
Chapter 2 
 
 
 
 
On the decay of a sawtooth profile in non-ideal 
magnetogasdynamics  

In the present work, we deal with the study of propagation of weakly nonlinear waves in 

a non ideal gas permeated by a transverse magnetic field with infinite electrical 

  

2.1 Introduction 

Discontinuity waves, such as shock waves, acceleration waves and weak waves are 

characterized by discontinuity in the normal derivative of the flow variable rather than 

the variable itself. Therefore, for nonlinear systems, the analysis of these waves has 

been the subject of great interest both from mathematical and physical point of view. 

For the physical phenomenon modelled by a system of quasi-linear hyperbolic partial 

differential equations, it is theoretically possible to find the progressive wave solution. 

Choquet Bruhat (1969) used the perturbation method to determine a shockless solution 

of a system of quasi linear hyperbolic partial differential equations that depend upon 

single phase function. Germain (1972), Fusco (1982), Fusco and Engelbrecht (1984), 

and Sharma et al. (1987) used the same technique to analyze the nonlinear wave 

propagation in various gasdynamic regimes. Hunter and Keller (1983) presented a 

method, known as ray method, to determine a small-amplitude high frequency wave 

solution of hyperbolic system. Singh et al. (2011) have studied the problem of 

propagation of acceleration waves along the characteristic path by using the 

characteristics of the governing system as the reference coordinate system. 
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conductivity. An evolution equation, characterizing the wave process in the high 

frequency domain, is derived. The growth equation for an acceleration wave is 

recovered as a special case. The propagation of a sawtooth profile that ends in a tail 

shock can be analyzed in similar manner.  

2.2 Governing equations 

The fundamental equations for one dimensional unsteady motion of a non-ideal gas in 

the presence of a transverse magnetic field may be written as (Whitham (1974), 

Korobeinikov (1976) and Wu (1996)) 
1 0t x xv v mvxρ ρ ρ ρ −+ + + = ,                                                                                       (2.1) 

1( ) 0t x x xv vv p hρ −+ + + = ,                                                                                          (2.2) 

2 1( ) 0t x xp vp d v mvxρ −+ + + = ,                                                                                    (2.3) 

12 ( ) 0t x xh h h v mvxν −+ + + = ,                                                                                       (2.4) 

where  ρ is the density, v  the fluid velocity, p the pressure, d = (1 )p bγ ρ ρ−  is the 

speed of sound in non-ideal gas with γ as the adiabatic index, b is the van der Wall’s 

constant, 
2 2h Hµ= the magnetic pressure with H  as the magnetic field strength, µ is 

the magnetic permeability, t  the time, and x  the spatial coordinate. Here subscripts 

denote partial differentiation unless stated otherwise. The letter m  takes values 0 for 

planar and 1 for cylindrically symmetric motion. 

In matrix notation, Equation (2.1)-(2.4) can be written as 

0t xU AU B+ + = ,                                                                                                        (2.5)  
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. 

Equation (2.5) can be written as 

0, , 1, 2,3, 4i ij i
tU A B i j+ + = = ,                                                                             (2.6) 

where iU , ijA , iB  are components of column  vector U , matrix A  and column vector B  

respectively. 

The system (2.6) is hyperbolic and eigenvalues of the coefficient matrix A  are 

, ,v c v v− and v c+ . Here 2 2 1/2( )c d e= +  is the magneto-sonic speed with 

1/2( / (1 ))d p bγ ρ ρ= −  as the speed of sound in non-ideal gas and 1/2(2 / )e h ρ=  the 

Alfvén speed. The left and right eigenvectors of A corresponding to the eigenvalue  

v c+  are 

2 2(0, , 1, 1), (1, / , , )Tl c r c d eρ ρ= = ,                                                                         (2.7) 

where a superscript means transposition. 

2.3 Progressive wave solution  

Let us consider the asymptotic solution of equation (2.6) which exhibits the feature of 

progressive waves. Consider the following asymptotic expansion 

2
0 1( , ) ( , , ) ( )i i iU x t U U x t Oε ξ ε= + + ,                                                                             (2.8) 

where 0
iU  is a known constant solution of (2.6) such that 0( ) 0iB U = . The remaining 

terms of Equation (2.8) are of progressive wave nature. The choice of ε depends upon 

the physical problem to be studied.  Let chτ  be the characteristic time scale for the 
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medium and aτ  be the attenuation time; then we define a parameter / 1ch aε τ τ= << . The 

variable ξ  is a ‘‘fast variable’’ defined as ( , ) / ,f x tξ ε=  where ( , )f x t  is a phase 

function to be determined later. It may be noticed that the case 1ε << , which 

corresponds to the situation in which the characteristic frequency of the medium is very 

large than the attenuation frequency of the signal, characterizing a high frequency 

propagation (Seymour, 1970). 

Introducing the Taylor’s series expansion of ijA  and iB  in the neighborhood of the 

known constant solution 0
iU  and using equation (2.8), we get 

2
0 1

0

( )
ij

ij ij k
k

AA A U O
U

ε ε
 ∂

= + + ∂ 
,                                                                                (2.9)

 

2
0 1

0

( )
i

i i k
k

BB B U O
U

ε ε
 ∂

= + + ∂ 
 .                                                                               (2.10) 

Substituting Equations (2.8)-(2.10) in (2.6) and cancelling the coefficient of 0 1and ε ε , 

we get 

1
0( ) 0

j
ij i

j
UA λδ
ξ

∂
− =

∂ ,                                                                                                  (2.11) 

1 12 1 1 1
0 0 1 1

0 0

( ) 0
j i j jij i

ij i ij k k
j x xk k

U U U UA BA A f U f U
t x U U

λδ
ξ ξ

− −     ∂ ∂ ∂ ∂∂ ∂
− + + + + =     ∂ ∂ ∂ ∂ ∂ ∂    

,   (2.12) 

where /t xf fλ = − , i
jδ  is the Krönecker delta and the subscript 0 means the quantity 

involved is evaluated at constant state 0U . Equation (2.11) yields the characteristic 

polynomial 2 2 2( ) 0cλ λ − = , providing non zero eigenvalues 0c±  of 0A . Considering the 

velocity 0cλ =  the corresponding left and right eigenvectors of 0A are given by (2.7) 

with subscript 0. From equation (2.11) we see that /u ξ∂ ∂  is collinear to 0r  and  
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therefore 1U  may be written as 

1 0( , , ) ( , , ) ( , )U x t x t r W x tξ α ξ= + ,                                                                              (2.13) 

representing a solution of equation (2.11). Here ( , , )x tα ξ  is the amplitude factor to be 

determined and the iW  (the components of the column vectorW ) are integration 

constants which are not of progressive wave nature and therefore can be taken as zero. 

Now the phase function ( , )f x t  is determined by 

0 0t xf c f+ =  ,                                                                                                             (2.14) 

0( ,0)f x r r= − , then  

0 0( , ) ( )f x t x x c t= − − .                                                                                               (2.15) 

Multiplying equation (2.12) by 0
il  , and using (2.14) we obtain, the following evolution 

equation for α  

0 0 0P Qα αα α
τ ξ

∂ ∂
+ + =

∂ ∂ ,                                                                                            (2.16) 

where 0c
t xτ

∂ ∂ ∂
= +

∂ ∂ ∂
is the ray derivative taken along the ray direction and  

2 2
0 0 0

0 0
0 0 0 0

( ) ( 1) 3 (1 ) 0
2 (1 )

k
k

v c d e bP r
U c b

γ ρ
ρ ρ

∂ + + + − = = > ∂ − 
  , 

0 0 0
0

0 0 0 2

j k j

i i k
l r B mcQ
l r U x

 ∂
= = ∂ 

.  

Here 1
0Q−  has the dimension of time and may be taken as having attenuation time aτ  

characterizing the medium. Equation (2.16) is hyperbolic one and its characteristics 

curves can be obtained in the following form 

( ){ }
0 0 0 0

0 0 0 0 0 0 0 0

( , ), for 0,
2 ( , ) (1 ) 1 , for 1.
P x m
P x x c c x m

ξ τ φ ξ
ξ

ξ φ ξ τ

+ == + + − =
                                  (2.17) 
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The existence of an envelope of the characteristics given by (2.17) gives evidence of the 

formation of a shock. It is evident that the shock is formed for 0τ >  only by those 

characteristics for which 0/ 0φ ξ∂ ∂ < . The shock formation time for plane ( 0)m =  and 

cylindrical ( 1)m =  compressive waves turns out to be 

( )
( ) ( )( ){ }

1
0 0

2

0 0 0 0 0 0

min , for plane waves.

min 1 2 1 , for cylindrical waves.
sh

P

x c c x P

φ ξ
τ

φ ξ

− ∂ ∂


=   + ∂ ∂ −   

     (2.18) 

where the minimum is evaluated over an appropriate range of the quantities 0x , 0ξ . 

2.4 Acceleration waves 

We can use the aforementioned analysis to study acceleration waves for the system of 

equations (2.1)-(2.4). Let us suppose that ( , ) 0f x t = ; represents the acceleration front. 

Across such a front the velocity is continuous but its first and higher order derivatives 

undergo finite jump discontinuities. In the neighborhood of the front, the velocity ν  

may be represented by an expansion 

2
1( , , ) ( ) ,v x t Oεν ξ ξ= +                                                                                               (2.19) 

where 1 0ν = for 0ξ < , and 1 ( )Oν ξ= for 0ξ > . Now 1ν  as an element of the column 

vector 1U  is given by (2.13), so we have (Germain, 1972) 

2

0, 0,
( , , )

( , ) ( ), 0,
if

x t
x t O if

ξ
α ξ

ξβ ξ ξ

<
= 

+ >
                                                                       (2.20) 

with 0 0( / ) ,cβ ρ σ=  where [ / ]v xσ = ∂ ∂  denotes the jump in velocity gradient across 

the acceleration front. 

Using (2.20) in (2.16), and evaluating the resulted equation at the front ( , ) 0f x t = ; i.e., 

at the front 0ξ = , we obtain a Bernoulli type equation 
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2
0 0 0d Q

dt
σ σ σ+ + ∏ = ,                                                                                             (2.21) 

where 

{ } 1
0 0

1 2 ( 1) 3
2

bγ γ ρ ψ ψ −∏ = − + + + ,                                                                         (2.22) 

with 2 2
0 01 /e dψ = + , the Alfvén number, 0 0 / 2Q mc x= , and the derivative /d dt  of any 

quantity , which is supposed to be expressed on the front ( , ) 0f x t = , is the ordinary 

time derivative of the quantity. The solution of the equation (2.21), can be written as 

(Menon et al., 1981) 

 
( )

0 0 0
1/2 1

0 0 0

(1 ) ; for 0,

1 ; for 1,

t m

c t x K m

σ σ
σ

σ − −

+ ∏ == 
+ =

                                                                    (2.23) 

where 

( )( ){ }1/2
0 0 0 0 0 01 2 1 1K c c t x xσ= + ∏ + − ,                                                                (2.24) 

and 0σ  is the value of σ evaluated at 0t = . 

2.5 Weak shock
 

The above analysis shows that a compression pulse always evolves in a shock in a finite 

time, however weak it may be in the beginning. The flow and field variables ahead and 

behind the shock designated respectively by the subscripts 0 and 1 and introducing the 

shock strength parameter 1 0 0( ) /δ ρ ρ ρ= − , satisfy the following shock conditions 

(Korobeinikov, 1976)  

1 0

1
2

1 0
2 1

1 0 0 0

(1 ),
/ (1 ),

(1 ) ,
(1 ) (2 ),

v G
h h
p p G h

ρ ρ δ
δ δ

δ

ρ δ δ δ δ−

= + 
= + 
= + 
= + + − + 

                                                                     (2.25) 
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 where the shock strength parameter δ and the shock velocity G  are related by            

2 2 2
0 0 0 02(1 ) (1 ) 1 ( 1) (1 )

2 2
G d e b bδ δδ ρ δ γ ρ

   = + + − + − − +   
   

 
                                                                { } 1

0 02(1 ) ( 1)(1 )b bρ δ δ γ ρ −− − − + .                    (2.26)  

For a weak shock 1δ <<  and therefore we have the first approximation to the equations 

in (2.25) and (2.26) as 

[ ]

1 0 1 0 1 0 0

1 0 0 0

(1 ), , (1 (1 ))

(1 2 ), 1 /2

v c p p b

h h G c

ρ ρ δ δ γδ ρ

δ δ

= + = = + +


= + = + ∏ 

.                                                      (2.27) 

 

 
 

Figure 2.1 Sawtooth profile 
 

2.6 Behaviour of sawtooth profile 

The shock waves, after travelling a long distance from the source become weak enough 

so that we can apply the weak shock relations (2.27). Therefore we assume a shock, 

which is weak enough at the beginning and investigate the propagation of the fluid 

velocity disturbance given in the form of a sawtooth profile as shown in fig. 2.1, (Zirep, 

1978). 

The left portion of the profile which was situated initially at 0x  travels with the 

magnetosonic speed 0c  of the undisturbed fluid, whereas the shock at the right portion 

ν  

x  

( )L t  

0L  
0x  

0sx  
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situated initially at 
0sx  moves faster; suppose 0L  is the length of the sawtooth profile in 

the beginning. Suppressing the subscript 1 notation, let us denote by v  and c  the state 

at the rear side of the shock, which at time t  is located at 0 0( ) ( )sx t x c t L t= + + ,  

where ( )L t  is the length of the sawtooth profile at any time t . Then 

0
sdx dLG c

dt dt
= = +  .                                                                                                  (2.28) 

Also, from the second and fifth equation of (2.27), we obtain 

0 0 /2G c v= + ∏ .                                                                                                         (2.29) 

The fluid velocity v  in the sawtooth course with constant /v x∂ ∂  can be described as 

( )v L tσ= ,                                                                                                                  (2.30) 

where 
0 0

( / )x x c txσ ν − == ∂ ∂ , the slope of the profile at any is time t , and is given by 

(2.23).  

Using (2.30) in (2.29) and comparing the resulting equation with (2.28), we obtain 

0

2
dL L
dt

σ ∏
= .                                                                                                             (2.31) 

Let 0σ , 0L and 0G be the value of  σ , L  and G , respectively at 0t = . Then equation 

(2.29) and (2.30) gives the following relation connecting 0σ , 0L  and 0G  

0 0 0 0 02( ) /G c Lσ = − ∏ .                                                                                              (2.32) 

From Equation (2.31), we have the following relation for the length of the sawtooth 

profile 

1/2
0 0

1/2
0

(1 ) ; for plane waves,

; for cylindrical waves,

tL
L K

σ + ∏= 


                                                           (2.33)  
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where K  is given by (2.24). Using (2.23) and (2.33) in (2.30), we obtain the relation for 

the velocity of sawtooth profile as  

( )

1/2
0 0

1/2 1/2
0 0 0

(1 ) ; for plane waves,

1 / ; for cylindrical waves,

t

c t x K

σν
ν

−

− −

 + ∏= 
+

                                                   (2.34) 

where 0ν  is the value of ν  evaluated at 0t = . 

 

 

Figure 2.2 Length of sawtooth profile with time in non-magnetic case 
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Figure 2.3 Length of sawtooth profile with time in magnetic case 

 

Figure 2.4 Velocity of sawtooth profile in non-magnetic case 
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Figure 2.5 Velocity of sawtooth profile in magnetic case 

2.7 Result and Discussion 

Equations (2.33) and (2.34) govern the variation in the length and velocity of the 

sawtooth wave with time respectively. Figures (2.2) and (2.4) represent the graph of the 

length and velocity respectively, of sawtooth profile versus time in non-magnetic case. 

Figures (2.3) and (2.5) represent the graph of the length and velocity respectively, of 

sawtooth profile versus time when magnetic field is present. The length 0L L  and 

velocity 0/ν ν  are computed using (2.33) and (2.34), after non-dimensionalising, for 

various values of parameter of non-idealness 0b bρ=  and magnetic field strength ψ  

for planar and cylindrically symmetric flows and presented in Figures (2.2), (2.3), (2.4) 

and (2.5) respectively. In case of an ideal magnetogasdynamics the results are in close 

agreement with Sharma et al. (1987).   
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It is observed that the length 0L L  of sawtooth profile increases with time, whereas the 

velocity decreases with time which is expected. It is observed from figures (2.2) and 

(2.4) that the effect of increasing values of parameter of non-idealness b  is to increase 

the length of sawtooth profile whereas the same effect produces a decreasing trend in 

the velocity of the sawtooth profile, see figures (2.4) and (2.5). This implies that the 

non-idealness of the gas causes an early decay of the sawtooth wave as compared to 

ideal case.  From figures (2.2) and (2.3) it may also be noted here that the effect of non-

idealness in the presence of magnetic field is to slow down the decay process as 

compared to non-ideal non-magnetic case. Also, the effect of non-idealness is more 

dominant in case of cylindrical symmetry as compared to plane case, as can be seen 

from figure (2.4) and (2.5). From (2.22) we also observe that for 2γ =  the magnetic 

field effects contribute in decay behaviour of sawtooth profile in non-ideal 

magnetogasdynamics which is in contrast to ideal magnetogasdynamics case given in 

Sharma (1987). 

2.8 Conclusion 

In the present study, a progressive wave analysis is used to determine the asymptotic 

solution of the system of nonlinear hyperbolic partial differential equations governing 

the non-ideal magneto-gasdynamic flow. The analysis leads to an evolution equation, 

which characterizes the wave process in the high frequency domain and points out the 

possibility of wave breaking at a finite time, is derived. The growth equation governing 

the behaviour of an acceleration wave is also recovered as a special case. Further, we 

consider a sufficiently weak shock at the outset and study the propagation of the 

disturbance given in the form of a sawtooth profile. It is observed that the non-idealness 

of the gas causes an early decay of the sawtooth wave as compared to ideal case 
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however the presence of magnetic field causes to slow down the decay process as 

compared to non-ideal non-magnetic case. The effect of non-idealness, in the presence 

of magnetic field, on the formation of shock is more dominant in case of cylindrical 

symmetry as compared to planar case. Also, as an important case, for 2γ = , the 

magnetic field effect contributes in decay process of the sawtooth profile in non-ideal 

magnetogasdynamics which is in contrast to ideal magnetogasdynamics case. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


