
Chapter 4 
 
 
 
 
On the Cauchy problem for isentropic dusty gas 

The Cauchy problem for compressible flow is an initial value problem for the Euler 

equations supplemented by a particular initial data. The study of Cauchy problem is of 

great importance both from mathematical and physical point of view due to its wide 

applications in mathematical physics. For many systems, the singularity arises in the 

solution of Cauchy problem, despite the initial data being small and smooth, see Lax, 

(1964) and Lee (1994). Thus, to identify the conditions on the initial data, so that the 

Cauchy problem for hyperbolic systems has a unique global solution, turns out to be an 

important problem in both theory and applications. In recent years, many attempts have 

been made to study the existence of solution to the Cauchy problem in various 

gasdynamic regimes. Zheng (1987) studied the Cauchy problem for the system of 

gasdynamics equations with dissipation. Lions et al. (1996) proved the conditions for 

the existence and stability of entropy solutions for the hyperbolic system of 

conservation laws corresponding to isentropic gasdynamics. Yang and Zhu (2000) 

derived the conditions for the existence and non-existence of the Global solution to the 

Cauchy problem for 

 

4.1 Introduction 

p  system with relaxation. Li and Liu (2009) investigated the 

critical threshold phenomena related to quasilinear hyperbolic relaxation system to 

obtain information associated to global time regularity and breakdown of solution.  

Cauchy problem for shallow water equations has been studied by Fu and Sharma 
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(2013). Recently Fu and Sharma (2015) investigated the existence of the solution to the 

Cauchy problem for one dimensional isentropic magnetogasdynamics system. A 

systematic study about existence and non existence of global solutions can be found in 

Li (1994). Examples of dusty gas flow include a number of physical phenomena in 

astrophysics and gasdynamics such as underground explosion studied by Lamb (1992), 

interstellar mass flow see Laibe et al. (2014) and explosive volcanic eruptions see 

Pelanti (2006).  Dusty gas is a mixture of gas and dust particles where dust particles 

occupy less than 5% of total volume. For basic understanding of gas particle flow the 

reader is referred to Pai (1977) and Rudinger (1980). Dusty gas is a subject of great 

interest in recent decades. Recently Gupta et al. (2016) studied the Riemann problem for 

dusty gas. In the present work, an attempt has been made to study the existence of 

smooth solution to Cauchy problem for dusty gas flow of Mie Grüneisen type, for 

planar and cylindrically symmetric flow. The effect of the parameters, characterizing 

the dusty gas, on the blow up phenomenon is observed and the restrictions on the initial 

data for the existence of smooth solutions are also obtained. 

4.2 Governing equations 

The basic equations governing the planar and cylindrically symmetric flow of an 

isentropic dusty gas obeying the equation of state of Mie Grüneisen type are given in 

Pai (1980) and Miura (1983) 
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                                                                                  (4.1) 

where p is the pressure, v  is the particle velocity along x -axis, t  is the time and ρ is 

the density. The constant 0m =  corresponds to planar flow and 1m =  to cylindrically 

symmetric flow. 
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The pressure p is defined as 

( )( )1p k Zρ
Γ

= − ,                                                                                                                      

where, k  is a positive constant and  

(1 ) / (1 ), / (1 ), / , /p p sp p p vk k c c c cγ λβ λβγ λ β γΓ = + + = − = = .                            (4.2) 

The entity /sp gZ V V=  is the volume fraction and /p sp gk m m=  is the mass fraction of 

the solid particles in the mixture where spm  and spV  are the total mass and volumetric 

extension of the solid particles and gV and gm are the total volume and total mass of the 

mixture respectively. Here spc  is the specific heat of the solid particles, pc the specific 

heat of the gas at constant pressure, and vc  the specific heat of the gas at constant 

volume. The relation between the entities and pZ k  is given by Z θρ= , /p spkθ ρ=  , 

with spρ  as the species density of the solid particles.  

4.3 Solution of the problem  

To carry out the characteristics analysis of system (4.1), we use the vector V
v
ρ 

=  
 

 of 

primitive variables. For smooth solutions system (4.1) is equivalent to 

( ) ( ) 0,t xV A V V B V+ + =                                                                                                (4.3) 

where 

( ) 12
( ) , ( )

01

v m v x
A V B V

k v

ρ ρ
ρ θρ Γ+Γ−

   
= =    Γ −   

.                                                (4.4) 

The eigenvalues of the matrix A  can be calculated as 

( ) 11
1 1v kλ ρ θρ Γ+Γ−= − Γ − and ( ) 11

2 1v kλ ρ θρ Γ+Γ−= + Γ − . 

Thus, the system is strictly hyperbolic. The Riemann invariants for the system (4.3)  
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Corresponding to the eigenvalues 1 2andλ λ  are, respectively 

( )
*

11 1k y y
R v dy

y

ρ

ρ

θ Γ+Γ−
+ Γ −

= + ∫
 

and 
( )

*

11 1k y y
R v dy

y

ρ

ρ

θ Γ+Γ−
− Γ −

= − ∫ , (4.5) 

where * 0ρ >  is a fixed number. 

From (4.5), it can be easily calculated that 

( )
1 2 1 1 2

2 4 1R R
λ λ θρ

θρ− +

∂ ∂ Γ − +
= = +

∂ ∂ −
,

( )
1 2 1 1 2

2 4 1R R
λ λ θρ

θρ+ −

∂ ∂ Γ − +
= = −

∂ ∂ −
.                                      (4.6) 

For smooth solutions, system (4.3) is equivalent to 

( )

( )

11 1
1

11 1
2

1 ,

1 , 0, ,

t x

t x

R R k mvx

R R k mvx t x R

λ ρ θρ

λ ρ θρ

Γ+− − Γ− −

Γ++ + Γ− −

+ = Γ −

+ = − Γ − > ∈
                                               (4.7) 

subject to bounded and differentiable data 

( )0

*

11

0

1
(0, ) ,

k y y
R x v dy

y

ρ

ρ

θ Γ+Γ−
− Γ −

= − ∫
( )0

*

11

0

1
(0, )

k y y
R x v dy

y

ρ

ρ

θ Γ+Γ−
+ Γ −

= + ∫ .   (4.8) 

Through this reformulated system, there exists a uniform invariant region for the system 

(4.1), see Marcati et al. (2000). Thus there are constants min max0 ρ ρ< <  and min max ,v v<  

depending only on the initial data ( )0 0,vρ , such that 

( ) min max min max( , ), ( , ) [ , ] [ , ], 0, .t x v t x D v v t x Rρ ρ ρ∈ = × ∀ ≥ ∈   

Therefore, the rest thing is to analyze the boundedness of ( ),x xvρ , i.e., the boundedness 

of xR± .  

4.4 Main result 

To begin with, we need some conditions on the velocity v  and the density ρ . 

When 1m = , the perturbation term v xρ depends on the position x . We assume that the 
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velocity v  and the density ρ  satisfy the following conditions as given in Stanyukovich 

(1960) and Sharma et al. (2010) 

( ) ( ) ( ) ( ) ( )
( ) ( )

1 1 1

2 2 1

1 ( 1)
1 2 3

1 2

, , 0,

.

c c c

c c c

v x t f t f x f v t

t g x g

ξ ξ ξ

ρ ξ ξ

− −= = = ∞ =

= =
                                             (4.9) 

where 1 2, 0, ( 1, 2,3)jc c f j> = and ( 1,2)jg j =  are bounded functions as the limit x  or t  

goes to zero. Then, for sufficiently large ,x v  tends to zero and ρ  tends to a constant.    

To state our main results, we introduce the following notations: 

( ) 11(1/ 2) ln (1/ 2) ln 1kη ρ ρ θρ Γ+Γ−= − + Γ − ,                                                         (4.10)

 

( )( )11 1x x xr e R e v kη η ρ θρ ρ ρΓ+± ± Γ− = = ± Γ − 
 

.                                                 (4.11) 

From (4.11), it is clear that the boundedness of ( , )x xvρ  is equivalent to the boundedness 

of r± .     

Theorem: 

Let 0 ( ) 0xρ >  and 0 ( )v x  be smooth functions with bounded 1C  norm. Assume that (4.9) 

holds and x   is sufficiently large when 1.v =  Then there exists constants 

min max0 ρ ρ< <  and min maxv v< , depending only on the initial data 0 0( , )vρ , such that 

min max min max, ( ( , ), ( , )) [ , ] [ , ]x R t x v t x D v vρ ρ ρ∀ ∈ ∈ = × . Meanwhile, the first order 

derivatives of the 1C solution to the Cauchy problem have the following two 

complementary conclusions: 

i. If for at least one point x R∈ , either (0, ) 0r x+ <  or (0, ) 0r x− < holds, 

then the solution of system (4.1) will experience a finite time blow up at  

 *
*0 t t< ≤ < ∞  , 

 
*

lim ( , )
t t

r t x+

→
= +∞  , or 

*

lim ( , )
t t

r t x−

→
= −∞  . 
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where ( )
*

0 0
0

( ) 1/ 1/
t

a d r or rτ τ − += − −∫  . 

Moreover,  

* *
0 0, 0 0, 0 0 0, 0 0, 0

* *
0 0, 0 0, 0 0 0, 0 0, 0

0, 2 0, 2
or ,

0, 2 0, 2
x x x x

x x x x

t c for R c t c for R c

t c for R c t c for R c

ρ ρ ρ ρ

ρ ρ ρ ρ

− +

− +

 ∂ ∂ ≥ ≥ ∂ ∂ ≥ ≥ − 
 

∂ ∂ < < ∂ ∂ < < −  
with 

 ( ) 11
0 0 01c k ρ θρ Γ+Γ−= Γ −  . 

(ii) The solution of the system (4.1) admits a unique global bounded 

solution satisfying 0 ( , ) (0, )r t x r x± ±≤ ≤  , provided that for all x R∈  , 

 (0, ) 0.r x± ≥   

Lemma 1:  

The dynamical system for r±  is given by the following 

2
1

2
2

( ) 0, 0, ,
( ) 0, 0, .

t x

t x

r r a r gr hr k t x R
r r a r gr hr k t x R

λ

λ

− − − − +

+ + + − +

 + + + + + = > ∈


+ + − − − = > ∈
                                                 (4.12) 

where 

( )
( )( )
( )( )

1

11 2

,

1 ,

( 2 ) ( 1 2 ) 1 ,

( / 2 ) ( 1 2 ) 1 .

a e
R

k e mv k x

g m x v c v

h m x v c v

η

η

λ

ρ θρ

θρ θρ

θρ θρ

−
−

Γ+Γ−

∂ = ∂
 = Γ −
 = − + − Γ − + −
 = − − − Γ − + −

                                                        (4.13) 

Proof: 

Set xs R± ±= . Then from (4.11) we have, r e sη− −=  . 

Differentiating the point equation in (4.7) with respect to x , we have 

( )( )11 11 1
1 1t x

x
s s s s s mv k x

R R
λ λλ ρ θρ Γ+− − − + − Γ− −

− +

∂ ∂ + + + = Γ − ∂ ∂ 
.                           (4.14)  
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However, as ( ), ( )t t t x x xr e s s r e s sη ηη η− − − − − −= + = + , using (4.14) and (4.7), we have  

( ) ( )( )2 11 11 1
1 1[ ] 1t x t x

x
r r e r r s e mv k x

R R
η ηλ λλ η λη ρ θρ Γ+− − − − − + Γ− −

− +

∂ ∂
+ = − + + − + Γ −

∂ ∂
. 

                                                                                                                                    (4.15) 

It may be noticed that 

( ) ( ) ( )( )( )1
1 2 1 1 2 2 1t x s mv x

R
λη λη θρ θρ+

+

∂
+ − = − Γ − + −

∂
.                                    (4.16)  

Next, we estimate ( )( )11 1
x

e mv k xη ρ θρ Γ+Γ−Γ − . From (4.5), it is easy to check that  

( ) / 2xv s s+ −= + , ( )( ) ( )( )1 2 4 1 .xc s s θρ θρ+ −= − Γ − + −                                        (4.17) 

Noting that r e sη− −= , we obtain 

 

( ) ( ) ( )

( ) ( ) ( )

11
11

11
11

2

1 1 21
2 2 1

1 1 21 .
2 2 1

x

mv k me k v r
x x

mv k me k v r
x x

η

η

ρ θρ θρρ θρ
θρ

ρ θρ θρρ θρ
θρ

Γ+Γ−
Γ+Γ− +

Γ+Γ−
Γ+Γ− −

 Γ −  Γ − +  = Γ − +    −  

Γ −  Γ − +
− + Γ − −  − 

        (4.18) 

Finally, combining (4.6), (4.15), (4.16) and (4.18), we end up with 

2
1 ( ) 0t xr r a r gr hr kλ− − − − ++ + + + + = .          

The second equation is derived in a similar way. Thus Lemma 2 is proved. 

Proof of the Main result: 

In this section, we shall prove our main result. First recall the following known result. 

Lemma 2: 

Assume that ( )A t  satisfies the following ordinary differential equations: 

 1 2 0( )[ ( )][ ( )] 0, (0)dA dt q t A b t A b t A A+ − − = =  ,                                                     (4.19) 

 with 1 2inf 0,q b b> ≤  and that 1 2, ,q b b are uniformly bounded. We have: 

(i) If 0 1minA b<  , then solution to (4.19) will experience a finite time blow up at 
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*
*0 t t< ≤ < +∞  , 

*

lim ( ) ,
t t

A t
→

= −∞   

where *t  satisfies 

 ( ) ( ) ( )
*

2 1 2 1 0 0
0

( ) 1/ (min min ) ln 1 min min min ,
t

q d b b b b b Aτ τ = − + − −  ∫   

 which equals ( )2 01 min b A−  if 2 1min minb b=  . 

(ii)  If there exists a constant b  such that 

1 2( ) ( ).b t b b t≤ ≤   

Then, system (4.19) admit a unique global bounded solution satisfying 

0 2( ) max{ ,max },b A t A b≤ ≤   provided that, 0 .A b≥   

The proof of Lemma 2 can be found in Li et al. (2009), Lemma 3.1. Based on Lemma 2, 

the proof of Theorem is given below. 

Proof of Theorem: 

Denoting ( , )x x t β= by the characteristic passing through any fixed point (0, )β on the 

initial axis 0t = , a short calculation shows that ( , )r t x− satisfies the following Cauchy 

problem for ordinary differential equation along ( , )x x t β=  

2
0 0,( ) 0, (0, ) ( ),x

dr a r gr hr k r x r e R
dt

η β
−

− − + − − −+ + + + = = =                                       (4.20) 

where , , anda g h k are given by (4.13). It is well known that the smooth solution of the 

Cauchy problem (4.1) will develop singularities in the first derivative even for smooth 

initial data see Lax (1964), and the smooth solution will not exist for a large time t  . In 

the sequel, we will discuss 0m =  and 1m = , respectively. 

For 0m = , from (4.13), we know that 0.g h k= = =  
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Thus the equation (4.20) can be rewritten as  

0( )2
0 0,( ) 0, (0, ) ( )x

dr a r r x r e R
dt

η ρ β
−

− − − −+ = = = .                                                           (4.21) 

It can be easily calculated that 

 2 '( ) ( )c cρ ρ ρ≤ .                                                                                                      (4.22) 

Next, for 1m = , from (4.9), (4.13) and (4.22), for large x , we know that , , 0g h k ≈ .  

Therefore, for sufficiently large , 0 , , 1x g h k< << . Then r−  is a perturbation of the 

ordinary differential equation (4.21).  

On the other hand, from (4.6), we have 

( )( ) ( ) ( )( )( )
( )( )

1/411/2 1

1/411/2 1
0 0 0 0 0,

1 1/ 2 1 2 2 1 ,

1 ( ).x

a k

r k R

ρ ρ θρ θρ θρ

ρ ρ θρ β

−Γ+Γ−

Γ+− − Γ− −

= Γ − + Γ − + −

= Γ −                         (4.23)
 

From (4.23), we know that 0a > is uniformly bounded for all time. Thus considering 

the initial data 0r
− , by Lemma 2, we have the following two cases: 

(i) If 0 0,r− <  i.e., 0, ( ) 0xR β− <  , there exists a finite time *t , such that 

 
*

*
*lim ( ) ,0

t t
r t t t−

→
= −∞ < < < ∞  , 

where *t  satisfying 

 
*

1/2 1/2
0 0 0 0,

0

( ) 1
t

xa d r c Rτ τ ρ− − −= − = −∫  , 

with 0 0( )c c ρ=  . The above equation implies that *t  depends on 0c , 

indeed differentiating the above equation with respect to 0c , we have 

* * 1/2 3/2 2
0 0 0 0, 0, 0 0, 0( ) 2( ) 2x x xa t t c c R R cρ ρ ρ− − − ∂ ∂ = −   . 
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Thus, for 0 0, 0 0,2 x xc Rρ ρ −≤  , we have *
0 0,t c∂ ∂ ≥  , and for 

0, 0 0, 02x xR c ρ ρ− <  , we have *
0 0t c∂ ∂ <  . 

(ii) If 0 0r− ≥  , i.e., 0, ( ) 0xR β− ≥  , then system (4.21) admits a unique global 

solution satisfying 00 ( )r t r− −≤ ≤  . 

The analysis of ( )r t+  , in system (4.12) is performed in a similar way. It 

should be pointed out that the blow up time *t , satisfies 

 
*

1/2 1/2
0 0 0 0,

0

( ) 1
t

xa d r c Rτ τ ρ+ − += − = −∫  . 

Differentiating above equation with respect to 0c  , we have 

 ( )( )* * 1/2 3/2 2
0 0 0 0, 0, 0 0, 0( ) 2( ) 2x x xa t t c c R R cρ ρ ρ− + +∂ ∂ = +  . 

Thus, for 0 0, 0 0,2 0x xc Rρ ρ +− ≤ < , we have *
0 0t c∂ ∂ ≥ , and for 

0, 0 0, 02 ,x xR c ρ ρ+ < −  we have *
0 0t c∂ ∂ <  . 

Hence, the proof. 

4.5 Conclusion:  

This chapter deals with the issues of global solution in time regularity and finite 

singularity formation for a dusty gas system. By using Riemann invariants, we have 

shown that the system has global smooth solutions under certain reasonable 

assumptions. When the assumptions on the initial data do not hold, we have observed 

the blow up phenomena of the C1 

 

solution to the system. It can be observed that the 

blow up phenomena of the solution also depend on the mass fraction, volume fraction 

and specific heat of dust particles. 

 


