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Introduction 

1.1 Non linear waves 

In many physical and real life problems such as supersonic flight of objects in a 

medium, detonation of explosives, flow in shock tube and dam break problem etc., the 

generated waves are in contrast with the linear theory of waves. In fact the motion of 

these waves is governed by the quasilinear partial differential equations. These waves 

are called nonlinear waves and the principles of superposition, reflection etc., do not 

apply to these waves. One of the distinguishing features of these waves is the 

occurrence of jump discontinuity. These discontinuities may be shock wave or at times 

contact wave. Across the shock wave a sudden change in the physical parameters of the 

flow such as velocity, pressure, density occurs. Across the contact wave the jump in 

flux occurs. A shock wave is an admissible discontinuity that satisfies the Rankine-

Hugoniot conditions and the entropy criteria. The nonlinear nature of the flow may give 

rise to shock discontinuities even if, starting with a continuous motion. Other 

contrasting situation may occur, i.e. the initial discontinuity may be smoothed out 

(Courant and Friedrichs). The interaction of nonlinear waves is another interesting 

phenomenon. The decay behaviour of shock waves is most important in the case of 

weak shock waves.   

When the thermodynamic properties are known, the instantaneous state of a moving gas 

can be characterized in terms of its physical parameters e.g. density, pressure, velocity 



 
 

Chapter 1: Introduction 
 

2 

 

etc, as a function of space and time. These functions are, in turn, related via partial 

differential equations that express the general laws of conservation of mass, momentum, 

and energy.  

There is no general theory available for the solution of nonlinear PDEs. The 

determination of closed form solutions to quasilinear hyperbolic system of PDEs is of 

great interest but an uphill task. For most of the problems, closed form solution have not 

been possible until now. These problems are solved by approximate analytical and 

numerical methods to get insight of the physical process involved.  The problems of 

high speed flows arising in the real life situations are highly nonlinear and complex. As 

the nonlinear theory is not fully developed, for most of the problems, exact or closed 

form solution is not possible. One has to resort to some approximate method. After 

development of personnel computers, numerical methods have got prominence due to 

their capability of prediction of the approximate solution. One takes recourse to 

numerical solution of a problem if the analytical solution is nearly impossible. Another 

situation is that the analytical solution of the problem can be found but it is time 

consuming and the error arising due to numerical approximation is tolerable.  

Nonlinear partial differential equations related to the wave propagation occupy a 

position of substantial importance both from the point of view of the theory of partial 

differential equations and because of the various situations under which these equations 

are applicable. The notion of wave that we are concerned in this thesis is the 

propagation of disturbance that may or may not be of localized type. This form of wave 

is essentially associated with the motion involving the space n
   and dependence on 

time t . The partial differential equations representing the wave propagation can be 
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hyperbolic or parabolic in nature; the present study is limited to the quasilinear 

hyperbolic systems only.  

The concept of characteristic hypersurface and their geometry plays a central role in the 

mathematical theory of quasilinear hyperbolic partial differential equations. Across 

these hypersurfaces the solution may not exist, and when it does, the solution may have 

Lipschitz discontinuities in its first or higher order normal derivatives. The 

characteristic hypersurfaces behave like carrier of these discontinuities, when they exist, 

just as they also transport elements of a solution hypersurface when it is differentiable 

(smooth). In one dimensional time dependent equations these characteristic 

hypersurfaces reduce to the families of characteristics curves in the ( , )x t - plane, along 

each of which may be transported a Lipschitz discontinuity in the first derivative of the 

solution normal to the characteristics. The solution hypersurface itself then reduces to 

an ordinary smooth surface on which a Lipschitz discontinuity in the first derivative of 

the solution normal to a characteristic curve manifests itself in the form of a crease on 

the surface. This crease in the solution surface, or its analogue in n t× , may be 

interpreted as representing a clearly defined propagating wavefront. The solution on the 

side of the wavefront towards which propagation takes place may then be regarded as 

being the ‘undisturbed solution’ ahead of the wavefront, whilst the solution on the other 

side may be regarded as a propagating disturbance wave’ which is entering a region 

occupied by the undisturbed solution.    
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1.2 Hyperbolic partial differential equations  

A general quasilinear system of first order equations in n t×  may be written as  

 0
1

( , , ) ( , , ) ( , , ) 0
i

n

t i x
i

A U x t U A U x t U B U x t
=

+ + =∑ ,                                                        (1.1) 

where the vector ( , )U x t  is a column vector consisting of the elements 

1( , ),..., ( , )mu x t u x t , 1 2( , ,..., )nx x x x=  is a vector in n
 , ( , , )iA U x t  are m m× matrices 

with entries depending on , andU x t , and ( , , )B U x t  is a column vector having 

elements 1 2( , , ), ( , , ),..., ( , , )mb U x t b U x t b U x t . The suffixes t  and ix  denote partial 

differentiation.  

The fundamental idea for the hyperbolic type of a system is that the Cauchy problem 

should be well posed for it. With respect to the first order system (1.1) the Cauchy 

problem amounts to prescribing U  at points on some initial manifold ℘ in 1n t− × , so 

the system will be hyperbolic when this prescribed data is sufficient to determine a 

unique solution that depends continuously on the data prescribed at points of ℘.            

With these concepts and keeping in mind the geometrical approach to wavefronts that 

has been  considered so far, let us now seek to determine the possibility of grouping the 

terms of (1.1) in such a way that they express the derivative of U normal to ℘ in terms 

of derivative of U  in ℘ and the remaining terms of (1.1).  
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Let ( , )i i x tζ ζ=  be differentiable function of their arguments, then we introduce the 

coordinate system ( , ')tζ  , where 1 2( , ,..., )nζ ζ ζ ζ=  and 't t= . The manifold ℘ is taken 

to be associated with the coordinates kζ  and to have the equation ( , ) (const.)k x t aζ =  

and, aside from this restriction, the other iζ  will be chosen arbitrarily. The 

transformation thus becomes  

 ' , ( , ) constant for 1,2,..., .it t x t i nζ= = =                                                                     (1.2)  

Also, it is supposed that initially the transformation is non-singular in the vicinity of℘. 

Using the transformation (1.2), (1.1) reduces to the following form 

 0
1 , 1

( , , ) ( , , ) ( , , ) 0
'

n n
j j

i
j i jj i j

u u UA U x t A U x t B U x t
t t x

ζ ζ
ζ ζ= =

 ∂ ∂∂ ∂ ∂
+ + + =  ∂ ∂ ∂ ∂ ∂ 
∑ ∑  .                  (1.3) 

The manifold ℘ has been embedded in the family of coordinate manifolds 

( , ) constantk x tζ =  and the derivative of U  is to be obtained normal to ℘, and so the 

required derivative is / kU ζ∂ ∂ , which may be rewritten as   

 / 0kU RζΛ∂ ∂ + =  ,                                                                                                    (1.4) 

where 

 0
1

( , , ) ( , , )
n

k k
i

i i

A U x t A U x t
t x
ζ ζ

=

 ∂ ∂
Λ = + ∂ ∂ 

∑ ,                                                                 (1.5) 

and R  is a column vector consisting of m  elements depending upon 

, , and / withiU x t U i kζ∂ ∂ ≠ . 
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Hence, the derivative / kU ζ∂ ∂  normal to ℘ may be obtained from (1.4), in case 1−Λ  

exists, which gives the condition 

det 0Λ ≠ .                                                                                                                     (1.6) 

Dividing detΛ  by 2 1/2

1
| | [ ( / ) ]

n

x k k i
i

xξ ξ
=

∇ = ∂ ∂∑  and setting 

 / /, for 1,2,...,
| | | |

k k i
i

x k x k

t x i nξ ξλ ν
ξ ξ

∂ ∂ ∂ ∂
− = = =

∇ ∇
,                                                            (1.7) 

so that the normalized spatial gradient ofx k kξ ξ∇  is given by the unit vector 

1 2( , ,..., )nv v v v= . Using (1.7) the condition (1.6) can be written as  

 ( ; , ) 0Q P v λ ≠ ,                                                                                                            (1.8) 

where 

 0
1

( ; , ) ( ) ( )
n

i i
i

Q P v v A P A Pλ λ
=

≡ −∑ .                                                                             (1.9) 

Here, the notation ( )iA P has been used to represent the value of ( , , )iA U x t  at point P of 

the manifold ℘. The expression ( ; , )Q P v λ which is a homogeneous polynomial of 

degree m in the quantities 1 2{ , , ,..., }nv v vλ− , is called the characteristic polynomial of the 

system (1.1) with respect to℘.           

It can also be noted that the normal derivative / kU ξ∂ ∂  will be indeterminate at any 

point P of a manifold ℘ for which 
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 ( ; , ) 0Q P v λ = .                                                                                                          (1.10) 

The manifolds ℘ on which (1.10) holds are called characteristic manifolds; and the 

manifolds for which (1.8) does not hold are called non-characteristic.  

The system (1.1) is said to be strictly hyperbolic in t -direction at P  if the zeroes 

(1) (2) ( ), ,..., mλ λ λ  of the characteristic polynomial ( ; , )Q P v λ  are all real and distinct for 

all choices of the unit vector v  and if the right eigenvectors (1) (2) ( ), ,..., mr r r satisfying   

 ( ) ( )
0

1
[ ( ) ( )] 0

m
j j

i i
i

v A P A P rλ
=

− =∑ ,                                                                               (1.11) 

span the space mE occupied by the m element eigenvectors. The system (1.1) will 

merely be said to be hyperbolic in the t -direction if the eigenvectors span the space 

mE but the eigenvalues, although all real, are not all distinct.  

1.3 Shock wave and Rankine-Hugoniot condition  

Consider the system of equations introduced in (1.1) and rewrite it into following 

simpler form in 3 t× with n  dependent variables 

divtF G H+ =  ,                                                                                                         (1.12) 

where ( ( , )) and ( ( , ))F F U x t H H U x t= =  are n  element column matrix vectors and 

( ( , ))G G U x t=  an 3n× matrix. The matrix G  in (1.12) is regarded as a tensor so that 

3
( )

1
div ( / )s

s
s

G g x
=

= ∂ ∂∑ ,                                                                                              (1.13) 

where ( )sg  is the sth G column of . 
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For the discontinuous solution of the system (1.13), we use the integral formulation.  

If F  be a 1n×  column matrix whose components are continuous scalar functions of 

position and time in the volume ( )V t , which is itself enclosed by a surface ( )S t moving 

with velocity v , then the rate of change of the volume integral of F is given as 

 
( ) ( ) ( )

.
V t V t S t

d FFdV dV F VdS
dt t

∂
= +

∂∫ ∫ ∫  ,                                                                   (1.14) 

where dS  is the vector element normal to the surface area. Let ( , ) constantx tσ = be the 

surface of discontinuity for the vector U and hence for , andF G H , and let the volume 

( )V t  be enclosed by the surface ( )S t  moving with velocity v , such that an arbitrary 

part 0 ( )S t of the discontinuity surface ( , ) constantx tσ = divides it into two sub volumes 

1V  and 2V . If 1 2andS S be the parts of the surface S which bound 1V and 2V respectively, 

excluding the surface 0 ( )S t , which is assumed to have the velocity v , then the 

integration of (1.13) over 1 2( )V t V V= ∪ yields 

1 2 1 2 1 2

( / ) ( )
V V V V V V

F t dV divG dV HdV
∪ ∪ ∪

∂ ∂ + =∫ ∫ ∫  .                                                     (1.15) 

Applying Gauss divergence theorem separately to 1 2andV V , in which F and G are 

continuous and differentiable, we get 

1 2 1 2 1 2

( / )
V V S S V V

F t dV G dS HdV
∪ ∪ ∪

∂ ∂ + =∫ ∫ ∫  ,                                                             (1.16) 

where G dS denotes the scalar product of G , now considered as a tensor, and vector 

dS . Now, from (1.14) and (1.16), and noting the fact that the dividing surface 0 ( )S t  is 

also moving with velocity v , we get 
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1 2 1 2 1 2

( . )
V V S S V V

d FdV F V G dS HdV
dt ∪ ∪ ∪

= − +∫ ∫ ∫  .                                                        (1.17) 

Subtracting from (1.17), the resulting expressions integrated over the separate volumes 

1V and 2V  yields  

0 0
1 1 2 2( ) ( )

( ) ( ) 0
S t S t

FV G dS FV G dS− + − =∫ ∫  ,                                                             (1.18) 

where 1 2anddS dS  are the outward directed surface elements associated with the 

volumes 1 2andV V .   

The surface elements 1 2anddS dS  are both normal to discontinuity 

surface ( , ) constantx tσ = , but are oppositely directed. Therefore, 

2 1 2 0andn n dS dS ndS= − = = . The relation (1.18) may be rewritten as 

0
1 2 0( )

[( ) . ( ) . ] 0
S t

FV G n FV G n dS− − − =∫  .                                                                (1.19) 

Since 0dS is arbitrary, we have an algebraic jump condition across ( , ) constantx tσ = in 

the following form 

1 2( ) . ( ) . 0FV G n FV G n− − − =  .                                                                                (1.20) 

The above relation (1.20) can also be written as 

1 2 1 2( ) ( ).F F G G nλ − = − ,                                                                                           (1.21) 

where 1 2. .v n v nλ = =  is the normal speed of propagation of the area elements 

1 2anddS dS on opposite sides of, and moving with ( , ) constantx tσ = and also is 

continuous across 0 ( )S t .  
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Equation (1.21) can be written as  

[ ] [ ].F G nλ =  ,                                                                                                           (1.22) 

where [ ]Q  represents the jump in Q  across discontinuity surface 0 ( )S t . The relation 

(1.22) is also called the generalized Rankine-Hugoniot relation for the system (1.12).  

In the case of gasdynamics, a discontinuous solution for a system of equations written in 

conservation form satisfying the generalized Rankine-Hugoniot conditions and 

appropriate entropy conditions is called a shock.                    

1.4 Simple wave and Progressive wave 

For one dimensional flow, consider the system of quasilinear hyperbolic partial 

differential equations  

 ( ) 0t xU A U U+ =  ,                                                                                                     (1.23) 

where U is the vector in n
  and the matrix A  is a function of U .  

The solution vector U is said to define a Simple wave if it can be written in terms of 

variables by means of a single function and the associated flows are called simple wave  

flow (Germain 1972, Whitham 1978).           

As the system (1.23) is hyperbolic, the matrix A  has n real eigenvalues , 1,...,i i nλ =  

with corresponding eigenvectors ir , i.e, 

 .i i
iAr rλ=                                                                                                                 (1.24) 

The simple wave solutions of the system (1.23) are solutions of the form 
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( , ) ( ),U x t U X=                                                                                                           (1.26) 

where  

 ( , ).X X x t=                                                                                                               (1.27) 

Thus, equation (1.23) gives  

( ) ( )dU dUA X t X x
dX dX

   
= − ∂ ∂ ∂ ∂     

   
,                                                                  (1.28) 

which suggests that dU dX is an eigenvector of the matrix ( )A U  corresponding to the 

eigenvalues  

( ) ( ).i X t X xλ = − ∂ ∂ ∂ ∂                                                                                           (1.29) 

The function ( )U X can be determined by the solution of the equation 

idU r
dX

= ,                                                                                                                     (1.30) 

i.e., of the system  

1 2

1 2

... .n
i i i

n

dUdU dU dX
r r r

= = = =                                                                                     (1.31) 

Once we know the function ( )U X , the value of ( , )X x t can be obtained by integration of 

(1.29). Thus, we have      

( )ix r t f X= + ,                                                                                                          (1.32) 

where, the function ( )f X  is arbitrary. The curves along which the function X  is 

constant are called Simple waves, i.e., Simple waves are the straight lines given by the 
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eq. (1.32). The surface constantX =  are often called wavelets. Therefore, U  remains 

constant if and only if one stays on a wavelet.    

The solution ( , )U x t  is said to describe a progressive wave if there exists a family of 

propagating wavelets constantX = , with  

( , ) ,F x t X=                                                                                                                (1.33)  

such that the magnitude of the rate of change of U - or eventually its derivatives, when 

x  is moving with such a wavelet is small in comparison to the magnitude of rate of 

change of U when x  is kept fixed (Germain, 1972).           

To obtain the progressive wave solution the function X  is introduced either by 

substituting one of the independent variables like t  or to add an additional one which 

characterizes the wavelet. In light of this definition we can write  

( , ),X X F x tψ= =                                                                                                      (1.34) 

where ψ  is a small parameter. Now U  may be written as  

( , ) ( , , )U x t U x t X=  .                                                                                                  (1.35) 

From the right hand side of equation (1.35), we can see that U  is a function of three 

independent scalar variables. Using (1.34) in (1.35), the rates of changes are given by  

 1 , ,t t
U U U FF F
t X t tψ

 ∂ ∂ ∂ ∂
= + = ∂ ∂ ∂ ∂ 

                                                                    (1.36) 

1 ,X X
U U U FF F
x X x Xψ

 ∂ ∂ ∂ ∂
= + = ∂ ∂ ∂ ∂ 

 .                                                                 (1.37) 
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Since ψ  is a small parameter, we may suppose that the first partial derivative of U  and 

F are bounded, say (1)O . For any given curve ( ( ), ( ))x tη η , we can write 

 1U U F U dt U dx
x t d x dη ψ η η η

       ∂ ∂ ∂ ∂ ∂     = + +            ∂ ∂ ∂ ∂ ∂            
.                                            (1.38) 

In the above equation the left hand side is of the order of 1( )O ψ − ; but if ( )F η  is 

constant it is only (1)O . The general discussion for linear and nonlinear systems can be 

found in Ludwig (1960), Lewis (1965), Vaillant (1968) and Courant & Hilbert (1962).    

1.5 Non-Ideal gas 

The equation of state of an ideal gas is written under two assumptions: the gas 

molecules are so small that they have no volume and that the molecules are non-

interacting.  It is given as  

PV nRT= ,  

where n is the number of molecules of the gas, R  is the gas constant, T  is the absolute 

temperature, P  is the pressure and V  is the volume of the gas. It is a good description 

of most gases in the low density regime, where on average molecules are far apart. But 

it is not true for real gases.  

However, if the temperature of the gas is very high and density is too low then the 

hypothesis that the gas is ideal is no longer valid. Then there is no choice but to relax 

the assumptions of ideal gas. The most preferred equation of state is the Van der Waals 

equation of sate. 
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Dutch Physicist Van der Waals derived an equation of state, known as the Van der 

Waals equation of state without the assumptions of ideal gas, which is written as, 

 2

RT ap
V b V

= −
−

 , 

where a  and b  are two small constants and V  is the molal volume.   

In the first approximation, for the molal volume V  there must be substituted the 

covolume V b− , where the constant b  is proportional to the sum of the volumes of all 

the molecules in one mole of the gas. The equation of state therefore becomes 

 ( )p RT V b= − ,  

as the covolume equation of state. Now, if the molecules of the gas do interact at a 

distance, say, attract each other, and then the internal pressure due to this attraction must 

be taken into account. When the density of the gas in a given vessel is changed by 

adding more gas or subtracting it, all the internal forces change in the ratio 21/V . Since 

the pressure is defined as the force per unit area, this applies also to the internal pressure 

and we obtain for it the expression 2/a V  which is added to p  in Van der Waals' 

equation.  

Roberts and Wu (1996) determined conditions for the stability of strong spherical 

implosions for both ideal and Van der Waals gases. When the Van der Waals excluded 

volume is sufficiently large and the attractive constant is neglected, they have shown  

that a new type of solution is found and the shock may be linearly stable. Wu and 

Roberts (1996) studied the properties of strong spherical shock waves whereas Somogyi 
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and Roberts (2007) investigated the numerical stability of an imploding spherical shock 

wave in Van der Waals gas. Zhao et al.(2011) investigated the problem of admissibility 

of shock waves and shock-induced phase transition in a Van der Waals fluids.  

1.6 Magnetogasdynamics 

The theory dealing with the study of interaction between moving electrically conducting 

gases and electromagnetic field is known as magnetogasdynamics. The governing 

equations for the study of interaction between gasdynamics and magnetic field 

comprises of the equations from gasdynamics and electromagnetic theory. 

Electromagnetic interaction takes place in many natural and man-made flows. Examples 

of magnetogasdynamic fluids are plasma, liquid metals and electrolysis. These are 

typically used in industry to heat, pump, stir and levitate liquid metals. Magnetic field 

influences our everyday life.  

There is terrestrial magnetic field maintained by the fluid motion in earth core and 

supposed to be main force behind the earth’s rotation, the magnetic field of sun which is 

responsible for sunspots and solar flares, and the galactic magnetic field which 

contribute significantly to total pressure which balances the interstellar medium against 

gravity and affect gas flow in interstellar medium and formation of stars.  The 

interaction between the gasdynamic phenomena and the magnetic field is investigated 

by combining the magnetic field equations with those of gasdynamics.   

The interaction between the magnetic field and gasdynamics is studied by associating 

the field equations with the equations of gasdynamics. In most of the problems 

concerning electromagnetism, the Maxwell’s displacement currents are generally 
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ignored (Pai (1972), Kantrowitz and Petschek (1966), Anile and Greco (1978) and 

Spitzer (1967)). In magnetogasdynamics, the magnetic permeability of the media under 

consideration differs slightly from unity and therefore in the application, it is taken as 

unity. Thus the field equations are 

 1 ,tE H
c

∇× = −                                                                                                            (1.39) 

4 4 ,u HH J E
c c c
π π σ × ∇× = = + 

 
                                                                               (1.40) 

0,H∇ =                                                                                                                      (1.41) 

where E is the electrical intensity, c is the speed of light, H is the magnetic field, J  is 

the current density, u is the velocity of fluid and σ  is electrical conductivity. 

Suppose that σ  is uniform in the medium. Using equation (1.41) in the equation (1.40) 

we have       

 
2 2

( )
4t

c HH u H
πσ
∇

−∇× × =  .                                                                                         (1.42) 

If the electrical conductivity is infinite, the equation (1.42) reduces to the following 

form  

 ( . ) ( . ) ( . ) 0 .tH u H H u H u+ ∇ + ∇ − ∇ =                                                                            (1.43) 

Using equation (1.41), the equation (1.43) may be written as 

 ( . ) ( . ) 0.tH u H H u+ ∇ + ∇ =                                                                                           (1.44) 

The equation (1.44) is employed in concurrence with gas dynamic flow equations to 

study the consequence of magnetic field interaction.  
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Due to complexity in the solution of system of non-linear partial differential equations, 

initial efforts in this area were devoted to the propagation of gas dynamic shocks and 

electromagnetic waves. To study the hydrodynamic shocks, the electrical conductivity 

of the medium is supposed to be infinite. This supposition suggests that the self-

induction will stop changes to magnetic field of the medium at rest (de Hoffman and 

Teller (1950) and Kulikovski and Liubimov (1961)). Also the basic equations 

degenerate into non-convex hyperbolic system, for which the corresponding 

characteristic surface may have unpredicted singularities, making the wave structure 

much more intricate than aerodynamic case (Courant and Hilbert (1962) and Jeffrey and 

Taniuti (1964)). Non-ideal magneto-hydrodynamics bids for striking potential 

applications, but also give rise to many subtle questions (Kantrowitz and Petschk 

(1966)). 

1.7 Cauchy problem:  

Let S be an open subset of n
 , and let ,1jf j m≤ ≤ , be m  smooth functions from S into 

n
 . Then for the general system of conservation laws in several space variables     

 1
1

( ) 0, ( ,..., ) , 0
m

m
j mj

j

u f u x x x t
t x=

∂ ∂
+ = = ∈ >

∂ ∂∑   ,                                                   (1.45) 

where 1( ,..., )T
nu u u= is a vector valued function from [0, [ intom S× +∞ , the set S  is 

called the set of states and the functions 1( ,..., )T
j j njf f f= are called flux functions. Then 

the Cauchy problem for (1.45) is to find a function : ( , ) [0, [ ( , )mu x t u x t S∈ × ∞ → ∈ , 

that is a solution of (1.45) satisfying the initial condition 

0( ,0) ( ), mu x u x x= ∈ ,                                                                                            (1.46)  
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where 0 : mu S→  is a given function. 

1.8 Riemann problem 

The study of Riemann problem started with the work “ theory of waves of finite 

amplitude” by great mathematician G. F. B. Riemann (1859), which was not limited to a 

single progressive wave and suited to calculate the propagation of planar waves of finite 

amplitude proceeding in both directions. Mathematically, the Riemann problem for one 

dimensional flow, consists of a one dimensional conservation law together with 

piecewise constant initial data. It is a particular type of Cauchy problem.  

For one dimensional time dependent Euler equations, Riemann problem is the initial 

value problem for the conservation laws 

 ( ) 0,t xU F U+ =                                                                                                           (1.47) 

with 

2, ,
( )

u
U u F u p

E u E p

ρ ρ
ρ ρ
   
   = = +   
   +   

 

and the initial conditions 

 (0) if 0,
( ,0) ( )

if 0,
L

R

U x
U x U x

U x
<

= =  >
  

where the domain of interest in the x t−  plane are points ( , )x t  with x−∞ < < ∞  and 

0t > .    

Riemann problem has many real world applications. In gasdynamics one dimensional 

Riemann problem for Euler equations is the generalization of the shock tube problem, 
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which consists of two stationary gases in a tube separated by a diaphragm. When the 

diaphragm is broken suddenly, it produces a nearly centered wave system. The middle 

wave is always a contact discontinuity and the other two being shock or rarefaction 

waves equitably. In the case of shallow water equations the example of Riemann 

problem is the dam break problem. In dam break problem the water is obstructed by a 

dam. When the dam is broken or the spillway is open, the mathematical explanation of 

flow of water is given by using the solution of Riemann problem. Other applications of 

Riemann problem can be found in the study of traffic flow, haemodynamics, glacial 

flow, sediment transport etc. 

Recently Shekhar and Sharma (2010) presented the solution for one dimensional 

Riemann problem and elementary wave interactions. Further, Shekhar and Sharma 

(2012) and Singh and Singh (2015) presented the solution of Riemann problem for 

magnetogasdynamic flow. Alcrudo et. al. (2001) presented the exact solution to the 

Riemann problem for shallow water equations with a bottom step. The exact solution 

for Riemann problem for shallow water equations with variable bottom is given by 

Bernetti et. al. (2009). 
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1.9 Dusty gas and its equation of state 

Dusty gas is a mixture of gas and small solid particles where solid particles occupy less 

than 5% of total volume. We consider the thermodynamic equilibrium condition such as 

p gT T T= = .  

The density of the mixture is given as 

 (1 )sp g p gz zρ ρ ρ ρ ρ= + − = + .                                                                                 (1.48) 

The mass concentration of the pseudo fluid of the solid particles is defined as 

 / /p p m sp mk Zρ ρ ρ ρ= = .                                                                                          (1.49) 

The pressure of the mixture is 

p gp p p= + .                                                                                                               (1.50) 

The total pressure of the mixture is given as 

g gp R Tρ=  .                                                                                                               (1.51) 

From (1.48), (1.50) and (1.51), the relation between the pressure and density of the 

mixture as a whole is given as 

 
1

m sp
m g g g

Z
p p R T R T

Z
ρ ρ

ρ
− 

= = =  − 
 ,  

  
(1 / )

(1 )
sp m

m g

Z
R T

Z
ρ ρ

ρ
−

=
−

, 

 
1

.
1

p
m

k
R T

Z
ρ

−
=

−
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Therefore,  

,
1
m m

m
R Tp

Z
ρ

=
−

                                                                                                             (1.52) 

where  

(1 ) .m pR k R= −                                                                                                            (1.53) 

Here, mR  may be considered as an effective gas constant of the mixture and subscript 

m refers to the value of the gas constant in the mixture as a whole.  

The internal energy of the mixture per unit mass me is related to the internal energies of 

the two species by the following relation  

 (1 ) ,m m sp sp p g ve Z C T Z C Tρ ρ ρ= + −   

1 ,p sp p g v
m m

Zk C T C Tρ
ρ ρ

 
= + − 

 
 

1 .p
p sp p g v

m sp

k
k C T C Tρ

ρ ρ
 

= + −  
 

 

On simplification, we have 

(1 )m p sp p p ve k C T k C T= + −  ,                                                                                       (1.54) 

where sp s vpC C C= + and we assume that spC and vC are constant for simplicity. For 

thermodynamic equilibrium condition, we have the specific heat of the mixture at 

constant volume vmC as follows 
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(1 )vm p sp p vC k C k C= + −  ,                                                                                           (1.55) 

where vC is the specific heat of the gas at constant volume.        

For thermodynamic equilibrium condition the specific heat of the mixture at constant 

pressure is 

 (1 )pm p sp p pC k C k C= + −  .  

The specific heats of the mixture are independent of the volume fraction Z but depend 

on the mass fraction pk of solid particles. The ratio of the specific heat of the mixture is  

 
(1 )
(1 )

pm p p p sp

vm p v p sp

C k C k C
C k C k C

− +
Γ = =

− +
 ,    

or 

1
1

λβγ
λγβ
+

Γ =
+

 ,                                                                                                           (1.56) 

where, , and
1

p sp p

v p p

C C k
C C k

γ β λ= = =
−

.  

The ratio is always smaller than γ of the gas if pk is different from zero. Also, if 0pk = , 

then γΓ = . 

If we consider the mixture as a homogeneous medium, the first law of thermodynamics 

for the mixture gives 
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 2

1
m m

m

dQ de pdρ
ρ

= − ,                                                                                               (1.57) 

where dQ is the heat addition to the mixture. The above equation is the energy equation 

of the mixture as a whole.  

For isentropic change of state of the gas - particle mixture 0dQ = , so we have 

2

1 m
m m

m m m

dpde pd ρρ
ρ ρ ρ

= = .                                                                                       (1.58) 

Also, from equation  

(1 )m p sp p p ve k C T k C T= + − ,                                                                                        (1.59) 

and thus, 

( (1 ) )m p sp p vde k C k C dT= + −  .  

Therefore,     

( (1 ) ) ,m
p sp p v

m m

dpk C k C dT ρ
ρ ρ

+ − =    

or 

.m
vm

m m

dpC dT ρ
ρ ρ

=                                                                                                      (1.60) 

Using equation (1.52) in (1.60), we have  

.
1

m m
vm

m

R T dC dT
Z

ρ
ρ

=
−

 

After simplification, we have 
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1 1
1 1

m

m

ddT
T Z

ρ
ρ

=
Γ − −

.                                                                                               (1.61) 

If 1Z << , the isentropic change of state of the mixture has a similar relation as that for a 

pure gas with an effective ratio of specific heats Γ . In general, the volume fraction Z  

has some influence on the isentropic change of the mixture.  

Similarly, from equation (1.52), for a given pk and pT T=  , we have 

 
1
m m

m
R Tp

Z
ρ

=
−

 .                                                                                                           (1.62)  

So, 

2

( ) ,
1 (1 )

m m m m
m

R d T R TdZdp
Z Z
ρ ρ

= +
− −

         

or 

.
1

m m

m m

dp ddT dZ
p T Z

ρ
ρ

= + +
−

 

Using equation (1.61) and simplifying, we get 

(1 )
m m

m m

dp d
p Z

ρ
ρ

Γ
=

−
 .  

On integration, we have 

constant .
1

m
mp

Z
ρ −Γ

  = − 
                                                                                           (1.63) 
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Again, if 1Z << , the equation (1.63) is identical in form for the corresponding relation 

of an ideal gas but with an effective ratio of specific heats.  

Using the equation (1.63), the equilibrium speed of sound of the mixture ma as  

2
2 .

(1 )
m

m
m

R Tpa
Zρ

Γ∂
= =
∂ −

                                                                                                 (1.64) 

Early works for the study of mixtures of gas and solid particles are those of Marble 

(1963), Murray (1965), Soo (1967) and Vasiliev (1969). High speed flows of a mixture 

of a gas and small solid particles are encountered in several branches of science and 

engineering. Some of them can be found in Marble (1970), Boothroyd (1971) and 

Rudinger (1980). 

1.10 Review of literature 

The study of waves goes back to the ancient times when philosophers, such as 

Pythagoras, studied the relation between pitch and length of string in musical 

instruments. Brook Taylor (1685-1731) was the first to give analytical solution for a 

vibrating string. Afterwards, the study of waves was moved forward by Daniel 

Bernoulli (1700-82), Leonard Euler (1707-83) and Jean d'Alembert (1717-83) who 

found the first solution to the linear wave equation.   It was not until the second part of 

nineteenth century that the study of nonlinear waves started with the pioneering work of 

Stokes (1847) and Riemann (1858). Afterwards it has progressed, with significant 

advancement made in recent years. When a body is in a relative motion with respect to 

the fluid (inside the fluid), the disturbance (if sufficiently small) produced by the body 

moves through the fluid with the speed of sound. These disturbances can be rarefaction 
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waves or compression waves. The compressions of finite amplitude usually give rise to 

a discontinuous growth of pressure leading to a shock wave in the flow field. There is a 

likewise increase in temperature, density, entropy and other fluid properties. If initially, 

the fluid is at rest and the shock wave is moving then, after the passage of the shock, the 

fluid will move in the direction of the shock. Gas compressions, which have finite 

amplitude, travel faster than the speed of sound, as in the case of strong explosions. The 

instant of formation of shock waves was largely investigated by many authors. Basics of 

gasdynamics can be found in Zierep (1978). The general theory of propagation of shock 

waves was presented by Boillat (1965).  Colemann and Gurtin (1967) and Chen and 

Gurtin (1970) studied the growth and decay of shock waves with internal state 

variables. Shifrin (1970) studied the formation of a shock wave for planar flow of a 

perfect gas. Ardavan-Rhad (1970) studied the propagation of plane shock wave into a 

non-viscous, non-isentropic and non-heat conducting medium. Saldatov (1970) 

determined the instant of formation of a shock wave in a symmetric two-way traffic 

flow, by using the Riemann method. Macpherson (1971) used the molecular-dynamic 

approach to study the formation of a shock wave in dense Argon. Flack and Wittig 

(1971) presented the general solution for the normal shock wave moving in a medium 

where all flow properties vary arbitrarily. Chen (1971) studied the propagation of shock 

waves in elastic non-conductors. The effect of thermodynamic properties on the 

propagation of shock waves has been studied by Chen (1973). Bowen and Chen (1974) 

studied the same problem in the ideal mixture with several temperature layers. Sod 

(1977) numerically studied the propagation of one-dimensional shock wave with 

cylindrical and spherical symmetry. Ruggeri and Boillat (1979) investigated the 

problem of reflection and transmission of discontinuity waves through a shock wave. 
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Sharma et al. (1989) studied a traffic flow problem in which shock wave appears. In the 

past decades various authors have studied the problem of growth and decay behaviour 

of shock waves propagation in several material media.  

One of the interesting features of the shock waves is the problem of determining the 

differential effects of shock fronts on the rear flow field. To study this problem Thomas 

(1947) developed a tensorial approach which was further extended by Kanwal (1958) 

for three dimensional shocks in stationary, pseudo-stationary and unsteady flows of 

non-conducting gases. The problem of vorticity generation by a shock has also been 

investigated by various authors like Trusdell (1952), Hayes (1957), Kanwal (1960) and 

Ram (1978). Boillat and Ruggeri (1979) analyzed the evolution of weak discontinuities 

for quasilinear hyperbolic system. The study of shock structure also got prominence in 

the recent decades. Shock structure was studied by Goldman and Sirovich (1969), 

Kuznetsov (1979), Boillatt and Ruggeri (1998). Wave fronts which are concave in the 

direction of propagation exhibit different kinds of behaviour depending on the strength 

of the wave-front. Generally, wave front propagates normal to it and therefore has a 

tendency to converge. The shocks of weak strength are called weak shocks. Focusing of 

weak shock wave is an important problem. Wanner et al. (1972) studied the problem of 

focusing of weak shock waves. Atomic explosions give the evidence of the shock waves 

of strong strength, called blast wave. Ram (1981) has obtained a closed form self 

similar solution to a MHD flow disturbed by propagating blast waves. In case of blast 

waves, the shock becomes very strong and the pressure ahead is generally neglected in 

comparison to the pressure behind the shock wave. This leads to similarity formulation 

of the problem. In this problem, the ratio of distance to a particular power of time is 

known as similarity exponent, which is not known a priori. Various authors developed 
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the numerical and analytical techniques for the determination of similarity exponent of 

the problem e.g. Guderley (1942), Taylor (1950), Butler (1954), Sedov (1959), 

Stanyukovich (1960), Welsh (1967), Zel’dovich & Raiser (1967) and Lazarus (1981), 

Chisnell (1998). Zen’kevich and Stepanov (2007) obtained analytical solution of self 

similar equations in Lagrangian mass coordinate, expressing the dynamics of the 

explosion and the propagation of a strong shock wave. Branover (1978) investigated the 

magnetohydrodynamic flow in ducts. Taylor and Cargill (2001) investigated the 

problem of self-similar expansion waves in magnetogasdynamic flows. Lock and 

Mestel (2008) studied the possibility of self-similar, imploding, finite annular z-pinch 

solutions to the equations of magnetogasdynamics for a perfect gas at infinite magnetic 

Reynolds number. 

In 1859, the great mathematician G. F. B. Riemann presented his famous Theorie der 

Wellen endlicher Schwingungsweite (“Theory of Waves of Finite Amplitude”). After 

the pioneering work of Riemann, the study of Riemann problem got significance but 

due to nonlinear nature of the equations involved, most of the problems do not have 

closed form solution. For the simplest case, a polytropic ideal gas, it was shown by 

Courant and Friedrichs (1948) and Landau and Lifshitz (1959), that the structure of the 

elementary waves and the solutions of Riemann problems can be determined 

analytically. Weyl (1949) had extended this analysis to include more general equation 

of state. The conditions on the equation of state that are necessary and sufficient for 

uniqueness of solutions are determined by Smith (1979). In the recent decades, many 

attempts have been made to develop Riemann solvers. The credit for the development 

of first exact Riemann solver for the Euler equations goes to Godunov (1959). Later, 

Godunov (1976) presented a second exact Riemann solver which was more convenient 
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from the point of view of computation. Chorin (1976) presented improvements to the 

Godunov’s first Riemann solver. Another improvement to the Godunov’s first Riemann 

solver was presented by Leer (1979). Smoller (1994) suggetsted a different approach 

and Dutt (1986) implemented the scheme. Gottlieb and Groth (1988) presented a 

Riemann solver for ideal gas, which was more efficient than preceding one’s. Other 

Riemann solvers are presented by Toro (1989), Schleicher (1993) and Pike (1993). 

Colella and Glaz (1985) presented the Riemann solver with general equation of state. 

Menikoff and Plohr (1989) studied the Riemann problem for fluid flow of real material 

with arbitrary equation of state. He also discussed the shock stability and nonuniqueness 

of the Riemann problem. Saurel, Larini and Loraud (1994) presented the exact and 

approximate Riemann solvers for real gases.  

For the computation of Godunov flox, Harten, Lax and van Leer (1983) presented an 

approach for the approximate solution of Riemann problem. The Riemann solver they 

developed is known as HLL Riemann solver. HLL Riemann solver became a practical 

method after using the wave speed estimates of Davis (1988) and Einfeldt (1988). The 

HLL  solver with the wave speed estimate of Einfeldt is known as HLLE solver. HLL 

solver was extended  by Toro, Spruce and Speares (1992) to include the middle wave. 

The resulting solver is known as HLLC Riemann solver. 

Euler equations with source term occur in many real world problems. Examples of 

Euler equations with source term are flows under gravity, cylindrical and spherically 

symmetric flows and flows in discontinuous duct. Many attempts have been made to 

develop the numerical methods for the solution of Euler equations with source term. 

Lefloch et al. (2003) solved the Riemann problem for fluid flows in a nozzle with 
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discontinuous cross section. Desveaux et al. (2004) developed a well balanced scheme 

for the numerical solution of Euler equation with gravitation. Fuchs (2010) developed a 

well balanced finite volume scheme for the simulation of wave propagation in stratified 

magnetic atmosphere. Kroner et al. (2005) obtained the numerical solution for 

compressible flow in a nozzle with variable cross section. Leveque (1999) developed 

the wave propagation methods for the conservation laws with source terms. Xing et al. 

(2013) developed the high order WENO scheme for Euler equations under gravitational 

fields. Tauma et al. (2016) developed the central finite volume methods for Ripa 

system. Kappeli et al. (2014) developed a well balanced scheme for the Euler equation 

with gravitation. Fjordholm et al. (2011) developed a well balanced and energy stable 

scheme for the shallow water equations with discontinuous bottom topography. 
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