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Abstract—Predefined-time stability is the stability of dynamical
systems whose solutions approach the equilibrium point within
a predecided time duration. In this technical note, we develop
general results of predefined-time stability of nonlinear systems
using vector Lyapunov functions. A vector comparison system,
which is predefined-time convergent, is constructed, and after
that the stability of the original dynamical system is proved using
differential inequalities and comparison principles. Moreover, we
design predefined-time controllers for large-scale systems using
vector control Lyapunov functions. Sliding-mode control is intro-
duced in the design approach to mitigate matched bounded dis-
turbances/uncertainties. Also, we aggregate comparison systems
to reduce their dimensionality in order to effectively apply the
derived results on practical systems. The theoretical results are
implemented on a 2 DOF Helicopter model.

Index Terms—Comparison principle, finite-time stability, Lya-
punov function.

I. INTRODUCTION

For nonlinear systems, various notions of stability, such as asymp-
totic and exponential stability, are used to describe the convergence
of their trajectories to an equilibrium point in infinite time duration.
However, as can be noted in the industrial and engineering sectors,
several essential applications require a convergence of the trajectories
to the equilibrium in finite/fixed-time or a prespecified time.

Researchers studied the finite-time stability of autonomous systems
using continuous Hölder energy functions [1]. Finite-time stability was
explored for several families of systems which include, in particular,
homogeneous systems [2] and switched systems with uncertainty [3].
This stability was further investigated for higher order systems and us-
ing output feedback [4] as well. Finite-time estimation issues have been
considered, e.g., in [5]. In most of these finite-time problems, the time of
convergence primarily depends on initial conditions, which is indeed a
crucial feature. The notion of fixed-time convergence to the equilibrium
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point has been introduced to overcome finite-time stability limitations.
Fixed-time stability of systems has been investigated in particular in [6]
in which uniformity relative to the initial conditions is required for
computing the upper bound of the convergence time. Moreover, in the
problems studied in [7], the fixed-time convergence depends on system
parameters. Another notion of convergence that overcomes fixed-time
problems’ design constraints is prescribed-time convergence [8], which
utilizes time scaling functions to obtain convergence precisely in the
chosen time duration. However, in most of the problems, convergence
time depends on initial conditions and system parameters. On the other
hand, discontinuous controllers guaranteeing finite-time convergence
were also developed in the literature [9]. Nevertheless, they result in
chattering due to uncertainties or unmodeled dynamics in practical
applications.

As a matter of fact, in various applications, it is advantageous to
obtain the convergence of the trajectories in a predecided time, this is
the case, for example, for differentiators and missile guidance. Hence,
predefined-time convergent systems have been studied in [10], where
scalar Lyapunov functions are the key tool of the proofs. The key feature
of these systems is that the state and its derivative converge to zero as the
time approaches the predefined time, independent of any initial condi-
tion. Vector Lyapunov functions (VLFs) were first introduced in [11] to
relax certain strict conditions of scalar Lyapunov functions [12], [13],
[14]. In particular, it is worth observing that the components of VLFs
need not be all positive definite and that the derivative of the component
of a VLF does not have to be necessarily negative or negative semidef-
inite to guarantee the stability of the studied systems. Hence, these
functions enlarge the class of Lyapunov functions to analyze system
stability. In this work, a general framework is developed to analyze the
predefined-time stability of the equilibrium point of nonlinear systems
using VLFs. Specifically, we formulate a vector comparison system in
such a way that it is predefined-time stable and after that we relate these
stability features with the stability features of the original system using
differential inequalities and comparison principles. Besides, we design
universal predefined-time convergent controllers for the large-scale
systems and further discuss their robustness with respect to matched
bounded disturbances. Moreover, in order to reduce the dimension
of the comparison systems, we discuss the aggregation procedure of
comparison systems, which provides a simple and efficient way to
derive control for practical systems. At the end, the efficacy of the
theoretic approach is verified using as example a 2 DOF Helicopter
model. The control of this system is a very challenging problem as it
represents a higher order, highly nonlinear, firmly coupled multi-input
multi-output system.

The rest of this technical note is organized as follows. Section II
is devoted to definitions and notations. Section III provides the main
results of the predefined-time stability of nonlinear systems by the ex-
ploitation of VLFs. Universal predefined-time controllers are designed
for large-scale systems and further their robustness with respect to
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matched bounded disturbances is discussed in Section IV. In addition,
we discuss the aggregation procedure of comparison systems in order to
apply the derived results effectively on practical systems. An illustrative
example with the simulation results is given in Section V. Finally,
Section VI concludes this article.

II. MATHEMATICAL PRELIMINARIES

In this section, we provide the necessary notations and definitions.
Let R, R>q , and R≥q denote the sets of real numbers, real numbers
greater than q, and real numbers greater than or equal to q. The set of the
n× 1 column vector is denoted by Rn and [·]�represents transpose. We
denote p ≤≤ q, for p = [p1, p2, . . . , pn]

� and q = [q1, q2, . . . , qn]
�, if

pi ≤ qi for each i = 1, 2, . . . , n. ‖ · ‖1 and ‖ · ‖ denote the 1-norm and
Euclidean norm in Rn or the induced matrix norms. Given ζ ∈ Rn,
the Fréchet derivative of V ∈ Rp at ζ is denoted by V ′(ζ). Define
d = [1, 1, . . . , 1]� ∈ Rp. C[E,F ] denotes the set of the continuous
functions from the nonempty set E to F where E ⊆ Rk, and F ⊆ Rl.
For the setU ∈ Rn, Ū , and ∂U denote the closure and the boundary of
this set, respectively. A square matrix M is known as a Metzler matrix
if its off-diagonal entries are nonnegative. We denote the pseudoinverse
of a nonsquare matrix T by T +. A function ψ : R≥0 → R≥0 is known
as a class K function, if it is continuous and strictly increasing with
ψ(0) = 0. It is known as K∞ function, if it is a K class function and
ψ(r) → ∞ as r → ∞. Furthermore, to study finite-time, fixed-time,
and predefined-time cases, we consider generalized functions [15].
A function ϕ : R≥0 → R≥0 is known as a generalized K class func-
tion, if it is continuous with ϕ(0) = 0 and satisfies ϕ(r1) > ϕ(r2),
if ϕ(r1) > 0, r1 > r2, and ϕ(r1) = ϕ(r2), if ϕ(r1) = 0, r1 > r2. A
function Λ : R≥0 × R≥0 → R≥0 is said to be a generalized KL class
function (GKL), if for each fixed t ≥ t0, the function Λ(r, t) with
respect to r is a generalized class K function and the function Λ(r, t)
with respect to t is continuous and tends to zero as t→ T , T <∞, for
each fixed r. If T is some predefined time, then Λ is called predefined
GKL function (PGKL function).

Definition 1 (Quasi-monotone increasing function [16], [17]): Let
E ⊆ Rn and let e = [e1, e2, . . . , en]

� be an element of E. A func-
tion Q = [Q1, Q2, . . . , Qn]

� ∈ C[E,Rn] is called quasi-monotone
increasing on E if for every i ∈ {1, 2, . . . , n}, Qi is increasing in
ek for all k = 1, 2, . . . , i− 1, i+ 1, . . . , n.

Let us consider the nonlinear system

ζ̇ = F (ζ, τ), ζ(t0) = ζ0 (1)

where state ζ ∈ D ⊆ Rn, τ ∈ Rm is the control and F : D × Rm →
Rn is a continuous nonlinear vector field such that F (0, τ) = 0, that
is, origin ζ = 0 is an equilibrium point of system (1) when control τ
is applied. The following result is a fundamental comparison principle
for nonlinear systems in the VLF framework.

Lemma 1 (see [18]): Let us consider system (1). Suppose that the
continuously differentiable vector functionW : D → l ⊆ Rp

≥0 is such
that, for a specific τ , W ′(ζ)F (ζ, τ) ≤≤ Q(W (ζ)), ζ ∈ D, where Q :
l → Rp is a quasi-monotone increasing continuous function, such that
ż(t) = Q(z(t)), z(t0) = z0, admits a unique solution z(t) defined over
[t0,∞). If W (ζ0) ≤≤ z0, z0 ∈ Rp

≥0, then W (ζ(t)) ≤≤ z(t) for all
t ≥ t0, where ζ(t) is the solution of system (1) defined over [t0,∞)
when control τ is applied.

Now, we consider the time-varying differential system

ζ̇ = −φ(t, ζ) :=
{

−γ(eζ−1)

eζ(ta−t)
, if t0 ≤ t < ta

0, otherwise
(2)

where ζ ∈ R, γ ∈ R>1, t0 is the initial time and ta = TA + t0, TA is a
predefined-time duration. It is easy to prove existence and uniqueness

of the solutions of this system and to see that ζ̇(t) = 0 and ζ(t) = 0 for
all t ≥ ta [10]. This system will be used when we establish the main
results of the note.

Furthermore, consider the time-varying system

ζ̇ = F(t, ζ, τ, σ), ζ(t0) = ζ0 (3)

where state ζ ∈ D ⊆ Rn, σ ∈ Rp represent constant system parame-
ters to be tuned, τ ∈ Rm is the control, F : R≥0 ×D × Rm × Rp →
Rn is a continuous nonlinear vector field such that F(t, 0, 0, σ) = 0
for all t ≥ 0, that is, origin ζ(t) = 0 is an equilibrium point of system
(3). The following definition describes predefined-time stability.

Definition 2 (see [10]): System (3) is known as predefined-time
stable at the origin for a control τ : τ(t, ζ, ta) if
1) it is asymptotically stable and any solution ζ(t, t0, ζ0) of (3)

reaches the origin at some finite time, that is, ζ(t, t0, ζ0) = 0 for
all t ≥ t0 + T (t0, ζ0), where T : R≥0 ×D → R≥0 denotes the
convergence time;

2) it is possible to choose a predefined convergence time duration
TA > 0 (ta > t0), which does not depend on initial conditions and
can be chosen in advance;

3) the inequality TA ≥ Ttf (weak predefined-time stable) can be
established where Ttf denotes the true fixed time duration or actual
time duration of convergence in which the system trajectories reach
to the origin.

Remark 1: Note that TA does not explicitly depends on any system
parameter. In fact, TA itself is an independent parameter, which is
explicitly predefined in advance. Theoretically, one can choose any
arbitrarily small value of TA. However, we recall that due to inherent
dynamics of practical systems (in particular, the actuator dynamics),
these systems usually impose restrictions on assuming arbitrarily small
values of TA.

We provide following definitions to differentiate among finite-time,
fixed-time, and predefined-time stability using the generalizedKL class
functions.

Definition 3: The origin of system (3) is called finite-time stable if
there exists a GKL class function Λ with Λ(r, t) = 0 when t ≥ T (r),
where T (r) is continuous with T (0) = 0 and ‖ζ(t)‖ ≤ Λ(‖ζ(t0)‖, t).

Definition 4: The origin of system (3) is called fixed-time stable if
it is finite-time stable and supr∈R≥0

T (r) <∞.
Definition 5: The origin of system (3) is called predefined-time

stable if there exist a PGKL class function Λ with Λ(r, t) = 0
when t ≥ ta, where ta = TA + t0, TA is a predefined convergence
time duration, which does not depend on initial conditions and can
be chosen in advance, and α as a class K∞ function, such that
‖ζ(t)‖ ≤ Λ(‖ζ(t0)‖, ta − t), ∀t ∈ [t0, ta) and ζ(t) ≡ 0∀t ≥ ta for all
‖ζ(t0)‖ ≤ α(c).

III. PREDEFINED-TIME STABILITY ANALYZED VIA VLF

In this section, we derive results by using VLFs to analyze the
predefined-time stability of nonlinear systems.

Theorem 1: Consider system (1). Suppose that there exist a continu-
ously differentiable vector function V = [V1, V2, . . . , Vp]

� : D → S,
where p ≤ n, S ⊂ Rp

≥0 is an open and connected set, 0 ∈ S and a
vector r ∈ Rp

≥0 such that r�V (ζ) is a positive definite function, and
there exists a control input τ(t, ζ, ta) such that

V ′(ζ)F (ζ, τ(t, ζ, ta)) ≤≤MΦfr (t, V (ζ)) , ζ ∈ D (4)

whereΦfr(t, V (ζ)) := [φ(t, V1(ζ)), . . . , φ(t, Vp(ζ))]
�, φ is the func-

tion defined in (2), M ∈ Rp×p is Metzler and Hurwitz, and such that
y�M ≤≤ −y� for all nonnegative vector y ∈ Rp

≥0. Besides, suppose
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the following vector comparison system:

η̇(t) =MΦfr(t, η(t)), η(t0) = η0, for all t ≥ t0 (5)

admits a unique solution η(t) ∈ Rp
≥0 defined over [t0,∞). Let ζ(t)

be any solution of (1) with τ(t, ζ, ta) which satisfies (4), such that
V (ζ0) ≤≤ η0. Then, the solution ζ(t) = 0 is predefined-time stable if
γ > p.

Proof: Let us consider the comparison system (5). Observe that
MΦfr(t, η) is a quasi-monotone increasing function of η uniformly
in t0. As a consequence, the solutions to (5) are nonnegative when
η0 ∈ Rp

≥0 [23]. Now, let us consider the Lyapunov function v =
η�η, η ∈ Rp

≥0. Its time derivative along the trajectories of (5) is given
by v̇ = 2η�(t)MΦfr(t, η(t)). Then, from the definition of φ(·) in (2),
it follows that v̇ = 0 for all t ≥ ta. Now let us perform an analysis in
the time interval [t0, ta). Since η�M ≤≤ −η�, it follows that

v̇ ≤ −2η�(t)Φfr(t, η(t)), for all t ∈ [t0, ta). (6)

Let us introduce the function Max defined by Max(y) =
maxi∈{1,...,p} yi. Observe that inequality (6) implies that

v̇ ≤ −2η1(t)φ(t, η1(t)), . . . , v̇ ≤ −2ηp(t)φ(t, ηp(t)) (7)

because yφ(t, y) ≥ 0 for all y ∈ R and t ∈ [t0, ta). Suppose that at any
particular instant t ∈ [t0, ta), Max(η(t)) = η1(t). Then

||η(t)||2 ≤ pη1(t)
2 ⇒ v(t) ≤ pη1(t)

2 ⇒

√
v(t)

p
≤ η1(t). (8)

Now using (7) and (8) and noting the fact that −y1φ(t, y1) ≤
−y2φ(t, y2)when y2 ≤ y1, it is easy to obtain v̇ ≤ −2

√
v
p
φ
(
t,
√

v
p

)
.

Let us introduce the function: w =
√

v
p

. Then, when v(η0) > 0, the

inequality v(η(t)) > 0, is satisfied for all t ∈ [t0, ta). We deduce ẇ =
1

2
√
vp
v̇ ≤ −wφ(t,w)√

vp
≤ −φ(t,w)

p
, for allt ∈ [t0, ta). From the definition

of φ(·), it follows that ẇ ≤ −γ′(ew−1)
ew(ta−t)

, γ ′ = γ/p, for all t ∈ [t0, ta).
Using the fact that v̇ = 0 for all t ≥ ta, we deduce that ẇ = 0, for
all t ≥ ta. Note that if γ ′ > 1 (i.e., γ > p), the dynamics of w is
predefined-time stable [10]. Consequently, the dynamics of v is also
predefined-time stable, which implies that the solution η(t) = 0 is
predefined-time stable. Then, from the results of Lemma 1, we conclude
that the solution ζ(t) = 0 is predefined-time stable if γ > p. Note that
a similar analysis can be carried out to show the predefined-time of
convergence in the cases when Max returns variables other than η1.
Let us observe that in the scalar case, i.e., p = 1, V reduces to V1

and M is a constant m such that m ≤ −1. Then, the condition in
(4) reduces to V ′

1(ζ)F (ζ, τ(t, ζ, ta)) ≤ mφ(t, V1(ζ)), ζ ∈ D, which
directly ensures that if γ > 1, the dynamics is predefined-time stable.
�

Remark 2: It is important to discuss about the matrix M being a
Metzler and Hurwitz matrix that satisfies y�M ≤≤ −y� for y ∈ Rp

≥0.
Let us see some examples ofM . The given condition leads to y�(M +
I) ≤≤ 0, which can be alternatively written as (M� + I)y ≤≤ 0. One
obtains, by selectingM = λI , (λ + 1)y ≤≤ 0 which holds for all λ ≤
−1. Although several other possibilities exist for M , above ones are
the simplest.

Theorem 1 is generalized as follows.
Theorem 2: Consider system (1). Let us suppose that there exist

a continuously differentiable vector function V = [V1, V2, . . . , Vp]
� :

D → S where p ≤ n, S ⊂ Rp
≥0 is an open and connected set, 0 ∈ S

and a vector r ∈ Rp
≥0 such that r�V (ζ) is a positive definite function,

and there exists τ(t, ζ, ta) such that

V ′(ζ)F (ζ, τ(t, ζ, ta)) ≤≤ Q(t, V (ζ)), ζ ∈ D, t ≥ t0 (9)

where Q ∈ C[R≥0 × S,Rp] is a quasi-monotone increasing function
of V uniformly in t0 with Q(t, 0) = 0 for all t ≥ t0. Besides, suppose
the following vector comparison system:

η̇(t) = Q(t, η(t)), η(t0) = η0 (10)

admits a unique solution η(t) ∈ H ⊂ Rp
≥0 defined over [t0,∞) and

is predefined-time stable. Let ζ(t) be any solution of (1) with
τ(t, ζ, ta), which satisfies (9), such that V (ζ0) ≤≤ η0. Then, ζ(t) = 0
is predefined-time stable.

Proof: Let us assume that U ⊆ H is an open and bounded set such
that 0 ∈ U and Ū ⊂ S. Hence, ∂U is compact. We assume the same
function v(·) as in Theorem 1 to be continuous, then, from the Weier-
strass result, v(·) has a minimum on ∂U and α = minη∈∂U v(η) > 0.
Suppose that 0 < β < α and Dβ = {η ∈ U : v(η) ≤ β}. From the
classical Lyapunov stability and positive definiteness of v(·), one can
state that if ε > 0, there exists δ > 0 such that the ball Bδ satisfies,
Bδ ⊂ Dβ ⊂ H and ‖η(t)‖ ≤ ε, ∀ t ≥ t0, ‖η0‖ < δ. The abovemen-
tioned analysis establishes the boundedness of the solution η(t). Now,
we analyze the scalar case and the vector case one by one. First
let us consider the scalar case, i.e., p = 1. In this case, we have
V = V1 and we replace Q(t, V (ζ)) by −φ(t, V1(ζ)) in (9) to obtain
V ′
1(ζ)F (ζ, τ(t, ζ, ta)) ≤ −φ(t, V1(ζ)). Due to the continuity property

of V1(·), there exists δ2 > 0 such that V1(ζ0) < δ, ∀ ‖ζ0‖ < δ2. Next,
we replace Q(t, η) by −φ(t, η) in (10) to obtain η̇ = −φ(t, η), whose
solution is denoted by η(t) = η(t, η0). Let us choose the initial condi-
tion

η0 = V1(ζ0) ∈ Bδ, ‖ζ0‖ < δ2. (11)

Let us consider a scalar Lyapunov candidate function v(η) = η2 whose
time derivative along the trajectories of (10) is v̇ = 2ηη̇ = −2ηφ(t, η).
This implies that v̇ = 0 for all t ≥ ta and v̇ ≤ −2|η|φ(t, |η|) for all
t ∈ [t0, ta). Noting the fact that

√
v(η) = |η|, we can write v̇(η) ≤

−2
√
v(η)φ(t,

√
v(η)). Let us consider w =

√
v(η), then, when

v(η0) > 0, the inequality v(η(t)) > 0 is satisfied for all t ∈ [t0, ta).
We deduce that ẇ = 1

2
√

v(η)
v̇(η) ≤ −φ(t, w) for all t ∈ [t0, ta). We

also see that ẇ = 0 for all t ≥ ta leading to w = 0 for all t ≥ ta.
Consequently, v(η(t)) = 0 for all t ≥ ta, from which it follows that

η(t) = 0, for allt ≥ ta, η0 ∈ Bδ. (12)

Note that the conclusion (12) can be reached directly by observing that
η̇ = −φ(t, η) converges to the origin in predefined time ta. Now, by
using the comparison principle [24], for the considered initial condition
(11) we have

V1(ζ(t)) ≤ η(t), η0 ∈ Bδ, t ∈ [0,∞). (13)

From (12) to (13), it follows that V1(ζ(t)) = 0 for all t ≥ ta, ‖ζ0‖ <
δ2. Consequently, ζ(t) = 0 for all t ≥ ta. Thus, the solution ζ(t) = 0
is predefined-time stable. Now, we consider the vector case, i.e.,
p > 1. Note that the vector comparison system (10) is assumed to be
predefined-time stable, then it guarantees that the equality in (12) is also
valid in the vector case of (10). Furthermore, we notice that r�V (ζ) is
positive definite. Now, since r�V (ζ) ≤ maxi=1,...,p{ri}d�V (ζ), ζ ∈
D, where d is a vector defined in Section II, we deduce that d�V (ζ)
is also positive definite on ζ ∈ D. Recalling the continuity property
of V (·), there exists δ2 > 0 such that ‖V (ζ0)‖ < δ, ∀ ‖ζ0‖ < δ2. Let
us choose η0 = V (ζ0) ∈ Bδ, for all ‖ζ0‖ < δ2. Then, from Lemma
1, it follows that V (ζ(t)) ≤≤ η(t). Utilizing (12), d�V (ζ(t)) ≤
d�η(t) = 0, ∀ t ≥ ta and since d�V (ζ(t)) is nonnegative, it follows
that d�V (ζ(t)) = 0, ∀ t ≥ ta. Since d�V (·) is positive definite, we
conclude that ζ(t) = 0, ∀ t ≥ ta, ∀ ‖ζ0‖ < δ2. Therefore, ζ(t) = 0 is
predefined-time stable. �
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IV. PREDEFINED-TIME STABILIZATION OF LARGE-SCALE

NONLINEAR SYSTEMS

Let us consider the following nonlinear dynamical system consisting
of p subsystems interconnected to each other:

ζ̇i(t) = Fi(ζ(t)) +Hi(ζ(t))ui(t) (14)

where Fi : Rn → Rni with Fi(0) = 0 and Hi : Rn → Rni×mi with
rank equal to min{mi, ni} for all ζ are the continuous functions, for
i = 1, . . . , p, ui ∈ Rmi is the control input, and ζ = [ζ�1 , ζ

�
2 ,

. . . , ζ�p ]
� ∈ D ⊆ Rn with n = n1 + n2 + · · ·+ np, is the state. Fur-

thermore, u(t) ∈ Rp, where p = m1 +m2 + · · ·+mp. It should be
noted that the following control structure (16) is motivated by the Son-
tag’s universal formula [19]. For brevity, we use Vi(ζi(t)) = Vi(ζi).

Theorem 3: Consider system (14). Suppose that V = [V1, . . . ,
Vp]

� : D → S with Vi : Rni → R is a continuously differentiable
VLF, whereS ⊂ Rp

≥0 is an open and connected set, 0 ∈ S and r ∈ Rp
≥0

is a vector such that r�V (ζ) is positive definite and

V ′
i (ζi)Fi(ζ) ≤ Qi(t, Vi(ζi)), ζ ∈ Ri, i = 1, . . . , p (15)

where Ri = {ζ ∈ Rn, ζ �= 0 : H�
i (ζ)V

′�
i (ζi) = 0}. Let the proposed

universal control be u(t) = τ(t, ζ, ta) = [τ�1 (t, ζ, ta), τ
�
2 (t, ζ, ta),

. . . , τ�p (t, ζ, ta)]
�

τi =

⎧⎪⎨
⎪⎩
−
(

A+
√

A2+(b�
i
(ζ)bi(ζ))2

b�
i
(ζ)bi(ζ)

)
bi(ζ), bi(ζ) �= 0

0, bi(ζ) = 0

(16)

where A = ai(ζ)−Qi(t, Vi(ζi)) + βVi(ζi), ai(ζ) = V ′
i (ζi)Fi(ζ),

bi(ζ) = H�
i (ζ)V

′�
i (ζi), i = 1, . . . , p, β > 0, and Q ∈ C[R≥0 ×

S,Rp] is a quasi-monotone increasing function of V uniformly in t0
withQi(t, 0) = 0 for all t ≥ t0. Besides, suppose the following vector
comparison system:

η̇(t) = Q(t, η(t)), η(t0) = η0 (17)

admits a unique solution η(t) ∈ Rp
≥0 defined over [t0,∞) and is

predefined-time stable. Let ζ(t) be any solution of (14) with τ(t, ζ, ta),
which satisfies (15), such that V (ζ0) ≤≤ η0. Then, the solution
ζ(t) = 0 is predefined-time stable.

Proof: Simple calculations give, for i = 1 to p

V̇i(ζi) = ai(ζ) + b�i (ζ)ui(t). (18)

First case: bi(ζ) �= 0. Using the proposed universal control (16),
(18) becomes, V̇i(ζi) ≤ Qi(t, Vi(ζi)). Second case: bi(ζ) = 0. Con-
trol τi(t, ζ, ta) = 0. The chosen VLF Vi satisfies V ′

i (ζi)Fi(ζ) ≤
Qi(t, Vi(ζi)).

Thus, the derivative of VLF along the solutions of system (14) with
the control u(t) satisfies V̇i(ζi) ≤ Qi(t, Vi(ζi)). Since, it is assumed
that the comparison system (17) is predefined-time stable. Then, from
Theorem 2, the solution ζ(t) = 0 of system (14) is predefined-time
stable when the control (16) is selected if V (ζ0) ≤≤ η0. �

A. Robust Predefined-Time Stabilization

It can be noted that the control structure (16) is a nominal control
that stabilizes system (14) within the predefined time. The presence of
matched disturbances can be handled with the incorporation of sliding-
mode control. This results in discontinuous right-hand side differential
equations whose solutions are realized in the Filippov’s sense [25]. We
consider system (14) with bounded nonvanishing disturbances

ζ̇i(t) = Fi(ζ(t)) +Hi(ζ(t))(ui(t) +Di(t)) (19)

where Di ∈ Rmi with ‖Di(t)‖1 ≤ D0i is the matched disturbance,
which persists even when ζ has converged to zero for all t ≥ 0 and
Hi(ζ(t)) �= 0 for all ζ. In this case, we design the control u(t) to make
the solutions of system (19) converge to the origin in predefined time
despite of the disturbances.

First case: bi(ζ) �= 0. We propose the robust control u(t) =
τ(t, ζ, ta) = [τ�1 (t, ζ, ta), τ

�
2 (t, ζ, ta), . . . , τ

�
p (t, ζ, ta)]

�

τi = −
(

A

b�i (ζ)bi(ζ)

)
bi(ζ)−KiH

�
i Sign(V ′

i (ζi)) (20)

where Ki ≥ ‖Hi‖1
‖HiH

�
i
‖1
D0i for all ζ, i = 1, 2, . . . , p, is a constant

gain and Sign(V ′
i (ζi)) = [sign(V ′

i (ζi1)), sign(V ′
i (ζi2)), . . . , sign(V ′

i

(ζini
))]�.

Second case: bi(ζ) = 0. We select τi(t, ζ, ta) = 0. This choice
ensures that V ′

i (ζi)Fi(ζ) ≤ Qi(t, Vi(ζi)).
Thus, the derivative of VLF along the solutions of system (19) with

the constructed control u(t) satisfies V̇i(ζi) ≤ Qi(t, Vi(ζi)), when
Ki ≥ ‖Hi‖1

‖HiH
�
i
‖1
D0i for all ζ. Hence, we consider the comparison sys-

tem: η̇(t) = Q(t, η(t)), η(t0) = η0 where η ∈ Rp
≥0, and assume that

it is predefined-time stable. If V (ζ0) ≤≤ η0, then from Theorem 2,
the solution ζ(t) = 0 of system (19) is predefined-time stable despite
of the bounded disturbances when the control (20) is selected. It can
be observed that the aforementioned control structure (20) is discon-
tinuous due to the inclusion of the signum multivalued function to
mitigate matched bounded disturbances. Note that such control scheme
cannot be constructed using Sontag’s universal formula [19] for these
cases.

B. Aggregation of Comparison Systems

In order to make the results derived above simpler and more ele-
gant, we aggregate comparison systems to reduce their dimension. To
that end, consider the following aggregation procedure for the linear
systems: ζ̇ = Aζ + Bτ where ζ ∈ Rn is the state vector, τ ∈ Rp is
the control input and A,B are constant matrices with appropriate
dimensions. We use the transformation as z = T ζ to convert this
linear system into the aggregated model: ż = Pz + Gτ,where z ∈ Rm

is the state vector, T = [·]m×n is a nonsquare matrix with m < n
and the matrices P and G are P = T AT +(T T �)+andG = T B [20]
under the assumption that T is a full rank matrix which possesses a
pseudoinverse [21]. It is also assumed that ζ ∈ N(T ) if and only if
ζ = 0, where the nullspace N(T ) is defined as N(T ) = {ζ : T ζ =
0}. In a similar way, we can aggregate the nonlinear system of the
form

ζ̇ = F (ζ, τ) (21)

where ζ ∈ Rn represents the state, τ ∈ Rp is the control, and F is a
nonlinear vector field. Let us apply the transformation z = T ζ, where
T is a full-rank matrix that possesses a pseudoinverse to convert system
(21) into ż = f(z, τ), where z ∈ Rm is the state vector with m < n
and f(z, τ) = T F (T +z, τ).

Authorized licensed use limited to: Indian Institute Of Technology (Banaras Hindu University) Varanasi. Downloaded on March 27,2024 at 06:51:20 UTC from IEEE Xplore.  Restrictions apply. 



4988 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 68, NO. 8, AUGUST 2023

V. SIMULATION EXAMPLE

Consider the nonlinear dynamical equation of a 2 DOF Helicopter
system

M(x)ẍ+ C(x, ẋ)ẋ+ g(x) = U +D (22)

where x = [x1, x3]
� denotes the pitch and yaw angles, ẋ = [x2, x4]

�

denotes the pitch and yaw velocities, U = [U1, U2]
� = [KppVmp +

KpyVmy,KypVmp +KyyVmy]
� is the control input vector, where

Kpp,Kpy,Kyp,Kyy are the constant gains andVmp,Vmy are the input
voltages to the pitch and yaw motors, respectively. The disturbance
D = [D1,D2]

� is supposed to be bounded: |Di(t)| ≤ D0i, i = 1, 2 for
all t ≥ 0

M =

[
m11 0

0 m22

]
, C =

[
c11 c12

−2c12 c22

]
, g =

[
mhgl cos(x1)

0

]

where m11 = Jp +mhl
2, m22 = Jy +mhl

2 cos2(x1), c11 = Bp,
c12 = mhl

2x4 sin(x1) cos(x1), c22 = By . The parameters descrip-
tion and their values are specified in [22]. Now, consider a regula-
tion problem to design a feedback control law U so that x tracks
a constant reference xr in predefined time despite of the bounded
disturbances. Let e = x− xr . Then, e satisfies the differential equa-
tion: M(x)ë+ C(x, ẋ)ė+ g(x) = U +D. Our aim is to stabilize this
system at (e = 0, ė = 0), but this point is not an equilibrium point
when U = D = 0. Let U = g(x)− kpe+ τ , where kp is a positive
definite diagonal matrix with entries kp1 and kp2, and τ = [τ1, τ2]

�

is a control to be chosen appropriately. Now substituting U , we get,
M(x)ë+ C(x, ẋ)ė+ kpe = τ +D. This can be written as the set of
state space equations:

ė1 = e2

ė2 = − 9.27e2 − 0.55e24 sin(e1) cos(e1)− 11.59kp1e1

+ 11.59(τ1 +D1)

ė3 = e4

ė4 =
−2c12
m22

e2 −
0.318

m22

e4 −
kp2
m22

e3 +
(τ2 +D2)

m22

. (23)

We apply the aggregation procedure as discussed in Section IV. Let us

apply the transformation as z = T ζ with T =

[
3 2 0 0

0 0 3 2

]
, ζ =

[e1, e2, e3, e4]
�, z = [z1, z2]

� to transform system (23) into

ż1 = − 2.3901z1 − 0.0262z22 sin(0.2308z1) cos(0.2308z1)

− 5.3499kp1z1 + 23.18(τ1 +D1)

ż2 = 0.461z2 −
0.308C1z1

M1

− (0.462kp2 + 0.098)z2
M1

+
2(τ2 +D2)

M1

(24)

where C1 = −0.0147z2 sin(0.2308z1) cos(0.2308z1) and M1 =
0.0432 + 0.0478 cos2(0.2308z1). We design controls τ1 and τ2 as
discussed in Section IV to make the solutions of system (24) converge
to the origin in predefined time under the effect of disturbances D1 and

D2. Let us consider the VLF, V = [V1, V2]
� with V1 = (z1−z2)

2

2
and

V2 = (z1+z2)
2

2
. It is easy to check that r�V is positive definite, where

r = [1, 1]�. In this case, a1 = (z1 − z2)E1, a2 = (z1 + z2)E2, b1 =
H1(z1 − z2), b2 = H2(z1 + z2), A1 = (a1 − φ1(t, V1) + β1V1),
and A2 = (a2 − φ2(t, V2) + β2V2), where E1 = −2.3901z1 −
0.0262z22 sin(0.2308z1) cos(0.2308z1) − 5.3499kp1z1, E2 =

Fig. 1. States and input voltages of system (22) in predefined time,
1(a)–1(d) ta = 5 s and 1(e)–1(h) 10 s.

0.461z2 − 0.308C1z1
M1

− (0.462kp2+0.098)z2
M1

, H1 = 23.18, H2 = 2
M1

,

βi > 0, and φi(t, ·), i = 1, 2 is the function defined in (2) with
γ = γi. Now, the derivative of V1 along the trajectories of (24) for
all t ∈ [t0, ta) after substituting controls designed according to (20),

where i = 1, 2, becomes, when K1 ≥ 1
|H1 |D01: V̇1 ≤ −γ1(e

V1−1)

eV1 (ta−t)
. In

a similar way, when K2 ≥ 1
|H2 |D02, V̇2 ≤ −γ2(e

V2−1)

eV2 (ta−t)
. Also, note that

the designed controls τ1 and τ2 will maintain z(t) = 0 for all t ≥ ta,
hence, V̇i = 0 for all t ≥ ta. Thus, the comparison system constructed
over t ∈ [t0, ta) is ẇi =

−γi(e
wi−1)

ewi (ta−t)
. For all t ≥ ta, ẇi = 0, for

i = 1, 2. The comparison system is quasi-monotone increasing and
predefined-time stable in time ta withγi > 2 asp = 2. Hence, it follows
from Theorem 1 that the pitch and yaw angles regulate at the desired
position in the set predefined time ta despite ofD1,D2 with the designed
input voltages Vmp and Vmy , respectively. The simulation results
are shown in Fig. 1 with Ki = 0.002, γi = 30.5, kp1 = kp2 = 1,
βi = 5i = 1, 2, D1(t) = 0.01 sin 10t, and D2(t) = 0.005 sin 10t
with predefined time ta = 5 s, and ta = 10 s, respectively.

VI. CONCLUSION

In this article, we presented the generalized control design approach
to stabilize nonlinear systems in predefined time. We have shown that
it is robust to matched bounded disturbances by using the framework
of VLFs and comparison systems. We designed control so that the
comparison system is predefined-time stable. After that, we relate these
stability conditions with that of the original system by employing
comparison principles. Furthermore, we aggregated the comparison
system to reduce its dimension in order to make the proposed approach
efficient and straightforward. Finally, we assessed through an example
accompanied by simulations the efficacy of the mathematical results.
In the future, the proposed work can be implemented on experimental
setups.
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