed MS in terms of LS and RS are given as 

( ) ( )
( ) ( )

R L L L L L R R R R
M

L L L R R R

p p u S u u S uS
S u S u
ρ ρ

ρ ρ
− + − − −

=
− − −

 .                                                       (6.45) 

The choice of the size of the time step t∆  in the conservative problem is related to the 

stability condition of the particular scheme. It depends on the method considered, the 

grid spacing and the wave velocity. It is given as 

, max
n

cfl i jt C x S∆ = ∆  .                                                                                                   (6.46)  

where max
n
ijS is the wave of maximum velocity at a particular time level. 
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6.7 Numerical Example 

 

Figure 6.3 Density, velocity, pressure and internal energy profiles for test 1 with 100 

and 2000 grid points. 

The data for the two test problems considered in the present work are given in table 1. 

In both the test problems the domain under consideration is [0, 1] and the initial 

conditions are given as 

 
( , , ), 1/ 2,

( , , )
( , , ), 1/ 2.

L L L

R R R

u p x
u p

u p x
ρ

ρ
ρ

<
=  >

                                                               (6.47) 
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In all cases the ratio of specific heats is taken to be 1.4γ = . The solution is computed 

using solid wall boundary conditions. Test 1 is the standard Sod test problem together 

with gravitational field, taken as in Xing et. al. (2013) and Chandrashekar et. al. (2015). 

Test 2 studies the contact discontinuity under the gravitational field. The data for test 2 

is same as given in Chandrashekar et. al (2015). 

Test Lρ  Lv  Lp  Rρ  Rv  Rp  ( )xφ  

1 1.0 0.0 1.0 0.125 0.0 0.1 x  

2 1.0 -2.0 0.4 1.0 2.0 0.4 x  

 

Table 6.1 Data for the test problems 

 

Figure 6.4 Solution profile for test 2 with 200 cells 

6.8 Result and Discussion 

For the test 1, the solutions are obtained for 100 and 2000 cells until a time of 

0.2t s= and the solution profiles for density, velocity, pressure and internal energy are 

shown in the figure 6.3. From figure 6.3, we see that the coarse mesh with 100 grid 

points is able to resolve all the features in the solution without having spurious 
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oscillations. It can be seen that density increases near 0x =  due to the gravitational 

force which is directed to the left. The present test indicates that the application of the 

HLLC solver with operator splitting preserves the non-oscillatory nature of the solution. 

The results are in agreement to those obtained in Chandrashekar et. al (2015). Figure 6.3 

clearly shows the effect of gravitational potential. In the absence of gravitational field, 

the solution results in three waves, a left rarefaction wave, a middle contact 

discontinuity and a right shock wave. Test 2 is the 1-D contact case. The results 

obtained with our scheme on meshes with 200 cells are shown in figure 6.4. In figure 

6.5, the solutions are computed with 2000 cells. The results are in close agreement with 

those obtained in Chandrashekar et. al (2015). Moreover, we again observe that the 

solutions are non-oscillatory at the discontinuities. 

 

Figure 6.5 Solution profile for test 2 with 2000 cells 


