
Chapter 3 
 
 
 
 
Solution of Riemann problem for dusty gas flow 

In gasdynamics, Riemann problem is an initial value problem for the system of one 

dimensional Euler equations supplemented by a discontinuous initial data. Its solution 

consists of three waves, with the middle wave as a contact discontinuity and the other 

two waves are shock or rarefaction waves depending upon the initial data. Also, it gives 

us an idea of the wave structure of a system of hyperbolic partial differential equations. 

In recent decades solution of the Riemann problem for the Euler equations of ordinary 

gasdynamics has been analyzed extensively. Lax (1957) solved the Riemann problem 

by considering the difference between initial data,

  

3.1 Introduction 

L RV V− , sufficiently small, where 

andL RV V  are vectors of conserved variables at constant states separated by a 

discontinuity. Smoller (1969) presented a solution of the Riemann problem for an 

extended class of hyperbolic systems with andL RV V to be arbitrary constant vectors. 

Glimm (1965) used the solutions of Riemann problem in construction of a solution to 

the general initial value problem using the random choice method. Godunov (1976) and 

Chorin (1976) has proposed the exact solution of the Riemann problem, however, 

Smoller (1969) has proposed a different approach to determine the exact solution. Liu 

(1975) solved the Riemann problem for general system of conservation laws subject to 

entropy condition. Toro (1989), (1995) presented a Riemann solver for the exact 
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solution of the Riemann problem for ideal and covolume gases. Using the solution of 

the Riemann problem, Godunov (1959) presented a numerical scheme for the solution 

of a nonlinear system of hyperbolic conservation laws. As the Riemann problem does 

not admit a solution in closed form, even for ideal gas, many authors, such as Godunov 

(1959), Chorin (1976), Smoller (1969), Gottlieb and Groth (1988), Quartapelle et al. 

(2003) and Toro (2009), among several others, developed iterative methods for the 

solution to determine the flow field. Menikoff and Plohr (1989) studied the Riemann 

problem for fluid flow of real materials with arbitrary equation of state, subject to the 

physical requirements of thermodynamics like phase transition. Recently Shekhar and 

Sharma (2010), (2012), Singh and Singh (2014) presented the solution of Riemann 

problem for one dimensional magnetogasdynamics flow. Gupta and Singh (2015) used 

random choice method for the solution of dam break problem which is an example of 

Riemann problem for shallow water equations. A detailed discussion on the Riemann 

problem can be found in the books Smoller (1994), Toro (2009), Li (1994), Dafermos 

(2000), Bressan (2000) and LeVeque (2002). In the case of Euler equations Riemann 

problem contains the shock tube problem given in Sod (1978).  To determine the exact 

closed form solution to the Riemann problem for the Euler equations is still an open 

problem. 

The study of Riemann problem for the fluid flow containing solid particles is a subject 

of great interest both from mathematical and physical point of view due to its 

applications such as in underground explosions (Lamb et al. (1992)), interstellar mass 

flow (Laibe et al. (2014)) and explosive volcanic eruptions (Pelanti et al. (2006)) etc. 

Dusty gas is a mixture of gas and small solid particles where solid particles occupy less 

than 5% of total volume. When the speed of fluid is very high, the small solid particles 

behave like a pseudo fluid (Pai (1977)).  Miura and Glass (1983) studied the flow 
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resulting from the passage of a shock wave through a dusty-gas layer. The basics of gas 

particle flow can be found in Rudinger (1980). The dynamical behaviour of a fluid is 

governed by the principle of conservation of mass, momentum and energy. Here we 

consider a single fluid model for dusty gas. The present chapter aims to provide an 

approximate analytical solution to the Riemann problem for the one–dimensional, time–

dependent Euler equations for dusty gas flow. In case both external waves are 

rarefaction waves then it might create vacuum in the solution of Riemann problem 

depending upon the initial data. Using the Riemann solver of Toro (2009) the non-

vacuum solutions are determined, which is obtained if the pressure positivity condition 

is satisfied. It is also assessed as to how the presence of dust particles influences the 

solution across the shock wave, rarefaction wave and contact discontinuity. 

3.2 Formulation of the problem 

The governing equations describing a planar flow of a dusty gas mixture obeying the 

equation of state of Mie Grüneisen type  

(1 ) / (1 )pp k RT Zρ= − − ,                                                                                             (3.1) 

are given as (Pai, 1977), (Miura et al., 1983), (Rudinger, 1980) and (Pai et al., 1980)  

2
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t x x
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+ + =
+ + =

+ + =

                                                                                                    (3.2) 

where v  is the particle velocity along x -axis, t  is the time, ρ is the density, p is the 

pressure, T  is the temperature and R  is the gas constant. The entity /sp gZ V V=  is the 

volume fraction and /p sp gk m m=  is the mass fraction of the solid particles in the 

mixture where spm  and spV  are the total mass and volumetric extension of the solid 

particles and gV  and gm are the total volume and total mass of the mixture respectively.  
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The quantity 

( )1/2/ ((1 ) )c p θρ ρ= Γ − ,                                                                                               (3.3) 

is the equilibrium speed of sound with 

(1 ) / (1 ), / (1 ), / , /p p sp p p vk k c c c cγ λβ λβγ λ β γΓ = + + = − = = .         (3.4) 

Here spc  is the specific heat of the solid particles, pc the specific heat of the gas at 

constant pressure, and vc  the specific heat of the gas at constant volume. The relation 

between the entities and pZ k  is given by Z θρ= , /p spkθ ρ=  , with spρ  as the species 

density of the solid particles. 

The internal energy per unit mass of the mixture is given as 

(1 ) / (( 1) ).e Z p ρ= − Γ −                                                                                                (3.5)  

3.3 The Riemann problem and generalized Riemann invariants 

The system of governing equations (3.2) along with (3.5) can be written in conservation 

form as  

2

( ) 0,

, ( ) ,
( )

t xV F V
v

V v F V v p
E v E p

ρρ
ρ ρ

+ = 


   
   = = +   
    +    

                                                                                (3.6) 

where 2 / 2E e vρ ρ= + . 

The initial conditions for the Riemann problem are 

, if 0
( ,0)

, if 0
L

R

V x
V x

V x
<

=  >
,                                                                                                (3.7) 

where , 0x t−∞ < < ∞ > . We can take x  to vary in a finite interval [ , ]L Rx x  around the 

point 0x = . In the solution of Riemann problem, ( , , )TU v pρ=  is taken as vector of 

primitive variables. The initial data of Riemann problem (3.6)-(3.7) consists of two 
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constant states, which are ( , , )L L L LU v pρ=  to the left of 0x =  and ( , , )R R R RU v pρ=  to 

the right of 0x = , separated by a discontinuity at 0x = . Physically, with reference to 

Euler equations, the shock-tube problem may be generalized as Riemann problem 

consisting of two stationary gases ( 0)L Rv v= =  in a tube separated by a diaphragm. 

When the diaphragm is broken down suddenly it produces a nearly centered wave 

system consisting of a rarefaction wave, a contact discontinuity and a shock wave.  

The hyperbolic system of equations (3.6) admits the following family of characteristics 

/ , / , /dx dt v c dx dt v dx dt v c= − = = + .                                                                     (3.8) 

The family of characteristics given by second equation of (3.8) represents the particle 

path while those given by first and third represent the wave propagating in the negative 

and positive direction along x-axis, respectively. These three waves corresponding to 

equation (3.8) separate four constant states from left to right * *, , andL L R RV V V V . The 

unknown star region between the left and right waves is divided by the middle wave 

into two sub regions star left *( )LV  and star right *( )RV . 

 

Figure 3.1 Structure of the solution of the Riemann problem for Euler equations 

From the eigen structure of the Euler equations it can be easily seen that the 

middle wave is always a contact discontinuity while the left and right (nonlinear) waves  
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are either rarefaction or shock waves. Thus according to the type of non-linear waves, 

there can be four possible wave patterns.  

It can also be seen that both pressure *p  and particle velocity *v  are constant in the star 

region. Our solution procedure makes use of the constancy of pressure and velocity in 

the star region, see Toro (2009). For the isentropic case, we can replace the third 

equation by the entropy equation 

0t xS vS+ = .    

Then the system (3.6), can be written as 

( )2

0 0
1 0 .

0 0 0
t x

v
v c v p S v
S v S

ρ ρ ρ
ρ ρ

       
       + ∂ ∂ =       
              

                                                                                      

The eigenvalues of the above system are       

1 2 3, ,v c v v cλ λ λ= − = = + ,     

and the corresponding right eigenvectors are 

1 2 3

2

1 / 1
/ , 0 , / .

0 0

p S
k c k k c

c
ρ ρ

−∂ ∂     
     = − = =     
          

 

Across the wave associated with 1 v cλ = − , we have 

1 / 0
d dv dS

c
ρ

ρ
= =

−
, 

which gives the relations 

( / ) 0 and 0.dv c d dSρ ρ+ = =  

i.e., ( ) constant and constant.v c d Sρ ρ+ = =∫                                                                          

Similarly, across the 3 v cλ = + , wave we have  

( ) constant and constant,v c d Sρ ρ− = =∫                                                                                 
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which are the generalized Riemann invariants for the system of equations (6). 

3.4 Equation for pressure and velocity 

To compute the pressure p , velocity v  in the star region we establish a proposition. 

Proposition: The solution for pressure *p of the Riemann problem (3.6) – (3.7) with the 

equation of state (3.1) for dusty gas is given by the root of the equation ( , , ) 0L Rf p V V = ,                                                                                                                      

with  

( , , ) ( , ) ( , )L R L L R R R Lf p V V f p V f p V v v= + + − ,                                                              (3.9) 

where the function Lf is given by  

[ ]
( ) ( ){ }

1/2

( 1)/2

( ) / ( ) , if (shock wave),
( , )

2 (1 ) 1 1 , if (rarefaction wave),

L L L L

L L
L L L L

p p A p B p p
f p V

c p p p pθρ Γ− Γ

 − + >= 
− Γ − − ≤

(3.10) 

and the function Rf  is given by  

[ ]
( ) ( ){ }

1/2

( 1)/2

( ) / ( ) , if (shock wave),
( , )

2 (1 ) 1 1 , if (rarefaction wave),

R R R R

R R
R R R R

p p A p B p p
f p V

c p p p pθρ Γ− Γ

 − + >= 
− Γ − − ≤

(3.11) 

and the data dependent constants , , ,L R L RA A B B  are given by 

( ) ( ) ( )
( ) ( ) ( )
1 (1 ) , 1 ,

1 (1 ) , 1 ,
L L L L L

R R R R R

A B p

A B p

θρ ρ

θρ ρ

= − + Π = Π + Π 


= − + Π = Π + Π 
                                               (3.12) 

where ( 1) / 2Π = Γ − . 

The solution for the particle velocity *v  in the star region is  

* * *( ) / 2 ( ( ) ( )) / 2.L R L Rv v v f p f p= + + +                                                                     (3.13) 

Once equation (3.9) is solved for *p , velocity *v  can be found as in (3.13) and the 

remaining unknowns are found by using some standard relations of gasdynamics. 
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Proof: We derive the function Lf  by considering the left wave as a shock wave and 

then a rarefaction wave. Similarly Rf is derived. 

3.4.1 Left Shock Wave 

Suppose that the left wave is a shock moving with speed 
L

G as shown in the Figure 3.1.  

We transform the equations to a frame of reference which is moving with the shock 

wave. In the new frame of reference the shock speed is zero and the relative velocities 

are  

* *ˆ ˆ, .L L L Lv v G v v G= − = −                                                                                          (3.14) 

In the frame of reference, moving with the shock, the R-H conditions are        

*ˆ ˆL L Lv vρ ρ∗= ,                                                                                                               (3.15) 

2 * *2 *ˆ ˆL L L L Lv p v pρ ρ+ = +  ,                                                                                           (3.16) 

* * *ˆ ˆˆ ˆ( ) ( )L L L Lv E p v E p+ = + .                                                                                         (3.17) 

Now, introducing the mass flux LQ which, in view of (3.15) can be written as  

* *ˆ ˆL L L LQ v vρ ρ= = .                                                                                                      (3.18) 

From equation (3.16), we have 

* * * *ˆ ˆ ˆ ˆ( ) ( )L L L L Lv v p v v pρ ρ+ = + .   

Using (3.18) in the above equation we obtain  

( ) ( )* *ˆ ˆL L LQ p p v v= − − − .                                                                                       (3.19) 

But * *ˆ ˆL Lv v v v− = −  . 

So, we have 

( ) ( )* *
L L LQ p p v v= − − − ,                                                                                       (3.20)  
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which gives 

( )* *
L L Lv v p p Q= − − .                                                                                            (3.21) 

On substituting the relations * *ˆ ˆ,L L L L Lv Q v Qρ ρ= = , obtained from (3.18) into (3.19) 

yields               

( ) ( )2 * *1/ 1/L L L LQ p p ρ ρ= − − − .                                                                            (3.22) 

Equation (3.17) can be simplified as 

( ) ( )2 *2 * * *ˆ ˆ2 2L L L L L Lv e p v e pρ ρ+ + = + + .                                                            (3.23) 

Substituting  * *ˆL LQ vρ=  and ˆL L LQ vρ= in (3.22), yields the following relations      

( )( ) ( )*2 * * *ˆ L L L L Lv p pρ ρ ρ ρ= − − ,                                                                          (3.24) 

( )( ) ( )2 * * *ˆL L L L L Lv p pρ ρ ρ ρ= − − .                                                                         (3.25) 

Using (3.24)-(3.25) in (3.23) and simplifying, we get 

( ) ( )* * * *( ) 2L L L L L L Le e p p ρ ρ ρ ρ− = + − .      

Using the equation (3.5) in the above equation, we have 

( ) ( )( ) ( ) ( )( )* * */ / (1 ) 1 1 1L L L L L Lp p p pρ ρ θρ θρ= + Π + Π Π + + Π + − + Π .     (3.26) 

Substituting the value of  *
Lρ  in (3.22), we get 

( ) 1/2*
L L LQ p B A = +  ,                                                                                             (3.27) 

where  

( ) ( ) ( )1 (1 ) , 1L L L L LA B pθρ ρ= − + Π = Π + Π .                                                      (3.28) 

Thus (3.21) reduces to 

* *( , )L L Lv v f p V= − ,                                                                                                   (3.29) 

where                                   
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( ) 1/2* * *( , ) ( )L L L L Lf p V p p A p B = − +  .                                                                  (3.30) 

3.4.2 Left Rarefaction Wave 

Suppose that the left wave is a rarefaction wave. The unknown state *
LV  is now 

connected to the left data state LV   using the isentropic relation and the generalized 

Riemann invariants for the left wave. 

The isentropic law (Pai, 1977) 

( )( )1p A ρ θρ
Γ

= − ,                                                                                                  (3.31) 

where ( )( )1L L LA p ρ θρ
−Γ

= − , may be used across rarefactions. 

 Applying (3.31) in star region, we get 

( ) ( )( ) ( ) ( )( )1/ 1/* * *1 1 1L L L L L L Lp p p pρ ρ θρ θρ θρ
Γ Γ

= − + − .                              (3.32) 

The Riemann invariant across the wave 1 v cλ = −  is 

( ) constant.v c dρ ρ+ =∫                   

Using ( )( )1/2
(1 )c p ρ θρ= Γ − , we have 

( )2 (1 ) 1 constant.v c θρ+ − Γ − =                                                                                (3.33) 

Evaluating the constant on the left data state, we can write 

( ) ( )* * *2 (1 ) 1 2 (1 ) 1L L L L Lv c v cθρ θρ+ − Γ − = + − Γ − ,                                                 (3.34) 

where *andL Lc c  denote the sound speed on the left and right states bounding the left 

rarefaction wave. Substituting the value of *
Lρ  from (3.32) into the definition of *

Lc  , we 

have 

( ) ( ) ( ) ( ){ }( 1)/2 1/* * *1 1 1L L L L L L Lc c p p p pθρ θρ θρ
Γ− Γ Γ

= − + − .                                 (3.35) 

Now, using (3.35) in (3.34), we have 
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* *( , ),L L Lv v f p V= −                                                                                                    (3.36)  

with 

( ) ( ){ }( 1)/2* *( , ) 2 (1 ) 1 1 .L L L L Lf p V c p pθρ
Γ− Γ

= − Γ − −                                                (3.37) 

3.4.3 Right Shock Wave 

Suppose that the right wave is a shock wave travelling with speed RG . The case may be 

treated similar to a left shock wave. Here , andR R Rv pρ  are values ahead of the shock 

and * * *, andR v pρ are the values behind the shock. In the frame of reference moving with 

the shock, the shock speed is zero and the relative velocities are 

* *ˆ ˆ,R R R Rv v G v v G= − = − .                                                                                         (3.38) 

In the frame of reference moving with the shock, R-H conditions are        

*ˆ ˆR R Rv vρ ρ∗= ,                                                                                                              (3.39) 

2 * *2 *ˆ ˆR R R Rv p v pρ ρ+ = + ,                                                                                             (3.40) 

* * *ˆ ˆˆ ˆ( ) ( )R R R Rv E p v E p+ = + .                                                                                        (3.41) 

Defining the mass flux as 

* *ˆ ˆR R R RQ v vρ ρ= − = − ,                                                                                                 (3.42) 

and proceeding similarly, as in the case of left shock wave, we have the density pressure 

relation as 

( ) ( )( ) ( ) ( )( )* * */ / (1 ) 1 1 1R R R R R Rp p p pρ ρ θρ θρ= + Π + Π Π + + Π + − + Π .     (3.43) 

The mass flux as 

( ) 1/2* ,R R RQ p B A = +                                                                                              (3.44) 

with  
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( ) ( ) ( )1 (1 ) , 1R R R R RA B pθρ ρ= − + Π = Π + Π ,                                                     (3.45) 

and the particle velocity as 

* *( , ) ,R R Rv v f p V= +                                                                                                   (3.46) 

where 

( ) 1/2* * *( , ) ( )R R R R Rf p V p p A p B = − +  .                                                                 (3.47) 

3.4.4 Right Rarefaction Wave 

Suppose that the right wave is rarefaction wave. Applying the isentropic law, we get the 

density pressure relation as 

( ) ( )( ) ( ) ( )( )1/ 1/* * *1 1 1R R R R R R Rp p p pρ ρ θρ θρ θρ
Γ Γ

= − + − ,                            (3.48) 

and the generalized Riemann invariant for a right rarefaction wave yields 

( ) ( )* * *2 (1 ) 1 2 (1 ) 1R R R R Rv c v cθρ θρ− − Γ − = − − Γ − ,                                               (3.49) 

where * andR Rc c  denote the sound speed on the left and right state bounding the right 

rarefaction fan. Using (3.48) in the definition of *
Rc , we get 

( ) ( ) ( ) ( ){ }( 1)/2 1/* * *1 1 1 .R R R R R R Rc c p p p pθρ θρ θρ
Γ− Γ Γ

= − + −                                 (3.50) 

Using (3.50) in (3.49), we get 

* *( , ),R R Rv v f p V= +                                                                                                    (3.51) 

with 

( ) ( ){ }( 1)/2* *( , ) 2 (1 ) 1 1R R R R Rf p V c p pθρ
Γ− Γ

= − Γ − − .                                              (3.52) 

Now, the functions andL Rf f  have been computed for all four possible wave patterns.  

By eliminating *v  from equations (3.29) or (3.36) and (3.46) or (3.51), we get 

* *( , ) ( , ),L L L R R Rv f p V v f p V− = +    
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or  

* * *( , , ) ( , ) ( , ) 0,L R L L R R R Lf p V V f p V f p V v v≡ + + − =                                                  (3.53) 

which is the required equation for pressure. If the nonlinear algebraic equation is solved 

(analytically or numerically) for *p , then the solution for particle velocity *v  can be 

determined from equation (3.29), if left wave is a shock wave *( )Lp p>  or from 

equation (3.36), if left wave is a rarefaction wave *( )Lp p≤  or from (3.46), if  right 

wave is a shock wave *( )Rp p> or from (3.51), if right wave is a rarefaction wave 

*( )Rp p≤ . It can also be found from a mean value as  

* * *( ) / 2 ( ( ) ( )) / 2 .L R R Lv v v f p f p= + + −                                                                     (3.54) 

3.5 Numerical solution 

The unknown pressure *p  is obtained by solving the single algebraic equation (3.53). If 

any of the wave (left or right) is a shock wave, it is not easy to solve (3.53), analytically. 

It can be seen easily that the function f , given by (3.53), is monotonically increasing 

and concave downward. Also the behaviour of the pressure function depends on the 

difference R Lv v− . If this difference is larger than a critical value, it will lead to vacuum 

in the solution of the Riemann problem. We consider only non-vacuum case. The 

critical value can be found in terms of initial data. For a positive solution of pressure *p  

we must have (0) 0f < , i.e., 

( ) ( )2 (1 ) 1 2 (1 ) 1R L L L R Rv v c cθρ θρ− < − Γ − + − Γ − ,                                                (3.55) 

which is the required pressure positivity condition.  

Here, the Newton-Raphson iterative procedure is used to find the root of the pressure 

equation, which is 

1 ( ) '( )n n n np p f p f p+ = − , 
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where np  is nth iterate. The iteration procedure is stopped when the relative pressure 

change [ ]1 12 n n n np p p p+ +− +  is less than a prescribed tolerance (TOL) say 610− . 

  To implement the iteration scheme we need a guess value 0p for pressure. One 

such approximation is the so called two – Rarefaction approximation (Toro, 2009) 

2 /( 1)

( 1)/2 ( 1)/2

(1 ) (1 ) ( 1)( ) / 2
(1 ) / ( ) (1 ) / ( )

L L R R R L
TR

L L L R R R

c c v vp
c p c p

θρ θρ
θρ θρ

Γ Γ−

Γ− Γ Γ− Γ

 − + − − Γ − −
=  − + − 

.                             (3.56) 

A second guess value can be taken as the Primitive Variable Riemann Solver (PVRS) 

(Toro, 2009) 

0 max( , )
( ) / 2 ( )( )( ) / 8

PV

PV L R L R L R L R

p TOL p
p p p c c v vρ ρ

= 
= + + + + − 

.                                               (3.57) 

A third guess value is given by a two shock approximation (Toro, 2009) 

( ) ( )
( )

0

1/2

max( , )

( ) ( ) ( ) ( ) ( )

( )

TS

TS L L R R R L L R

K K K

p TOL p

p g p p g p p v v g p g p

g p A p B

= 
= + − − + 

= +   

,                                     (3.58) 

where andK KA B are given in equation (3.12). Here p is an estimate of the solution.  

As a fourth guess value, we can use the arithmetic mean of the data, namely 

0 ( ) / 2.L Rp p p= +                                                                                                       (3.59) 

3.6 Summary of the solution 

3.6.1 Left Shock Wave 

Here a left shock wave is identified by the condition *
Lp p> . The values * * *, and Lp v ρ  

have been calculated. The shock speed LG  is also a function of pressure *p . From (3.14) 

and (3.18), we have 
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/ ,L L L LG v Q ρ= −                                                                                                        (3.60) 

where LQ  is given by (3.27).  

More explicitly, we have 

( ) 1/2*
L L L L LG v p B A ρ = − +  .                                                                               (3.61) 

Thus, if the left wave is a shock wave then the complete solution for the entire region to 

the left of contact discontinuity has been found. 

3.6.2 Left Rarefaction Wave 

Also the left rarefaction wave is identified by the condition *
Lp p≤ . The 

pressure *p , particle velocity *v  and density *
Lρ  in the star region have been calculated. 

The rarefaction wave is consist of the head and tail which are the characteristics of the 

speed given respectively by  

* *, .HL L L TL LG v c G v c= − = −                                                                                        (3.62) 

Now, the solution for ( , , )T
LfanU v pρ=  inside the left rarefaction fan is computed, 

which is obtained by considering the characteristic ray through the origin (0,0)  and a 

general point ( , )x t inside the fan. The slope of the characteristic is given as  

,dx dt x t v c= = −   

where andv c  are respectively the sought particle velocity and sound speed at ( , )x t . 

Also, use of generalized Riemann invariant yields 

( ) ( )2 (1 ) 1 2 (1 ) 1L L Lv c v cθρ θρ+ − Γ − = + − Γ − .                                   

The solution of these two simultaneous equations is 

( ) ( ) ( )( ) ( )( )2 (1 ) 1 2 (1 ) 1 1 2(1 ) 1L L Lv v c x tθρ θρ θρ= + − Γ − + − Γ − + − Γ − .        (3.63) 

Also from (3.36), we have 
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( ) ( ){ }( 1)/2*2 (1 ) 1 1 .L L L Lv v c p pθρ
Γ− Γ

= − − Γ − −                                                     (3.63a) 

From equation (3.63) and (3.63a), we get  

( , ) 0,F p x t =                                                                                                             (3.64) 

where  

( )( ) ( ) ( )( 1)/2 1/ ( 1)/2( , ) 1 1 1L L LF p x t p p pθρ θρ Γ+ Γ Γ Γ− Γ= − + Γ + Γ −  

                                   ( ) ( ) ( )( ){ }( 1)/2 2 1 1L L L Lp v x t c θρΓ+ Γ− Γ − + − − ,                      (3.64a) 

which is a function of pressure distribution in a left rarefaction fan. It can be easily seen 

that for a fixed ( , )x t , we have 0pF > , which shows that F  is a monotonically 

increasing function of pressure. For pressure to be positive, we must have 

( )0, 0,F x t <  which gives the pressure positivity condition in the left rarefaction fan 

given as ( )( )2 (1 ) 1L L Lc v x tθρ− Γ − + > .   

Also, for a fixed ( , )x t , we have 0ppF < , which shows that F  is a concave 

downward function of pressure. We can apply the Newton-Raphson iterative procedure 

to find the root of the pressure equation. An initial approximation is given by equations 

(3.56), (3.57) or (3.58). 

Using equation (3.64), pressure at ( , )x t  can also be approximated as  

( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )
2 ( 1)1/

2 1 (1 ) 1 1 1 ,L L L L L L Lp p v x t c p pθρ θρ θρ
Γ Γ−Γ = Γ − + − − − + Γ + Γ −  

 (3.65)                                                                                                                                             

where p  is an approximation to the root of the function given by equation (3.64) and 

can be taken from any of (3.56), (3.58) or (3.59). 

Once the pressure at point ( , )x t  has been calculated, density at that point may 

be given by (3.32), which is 
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( ) ( )( ) ( ) ( )( )1/ 1/1 1 1 .L L L L L Lp p p pρ ρ θρ θρ θρΓ Γ= − + −                                   (3.66) 

Finally, the velocity at ( , )x t  is given by (3.63). 

3.6.3 Right Shock Wave 

A right shock wave is identified by the condition *
Rp p> . The values 

* * *, and Rp v ρ  have been calculated. The shock speed is 

/ ,R R R RG v Q ρ= +                                                                                                       (3.67) 

where RQ  is given by (3.44). More explicitly, we have 

( ) 1/2*
R R R R RG v p B A ρ = + +  .                                                                              (3.68) 

Thus, if the right wave is a shock wave then the complete solution for the entire region 

to the right of contact discontinuity has been found. 

3.6.4 Right Rarefaction Wave 

The solution procedure is entirely analogous to the case of left rarefaction wave. 

A right rarefaction wave is identified by the condition *
Rp p≤ . The pressure *p , particle 

velocity *v  and density *
Rρ  in the star region have been calculated. The rarefaction 

wave is enclosed by the head and tail which are the characteristics of the speed given 

respectively by  

* *, .HR R R TR RG v c G v c= + = +                                                                                       (3.69) 

We now determine the solution for ( , , )T
RfanU v pρ=  inside the right rarefaction fan. 

This is easily obtained by considering the characteristic ray through the origin (0,0)  

and a general point ( , )x t inside the fan. The slope of the characteristic is  

dx dt x t v c= = + ,  

where andv c  are respectively the sought particle velocity and sound speed at ( , )x t  . 
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Also, use of generalized Riemann invariant yields 

( ) ( )2 (1 ) 1 2 (1 ) 1R R Rv c v cθρ θρ− − Γ − = − − Γ − .                                   

The solution of these two simultaneous equations is 

( ) ( ) ( )( ) ( )( )2 (1 ) 1 2 (1 ) 1 1 2(1 ) 1R R Rv v c x tθρ θρ θρ= − − Γ − + − Γ − + − Γ − .        (3.70) 

Also from (3.51), we have 

( ) ( ){ }( 1)/2*2 (1 ) 1 1R R R Rv v c p pθρ
Γ− Γ

= + − Γ − − .                                                   (3.70a) 

From equation (3.70) and (3.70a), we get 

( , ) 0,F p x t =                                                                                                              (3.71) 

where  

( ) ( ) ( )( 1)/2 1/ ( 1)/2( , ) 1 1 1R R RF p x t p p pθρ θρΓ+ Γ Γ Γ− Γ= − + Γ + Γ −  

                                                      ( ) ( ) ( ){ }( 1)/2 2 1 (1 )R R R Rp v x t c θρΓ+ Γ+ − Γ − + − − , (3.71a) 

which is a function for distribution of pressure in right rarefaction fan. It can be easily 

seen that for a fixed ( , )x t , we have 0pF > , which shows that F  is a monotonically 

increasing function of pressure. For pressure to be positive, we must have 

( )0, 0,F x t <  which gives the pressure positivity condition in the right rarefaction fan 

as ( )( )2 (1 ) 1R R Rv c x tθρ+ − Γ − < . 

Also, for a fixed ( , )x t , we have 0ppF < , which shows that F  is a concave 

downward function of pressure. The Newton-Raphson iterative procedure is applied to 

find the root of the pressure equation. An initial approximation is given by equation 

(3.56), (3.57), or (3.58). 

Using equation (3.71), pressure at ( , )x t  can also be approximated as  
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( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )
2 ( 1)1/

2 1 (1 ) 1 1 1 ,R R R R R R Rp p v x t c p pθ ρ θ ρ θ ρ
Γ Γ−Γ = Γ − − − − − + Γ + Γ −  

   (3.72) 

where p  is an approximation to the root of the function given by equation (3.71) and 

can be taken from any of (3.56), (3.58) or (3.59). 

Once the pressure at point ( , )x t  has been calculated, density at that point be given by 

(3.48), which is 

( ) ( )( ) ( ) ( )( )1/ 1/1 1 1R R R R R Rp p p pρ ρ θρ θρ θρΓ Γ= − + − .                                 (3.73) 

Finally, the velocity at ( , )x t  is given by (3.70). 

3.7 Result and discussion 

All we need is an appropriate value ofθ , to assess the effect of dust particles on 

the solution profiles. Since Zθ ρ=  and θ  is constant, we must have 

L RL RZ Zθ ρ ρ= = . Consider a dusty gas with density 1ρ , pressure 1p  and volume 1V . 

The volume fraction of the mixture is 1Z  and mass fraction pk , we have 

1 1 11 ( )spZ V Vθ ρ ρ= = .When the mixture is compressed up to a pressure 2p , the 

density and volume is taken as 2ρ  and 2V  respectively.  The mass fraction pk  remains 

constant but the volume fraction becomes 2 2Z θρ= . By the conservation of mass, 

1 1 2 2V Vρ ρ= . Therefore 2 2 1 1 2 1 1 12 1( ) ( ) ( )sp spZ V V V V V V Zθ ρ ρ ρ ρ= = = = . Thus, the 

value of  θ  is to be chosen such that the volume fraction /sp gZ V V=  on the left and 

right data is less than 5%. For a given value of Z , an obvious choice is KZθ ρ= , 

where max( , )K L Rρ ρ ρ= . 

Five test problems are selected to check the applicability of the method for the 

dusty gas flow. In test 1, the solution profile for dusty gas is compared with that of ideal 

gas without dust particle.  In test 2-5, the solution profile for the case of dusty gas flow 
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is plotted. The data for all five tests in terms of primitive variables for dusty gas is 

shown in the table 1 given below. 

Test Lρ  Lv  Lp  Rρ  Rv  Rp  

1 1.0 0.0 1.0 0.125 0.0 0.1 

2 1.0 -2.0 0.4 1.0 2.0 0.4 

3 1.0 0.0 1000.0 1.0 0.0 0.01 

4 1.0 0.0 0.01 1.0 0.0 100.0 

5 5.99924 19.5975 460.894 5.99242 -6.19633 46.0950 

Table 3.1: Data for test problems 

Test 1 is the Sod test problem (1978). Its solution results in a left rarefaction, a 

contact and a right shock. Figures 3.2 – 3.13 shows the solution profile in the case of 

dusty gas with different values of mass fraction, specific heat and volume fraction of 

solid particles. Test 2 is called the 123 problem given in Toro (2009), has solutions 

consisting of two strong rarefactions and a stationary contact discontinuity and figures 

3.14 (a) – (d) show the solution profiles. Test 3 is the left half of the blast wave problem 

of Woodward and Colella (1984). Its solution consists of a left rarefaction, a contact and 

a right shock and figures 3.15 (a) – (d) show the corresponding solution profiles. Test 4 

is the right half of the Woodward and Colella problem. Its solution consists of a left 

shock, a contact and a right rarefaction and figures 3.16 (a) – (d) show the solution 

profiles. Test 5 consists of shock solutions of test 3 and test 4 for ordinary gas 

dynamics. Its solution consists of a left shock, a contact discontinuity and a right shock 

wave and figures 3.17 (a) – (d) show the solution profiles. 

In all cases the ratio of specific heats is 1.4γ = .  
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Figures 3.2 – 3.5 show the solution profiles for density, velocity, pressure and 

internal energy respectively for different values of mass fraction, at 0.01, 0.5Z β= = . 

Figures 3.6 – 3.9 show the solution profiles for different values of specific heat of solid 

particles, when 0.01, 0.3, 0.4286.pZ k λ= = =  Figures 3.10 – 3.13 show the solution 

profiles for different values of volume fraction when 0.8, 0.3, 0.4286pkβ λ= = = .  

In figures 3.2 – 3.13, the case 0.0Z = , corresponds to ordinary gasdynamics and 

are identical to those obtained in Toro (2009). The Figures show that the effect of 

increasing values of the parameters of dust particles is to reduce the length of star 

region. From figures 3.2 – 3.5 it can be inferred that an increase in the value of mass 

fraction causes the head of the rarefaction wave to move faster, the contact discontinuity 

to become weaker and the shock wave to become stronger as compared to ordinary 

gasdynamics case. The effects obtained in solution profiles is due to the reason that any 

increase in the pk  or β  causes the Grüneisen  coefficient Γ  to decrease which results 

in a general rise of density, velocity etc. in the star region relative to what it would be in 

the absence of dust particles and this causes to shrink the star region.  

Figures 3.6 – 3.9 show that by increasing the specific heat of solid particles a 

similar behaviour is observed as for the case of corresponding figures 3.2 – 3.5, which 

is expected. 

Figures 3.10 – 3.13 show that the effect of an increase in the value of volume 

fraction also produces similar behaviour in nature with reduced magnitude as compared 

to the above corresponding cases of figures 3.2 – 3.9.  

From figures 3.2 – 3.13, it can be concluded that the solution profiles in case of 

dusty gas depends solely on the nature of dust particles i.e., mass fraction, volume 

fraction and specific heat of solid particles. 
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Figure 3.2 Density profile 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Position

Pr
es

su
re

 

 

kp = 0.0, Z = 0.00

kp = 0.3, Z = 0.01

kp = 0.6, Z = 0.01

 
Figure 3.3 Pressure profile 
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Figure 3.4 Velocity profile 
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Figure 3.5 Internal Energy profile 
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Figure 3.6 Density profile 
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Figure 3.7 Pressure profile 
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Figure 3.8 Velocity profile 
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Figure 3.9 Internal Energy profile 
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Figure 3.10 Density profile 
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Figure 3.11 Pressure profile 
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Figure 3.12 Velocity profile 
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Figure 3.13 Internal Energy profile 

 

 

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

Position

D
en

si
ty

 
0 0.2 0.4 0.6 0.8 10

0.1

0.2

0.3

0.4

Position

Pr
es

su
re

 

0 0.2 0.4 0.6 0.8 1-2

-1

0

1

2

Position

Ve
lo

ci
ty

 0 0.2 0.4 0.6 0.8 10.2

0.4

0.6

0.8

1

1.2

Position

In
te

rn
al

 E
ne

rg
y

 

  

 

 

 

(a) (b) 

(c) (d) 

Figures 3.14 (a) – (d) Solution profiles for Test 2; 0.1, 0.1111pk λ= = , 
0.8, 0.01β θ= = . at 0.15t s=  
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(d) (c) 
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(a) (b) 

(c) (d) 

Figures 3.15 (a) – (d) Solution profiles for Test 3; 0.1, 0.1111pk λ= = , 0.8, 0.01β θ= =  
at time 0.012t s= . 

Figures 3.16 (a) – (d) Solution profiles for Test 4; 0.1, 0.1111pk λ= = , 0.8, 0.01β θ= =  
at time 0.035t s= . 
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(a) (b) 

(c) (d) 
Figures 3.17 (a) – (d) Solution profiles for Test 5; 0.1, 0.1111pk λ= = , 0.8β =  

0.001667θ =  at time 0.035t s= . 


