
PHYSICAL REVIEW B 108, 064211 (2023)

Suppression of one-dimensional weak localization by band asymmetry
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We investigate disorder-induced localization in metals that break time-reversal and inversion symmetries
through their energy dispersion, εk �= ε−k , but lack Berry phases. In the perturbative regime of disorder, we
show that weak localization is suppressed due to a mismatch of the Fermi velocities of left and right movers. To
substantiate this analytical result, we perform quench numerics on chains shorter than the Anderson localization
length ξ—the latter computed and verified to be finite using the recursive Green’s function method—and find
a sharp rise in the saturation value of the participation ratio due to band asymmetry, indicating a tendency to
delocalize. Interestingly, for weak disorder strength η, we see a better fit to the scaling behavior ξ ∝ 1/η2 for
asymmetric bands than conventional symmetric ones.
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I. INTRODUCTION

Weak localization (WL) refers to an enhanced tendency
of electrons in a disordered potential to localize due to con-
structive quantum interference between pairs of time-reversed
paths [1–6]. It serves as a precursor to Anderson or strong
localization, which refers to the true arrest of quantum diffu-
sion of free electrons on a lattice [7]. Since its conception in
the context of electrons in a metal, Anderson localization has
been seen in light waves [8–10], ultrasound [11,12], ultracold
atoms [13–16], and more recently, digital quantum simulators
such as those provided by IBMQ [17,18].

The two regimes of localization are elegantly captured by
the scaling theory of localization [1,2,19,20]. Formulated as
a renormalization group approach, it describes the scaling
behavior of conductance in disordered systems via a scaling
function that in its simplest form, depends only on the conduc-
tance but has no explicit dependence on system size. Then, the
physical conductance in the thermodynamic limit is given by
the appropriate stable fixed point of the renormalization group
flow. The results of this procedure depend sensitively on the
dimensionality and symmetry class of the system [1,19–23].
In three dimensions (3D), the scaling function has a zero of
order unity in every symmetry class, which is an unstable fixed
point that separates the localized and delocalized regimes at
strong and weak disorder, respectively. The localized phase
corresponds to Anderson’s original prediction of localization
in a disordered lattice. In 2D, the asymptotic behavior of the
system depends delicately on its symmetries. If time-reversal
symmetry (T ) is absent (unitary class) or present but bosonic
(T 2 = 1, orthogonal class), disorder is marginally relevant
[1,19,20,24]. Physically, this means infinitesimal disorder will
eventually localize the system in the thermodynamic limit, but
the localization length in practice can be astronomically large.
This leads to striking experimental signatures such as a sharp,

symmetric cusp in the magnetoconductance as the construc-
tive interference is ruined by the Aharanov-Bohm phase of
the magnetic field. In contrast, the presence of fermionic T
(T 2 = −1, symplectic class), pertinent to metals with strong
spin-orbit coupling, causes disorder to be marginally irrele-
vant, leads to weak antilocalization, and allows metallicity to
survive up to the thermodynamic limit at extremely weak dis-
order [24]. Experimentally, weak antilocalization manifests as
a peak instead of a cusp in the magnetoresistance. Finally in
1D, disorder is relevant and the scaling function is always neg-
ative, which physically implies localization for infinitesimal
disorder in any symmetry class.

Most of our current understanding of metallic physics
is based on the presence of at least one of inversion (I)
and time-reversal (T ) symmetries, as bulk metals that break
both symmetries, i.e., non-centrosymmetric, magnetic metals,
are extremely rare. The symmetries govern key macroscopic
properties of metals via microscopic processes such as Cooper
pairing and elastic backscattering, pertinent to superconduc-
tivity and localization, respectively. On the other hand, largely
thanks to the poor screening of electromagnetic fields, lower-
dimensional systems allow phenomena that are suppressed or
forbidden in bulk materials. For instance, T and I breaking
enable a host of exotic superconducting behaviors either in
systems that are (quasi)-1D or the phenomena themselves
have a directionality. These include Majorana fermions in
nanowires [25–29], superconducting [30–41] and Josephson
diode effects [42–50], and spontaneous supercurrents at equi-
librium [51–53]. This immediately raises the question, “what
are the consequences of T and I breaking on the localization
properties of 1D metals?”

In this paper, we address this question in the simplest
scenario: 1D metals of spinless electrons with an asymmet-
ric dispersion, εk �= ε−k , in a disordered chemical potential.
We refer to such metals as band asymmetric metals (BAMs)
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and stress that they are the generic low-energy theory of 1D
metals that lack any symmetry; several examples are given in
Appendix A. This problem technically belongs to the unitary
class; however, it differs from the usual problem of localiza-
tion in this class where disorder breaks T but the underlying
metal does not, resulting in preserved T on average. In con-
trast, the current problem violates T on average too as T is
already broken by the parent metal. Therefore, this system
is conceptually closer to a metal in a magnetic field than to
one with magnetic impurities. We study both weak and strong
localization in 1D BAMs and find that the former contains
a new physical regime while the latter enjoys a localization
length that grows parametrically with band asymmetry.

In Sec. II, we discuss the WL correction to the conduc-
tivity in 1D BAMs, which is followed by the discussion
of quench numerics and recursive Green’s function method
calculations in Sec. III and is concluded by a discussion on
possible avenues for experimental realizations in Sec. IV. The
Appendixes contain the discussion of some physical mod-
els with T - and I-breaking perturbations, the details of the
conductivity correction calculations, and the specifics of the
recursive Green’s function (RGF) method.

II. GENERAL CONDUCTIVITY CORRECTION

Our main result is a regime of WL in 1D BAMs. Specifi-
cally, we show that the WL correction to the conductivity in
1D BAMs is given by

σ WL ≈ −e2

h̄

2πvτ0√
l
lφ

+ δv2

4v2

, (1)

for l/lφ, |δv|/v � 1, where v = (vL + vR)/2 is the aver-
age speed of the left and right movers, δv = vR − vL is
the difference in speeds, l is the mean free path, lφ is a
phenomenological phase coherence length that is typically
governed by inelastic scattering and thermal decoherence, and
τ0 is the quasiparticle lifetime calculated in the Born approxi-
mation. We have assumed a single pair of counterpropagating
modes for simplicity. Equation (1) shows two distinct regimes:
for

√
l
lφ

� |δv|
2v

and
√

l
lφ

� |δv|
2v

, dephasing is dominated by
band asymmetry and inelastic scattering, respectively. Thus,
symmetric metals with δv = 0 fall in the latter regime and
have σ WL ∝ −√

lφ [54], which diverges at zero temperature
in the absence of inelastic scattering processes. Intuitively,
right and left moving waves at a given speed have equal and
opposite momenta. Therefore, they form a perfect standing
wave and enhance localization. In contrast, if band asymmetry
is large enough [Fig. 1(c)], the standing wave heuristically
melts into an interference pattern with net drift. Equation (1)
predicts this for

√
δv/v � l/lφ ; then σ WL remains finite as lφ

diverges and depends on disorder only through τ0.
To arrive at Eq. (1), we begin by assuming random chem-

ical potential quenched disorder and considering the effect
of band asymmetry on τ−1

0 = 2Im
(i0+) in the Born ap-
proximation, where 
(z) is the complex frequency-dependent
self-energy. Although the BAM has unequal Fermi momenta
for left and right movers, |kL

F | �= |kR
F | [Fig. 1(c)], τ0 de-

pends on the band structure only through the density of
states at the Fermi level. As a result, we find that it changes
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FIG. 1. (a) Feynman diagrams representing the polarization bub-
ble for the maximally crossed (Langer-Neal) diagram, where C is
the resummed Cooperon propagator represented diagrammatically
by a sum of parallel impurity lines in (b). Here, k̃ ≡ (k, iνn) and
k̃′ ≡ (k′, iνn + iωn) label the top incoming and outgoing lines while
q̃ ≡ (q, iωn) is the difference between their frequency/momentum.
(c) Representative asymmetric band showing the Fermi points and
highlighting the difference in the speeds of the left and right movers.

quantitatively, but not qualitatively, as the bands turn asym-
metric. Physically, this means band asymmetry does not
qualitatively affect classical transport, i.e., transport in the
regime where quantum interference effects vanish and prob-
abilities rather than amplitudes for different Feynman paths
add. Thus, one must transcend the Born approximation and
consider appropriate vertex corrections to see the qualitative
effects of band asymmetry.

In a T -symmetric system, the vertex corrections that
survive disorder-averaging consist of maximally crossed dia-
grams, illustrated in Figs. 1(a) and 1(b). Thus, we evaluate the
polarization bubble with these corrections following standard
procedure [54,55] to obtain σ WL; see Appendix B for full
details of the calculation. When computed for metals under
a small orbital magnetic field, these corrections yield the
well-known experimental signatures of WL in magnetoresis-
tance. In the present context, fortunately, the calculation is
simpler since band asymmetry is a nonsingular perturbation
unlike an orbital magnetic field. In particular, all momentum
integrals here can be elegantly done by contour methods
once we note that the integrals are dominated by regions
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near the Fermi points and linearize the dispersion around
these points. Moreover, the dominant contributions to WL
are captured by the retarded-advanced Cooperon propagator
since the phenomenon effectively arises from interference
between forward and backward time evolution of the elec-
tron wavefunction. Under the linear approximation, we find
the retarded-retarded Cooperon propagator to exactly vanish.
Linearization also naturally introduces the Fermi velocities
vL,R into the calculation and lets us package the band asym-
metry into a single dimensionless parameter, δv/2v = (vR −
vL )/(vL + vR). Finally, we resum the Dyson series for the
Cooperon propagator and calculate the polarization bubble
for conductivity to obtain σ WL. Along the way, we include
Markovian inelastic scattering into the calculation via a phe-
nomenological phase decoherence probability e−l/lφ between
elastic scattering events. This yields the result, Eq. (1), for
l � lφ and δv � v.

The dependence of σ WL on band asymmetry only through
δv indicates that the above phenomena appear in a wide
range of physical systems. In Appendix A, we describe sev-
eral systems with T - and I- breaking perturbations, some of
which are dynamically tunable and have seen experimental
realizations, where we expect a suppression of WL. In the next
section, we focus on a lattice model and study localization in
it numerically.

III. NUMERICS ON ZIGZAG CHAIN

To substantiate the analytics, we study localization numer-
ically on a tight-binding lattice model of spinless fermions
[Fig. 2] described by

H = − t
∑

i

c†
i ci+1 − t ′eiθ

∑
i

c†
i ci+2 + H.c.

+
∑

(εi − μ)c†
i ci, (2)

where ci and c†
i are fermionic annihilation and creation

operators at the lattice site “i”. Also, t , t ′, θ , μ, and εi

represent the nearest-neighbor (NN) hopping strength, next-
nearest-neighbor (NNN) hopping strength, T - and I-breaking
hopping phase, chemical potential, and the on-site disorder
potential respectively. The dispersion in the absence of disor-
der is

εk = −2[t cos(k) + t ′ cos(2k + θ )] − μ, (3)

which shows band asymmetry for generic values of θ �= 0, π

[Fig. 2(c)].
This model can also be viewed as a zigzag chain with

triangular plaquettes [Fig. 2(b)]. The NN hopping terms form
the two sides of the triangles and NNN ones are across the
bases. These triangular plaquettes have a total phase of ±θ

associated with them corresponding to the total phase picked
up by a particle while hopping anticlockwise along the edges.
As we can see in Fig. 2(b), adjacent triangles have opposite
fluxes passing through them. However, we note that despite
having a zigzag chain representation, the system has a one-site
unit cell and H is invariant under unit translation, i → i + 1.
Throughout this paper, we consider t = −1, t ′ = −0.5, μ =
−1, and draw εi from a uniform distribution [−η, η].

(a)

(b)

(c)

′

FIG. 2. (a) A schematic representation of the 1D tight-binding
model with real NN and complex NNN hopping. (b) Zigzag
chain representation of the same model with alternating flux pass-
ing through adjacent triangles. (c) Graphical representation of the
dispersion relation εk . Symmetric cases (θ = 0 and θ = π ) and
the asymmetric cases are represented by dashed and solid lines
respectively.

As a first diagnostic tool, we calculate the participation
ratio (PR) defined as

PR = 1∑
i |ψi|4 , (4)

for a tight-binding wavefunction ψ . It is a measure of the
number of states a particle is distributed over. For a particle
localized on only one site, PR = 1, while a particle evenly
distributed over L sites has PR = L. In general, a finite (van-
ishing) value of PR/L as L → ∞ indicates delocalization
(localization).

To study localization in our system, we numerically cal-
culate the spread of wavefunctions starting from one that is
localized on two neighboring sites, |i〉+|i+1〉√

2
, |i〉 being the state

corresponding to the particle localized on site “i”. We have
chosen this particular initial condition because its energy lies
at the Fermi level for μ = −1 and the effect of the suppres-
sion of weak localization is seen prominently at finite μ. We
choose the sites in the middle of the chain but the location
does not matter as we are using periodic boundary conditions
in all our quantum quench calculations. We evolve the system
up to t = 106 and perform a disorder average of 100 disorder
realizations in most cases.

In Fig. 3(a), we present the time evolution of PR for differ-
ent η and θ in a system with L = 5000. The wavefunction of
the particle starting in the middle of the lattice spreads over
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(a)

(b)
(c)

(d)

FIG. 3. PR saturation with time for a system with L = 5000. (a) Time evolution of PR up to t = 106 for various θ , for a given η. (b) The
long-time saturation value of PR, PR∞, as a function of θ for various η. (c) Color plot showing the variation of PR∞ with θ and η. (d) Finite-size
scaling behavior of PR∞

L vs 1
L up to L = 5000 for some (η, θ ) pairs marked in (c).

the system initially, resulting in an increase in PR with time.
However, the spread does not continue indefinitely and PR
saturates after some time. Increasing η reduces the saturation
value of PR, which is consistent with WL; however, a nonzero
θ suppresses this effect resulting in a higher PR saturation
value compared to the symmetric case [Fig. 3(c)]. We note that
the suppression of WL increases monotonically and rapidly
as θ increases away from 0 [Fig. 3(b)]. We then perform
finite-size scaling of PR saturation values for various (θ, η)
pairs. For small L, the PR increases linearly with L. As we
argue below, this is because the localization length ξ > L at
these system sizes. However, PR∞

L decreases as we go towards
larger L [Fig. 3(d)], suggesting that 1D free-fermions systems
might localize in the thermodynamic limit at arbitrarily small
disorders even in the presence of band asymmetry.

The last statement is difficult to check using exact diag-
onalization for very weak disorder as ξ can be much larger
than the system sizes this method can access. Fortunately,
iterative algorithms such as transfer matrix [56] and recursive
Green’s function (RGF) method [57–59] exist, which can
access significantly larger system sizes. Thus, we complement
our quench numerics by explicitly computing ξ using the RGF
method. We explore various η and θ and system sizes up to
L = 106, and average over 100 realizations. The details of
RGF method for our system are presented in Appendix C.

We choose the Fermi energy for μ = −1 as before to see
the suppression of WL prominently. In Fig. 4(a), we present
the iterations of the RGF method calculations as a function of
system size. After some fluctuations at small sizes, ξ clearly
saturates to a constant value that defines the localization

length in the thermodynamic limit for that particular (θ, η)
pair. Figure 4(b) presents ξ as a function of both η and θ while
Figs. 4(c) and 4(d) show cuts through this plot. For a particular
η, ξ increases monotonically with increasing θ [Fig. 4(c)] and
decreases with increasing η [Fig. 4(d)]. We see in Fig. 4(c) that
asymmetry increases ξ but shows signs of saturation rather
than divergence, suggesting that the system is still localized.

In the regime of weak η and θ = 0, perturbation theory
[1,60] predicts ξ ∝ 1

η2 . By employing similar arguments using

Green’s function G(E ) = ∫
k (E − εk )−1 for θ �= 0, we get

1

ξ
= −η2

12

∫ E

G
dG

dE
, (5)

where ∫ E

G
dG

dE
= −

∫ E ∫
k,k′

1

E − εk

1

(E − εk′ )2
(6)

= −
∫

k,k′
Ak,k′ ln(E − εk ) + Bk,k′

E − εk′
. (7)

Provided the above integral is finite or properly regularized,
the scaling behavior ξ ∝ 1

η2 holds true even for finite values

of θ . We have verified this relationship between ξ and 1
η2

by performing a power-law fit (solid lines) on the simulation
data points (dots) [Fig. 4(d)], where we observe the slope
approaching 1 as θ increases [Fig. 4(d) (inset)]. Since the
scaling ξ ∝ 1

η2 is well known at θ = 0 in the thermodynamic
limit [1,60], the deviation from this scaling is presumably
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(a)

(b)
(c)

(d)

FIG. 4. Localization length (ξ ) calculations using recursive Green’s function method up to L = 106. (a) Variation of ξ with θ for a given
η as a function of 1

L . (b) Color plot showing the variation of ξ with θ and η. (c) ξ as a function of θ for various η. (d) ξ as a function of 1
η2

for various θ . The dots represent the simulation data and the solid lines represent the power-law fit. Inset shows the slope approaching 1 as θ

increases.

due to finite-size effects. This suggests that finite-size effects,
surprisingly, are smaller for θ �= 0.

PR and ξ both measure the degree of localization in a
system, with PR quantifying the number of sites the wave-
function is spread over and ξ being the characteristic length
scale over which the wave function decays. Therefore, we
observe consistent trends in PR and ξ with varying η and
θ . Notably, the RGF method calculations yield large values
of ξ for certain parameters, surpassing the system size used
in exact diagonalization. It is important to note here that
these calculations correspond to two different regimes. The
analytical result [Eq. (1)] is valid, and the PR calculations
[Fig. 3] are done in the regime ξ > L where a finite system is
delocalized, whereas the RGF method calculations [Fig. 4] are
performed in the regime L > ξ , which is smoothly connected
to the thermodynamic limit. The trends in these numerical
calculations align with the analytical result [Eq. (1)] that the
conductivity increases due to asymmetry, although a finite ξ

[Fig. 4] implies that the conductivity is 0 by definition in the
thermodynamic limit.

IV. EXPERIMENTS

The suppression of localization due to band asymmetry
can be probed in 1D metallic wires with Rashba spin-orbit
coupling using a magnetic field. As described in Appendix A,
the dispersion is symmetric in the absence of a magnetic
field due to T . A weak magnetic field will break T , turn the

bands asymmetric, and should enhance the conductivity. We
emphasize that the enhancement in 1D is due to the Zeeman
effect of the magnetic field, and is distinct from the usual
suppression of WL due to the Aharanov-Bohm effect of an
orbital field in 2D, 3D, and even in 1D wires with a finite
width [61,62].

Concrete realizations of our model (Fig. 2) may also be
achieved in synthetic [63] and optical [64] lattices, which
offer high tunability of hopping amplitudes, disorder, and
fluxes using artificial gauge fields. Moreover, unlike solids,
these platforms naturally lack phonons and uncontrolled dis-
order. With increasing flux as illustrated in Fig. 2, we predict
a greater spread of an initially local wavefunction. In par-
ticular, the localization length extracted from the long-time
density profiles should increase as the flux increases. While
the Aharanov-Bohm flux plays a key role in this realization,
its main role is to break the k → −k symmetry of the bands.
Indeed, the average flux is zero, which distinguishes it from
usual studies of WL in uniform magnetic fields in solid-state
systems.

V. CONCLUSIONS

We have shown that in 1D metals where time-reversal
and inversion symmetry are broken, dubbed band asymmetric
metals, weak localization is suppressed due to the asymmetry
in velocities of left and right movers. Heuristically, the for-
mation of perfect standing waves due to quantum interference
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between time-reversed paths, leading to weak localization, is
disrupted due to this asymmetry. The analytical results are
validated by the numerical calculations of the participation
ratio and localization length such that there is an increase in
conductivity, participation ratio, and localization length with
increasing band asymmetry, indicating a tendency to delocal-
ize. Metallic nanowires with strong spin-orbit coupling and
tunable synthetic and optical lattices with controlled disorders
may be convenient platforms for experimentally investigating
the impact of band asymmetry on the localization properties
of disordered systems.
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APPENDIX A: MODELS AND REALIZATIONS

Here, we discuss three physical models with T - and I-
breaking perturbations and calculate the asymmetry in speeds
of left and right movers to leading order.

1. Zigzag chain

Considering the zigzag chain dispersion relation [Eq. (3)],
for the symmetric case (θ = 0, π ) we find equal (in magni-
tude) and opposite (in direction) Fermi momenta

±kF = ±

⎧⎪⎪⎨
⎪⎪⎩

cos−1

(
−2t+

√
4t2−16t ′(μ−2t ′ )

8t ′

)
θ = 0

cos−1

(
2t−

√
4t2+16t ′(μ+2t ′ )

8t ′

)
θ = π

, (A1)

and equal Fermi speeds vR = −vL ≡ vF where

vF = |2t sin kF + 4t ′ sin 2kF |. (A2)

The perturbative correction due to small asymmetry θ to the
leading order breaks T and I symmetries to give kR/L

F = kF ±
δ, where

δ = −2t ′ cos kF

t + 4t ′ cos kF
θ, (A3)

and

vR/L = vF ∓ 4tt ′ sin2 kF

t + 4t ′ cos kF
θ, (A4)

showing the difference in the magnitude of Fermi speeds,
δv ∝ θ .

2. Cubic perturbation

For a continuum model with a cubic perturbation, the dis-
persion relation is given by

εcubic = k2

2m
+ αk3 + βk4 − μ, (A5)

where αk3 is the T - and I-breaking perturbation and βk4

with β > 0 keeps εcubic positive in the limit k → ±∞. We
treat the quadratic and quartic terms in the dispersion as
the unperturbed system and calculate the correction due to the
cubic term. Similar to the zigzag chain, the symmetric case
(α = 0) has equal and opposite Fermi momenta

±kF = ±
√

−1 +
√

1 + 16μβm2

4mβ
(A6)

and equal Fermi speeds

vF = kF

m
+ 4βk3

F . (A7)

The cubic perturbation gives kR/L
F = kF ± δ, where δ =

−αk2
F m to leading order, and

vR/L ≈ vF ± 2k2
F

[
1 − 6βk2

F

m

]
α, (A8)

resulting in the difference in the magnitude of Fermi speeds,
δv ∝ α.

3. Spin-orbit coupling and magnetization

Here, we consider a wire along x with a Zeeman field By

and Rashba spin-orbit coupling λ. Its Hamiltonian is

H = k2

2m
− μ + λkσy − γμBBy

σy

2
, (A9)

where γ and μB are the gyromagnetic ratio and Bohr mag-
neton, respectively, and σy = ±1 refers to spin along y. For
each value of σy, there exists a right mover and a left mover
at the Fermi level, resulting in a total of four Fermi points.
For this system, there are two ways to obtain a symmetric
band structure. The first is by switching off the magnetic field
(By = 0), which yields two pairs of equal and opposite Fermi
momenta,

|kF | = m

∣∣∣∣∣−σyλ ±
√

λ2 + 2μ

m

∣∣∣∣∣, (A10)

and equal Fermi speeds

vF =
√

λ2 + 2μ

m
. (A11)

In this case, band symmetry exists between a right mover with
spin σy and left-mover with spin −σy due to T . The second
way to obtain a symmetric dispersion is by suppressing spin-
orbit coupling (λ = 0). This, too, gives a pair of equal and
opposite Fermi momenta for each value of σy due to I,

KF,σy = √
m(2μ + γμBByσy), (A12)
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and equal Fermi speeds

VF,σy =
√

2μ + γμBByσy

m
. (A13)

When both By and λ are nonzero, neither the Fermi points nor
the velocities appear in equal and opposite pairs. Their values
now are

kR/L
σy

= m

(
−σyλ +

√
λ2 + 2μ + σyγμBBy

m

)
, (A14)

vR/L
σy

=
√

λ2 + 2μ + σyγμBBy

m
. (A15)

APPENDIX B: DETAILED CALCULATION OF σWL

1. Self-energy

We consider a disorder potential U (x) = ∑
n U (x − Rn)

with ¯U (x) = 0 and ¯U (x)U (x′) = niu2
0δ(x − x′) where the bar

denotes disorder average and ni is the impurity density, and
begin the analysis by considering the effect of band asymme-
try on the self-energy as a function of complex frequency 
(z)
[54,55],


(z) = niu
2
0

∫ π

−π

dk

2π

1

z − εk
. (B1)

Analytically continuing z within a half-plane, z → ε +
i0+sgn[Im(z)] and absorbing Re
 into a redefinition of μ, we
get a lifetime from the imaginary part,

1

τ (ε)
= 2πniu

2
0

∫
k
δ(ε − εk ). (B2)

To simplify the analysis, let us assume there is a single left
mover at each ε with speed vL(ε) and a single right mover
with speed vR(ε). Then

1

τ (ε)
= niu

2
0

(
1

vL(ε)
+ 1

vR(ε)

)
, (B3)

where substituting the density of states per unit length g(ε) =
1

2π
( 1
vL (ε) + 1

vR (ε) ), we get

1

τ0(ε)
= 2πniu

2
0g(ε). (B4)

Clearly, the Born lifetime depends only on the mean inverse
speed and is not affected qualitatively by the velocity asym-
metry. Nevertheless, it is convenient to separate the speeds
into their average and differences, vL = v − δv/2, vR = v +
δv/2. This gives

1

τ0(ε)
= 2niu2

0v(ε)

v2(ε) − δv2(ε)/4
. (B5)

Here, GR(k, ε), GA(k, ε), and G(k, iνn) are the usual retarded,
advanced, and Matsubara electron Green’s functions.

2. Cooperon propagator

To determine the weak localization correction to the con-
ductivity σ WL(q̃) we need to calculate the polarization bubble
due to the maximally crossed or Langer-Neal diagrams that

capture constructive interference between time-reversed paths
[54,55]. The bubble is given by

�W L(q̃) = −
∫

k̃,k̃′
vk+q/2vk′+q/2G(k̃)G(k̃ + q̃)C(k̃, k̃′, q̃)

× G(k̃′)G(k̃′ + q̃), (B6)

where k̃ ≡ (k, iνn), q̃ ≡ (q, iωn),
∫

k̃ ≡ T
∑

ikn

∫
dk
2π

, and C is
the resummed Cooperon propagator that is represented dia-
grammatically by a sum of parallel impurity lines [Figs. 1(a)
and 1(b)]. We use the notation C(k̃, k̃′, q̃), where k̃ and k̃′ label
the top incoming and outgoing lines while q̃ is the difference
between the frequency/momentum of the bottom outgoing
line and the top incoming line.

Some simplifications occur or can be justifiably made
while doing these calculations. Since we will eventually be
interested in the dc limit, so we can set q = 0. Also, impurity
lines after disorder averaging behave like interactions that
conserve frequency, so the top and bottom fermion lines have
frequencies iνn and iνn + iωn for every diagram in the Dyson
series for C, or in short, C ∝ 1

T δνn,ν ′
n
. Finally, for short-range

impurities, the scattering potential is momentum independent.
This ensures that C(k, k′, q = 0) only depends on k + k′ ≡ Q.

The Dyson series for C can now be resummed, and yields

C(Q; iνn + iωn, iνn)

=
n2

i u4
0

∫
p G(Q − p, iνn + iωn)G(p, iνn)

1 − niu2
0

∫
p G(Q − p, iνn + iωn)G(p, iνn)

, (B7)

where we have written the frequency and momentum argu-
ments separately in the Green’s functions.

3. Contour integrals

This calculation can be carried out in two steps.

a. Frequency integral

Since two complex frequencies are involved, there are two
branch cuts, at Imz = 0, and Imz = −iωn where iνn → z. We
first perform the frequency integration by summing over one
of the two frequencies (iνn), doing a Taylor expansion around
the other (ω), and calculating the correction to the conductiv-
ity [54,55], σ WL = − limω→0

1
ω

Im�WL(ω). This gives

σ WL = −
∫

k,k′,ε
vkvk′ f ′(ε)[GA(k, ε)GA(k′, ε)CRA(Q; ε, ε)

− GR(k, ε)GR(k′, ε)CRR(Q; ε, ε)]GR(k′, ε)GR(k, ε)
(B8)

where

CRA(Q; ε, ε) = C(Q; ε + i0+, ε − i0+)

=
n2

i u4
0

∫
p GR(Q − p, ε)GA(p, ε)

1 − niu2
0

∫
p GR(Q − p, ε)GA(p, ε)

= niu2
0ζ

RA(Q)

1 − ζ RA(Q)
, (B9)
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CRR(Q; ε, ε)CRR(Q) = C(Q; ε + i0+, ε + i0+)

=
n2

i u4
0

∫
p GR(Q − p, ε)GR(p, ε)

1 − niu2
0

∫
p GR(Q − p, ε)GR(p, ε)

= niu2
0ζ

RR(Q)

1 − ζ RR(Q)
. (B10)

At T → 0, f ′(ε) → −δ(ε), so only the point ε = 0 con-
tributes. Suppressing ε in the arguments of G and C,

σ WL = 2π

∫
k,k′

vkvk′[GA(k)GA(k′)CRA(Q)

− GR(k)GR(k′)CRR(Q)]GR(k′)GR(k) (B11)

where ε = 0 is understood and Q = k + k′.
To evaluate CRA(Q) and CRR(Q), we need to evaluate

ζ RA(Q) and ζ RR(Q). To account for inelastic scattering, which
leads to loss of phase coherence, we can phenomenologically
modify ζ (Q) → e−l/lφ ζ (Q), where lφ is the phase coherence
length and l is the mean free path. Physically, this allows a
probability ∝ el/lφ for the particle to lose phase coherence
between successive elastic scattering processes.

For symmetric metals, the dominant—in fact, divergent—
contribution to CRA(Q) comes from Q = 0 because ζ RA(Q =
0) turns out to be 1 if l/lφ → 0. In contrast, the “RR” terms
are expected to be subdominant.

b. Momentum integrals

After performing the frequency integral, we carry out
the momentum integral for a general asymmetric dispersion,
which results in an expression involving the Fermi momenta
of the two movers. We have

ζ RA(Q) = niu
2
0e−l/lφ

∫
d p

2π

1

εQ−p − i
2τ0

1

εp + i
2τ0

. (B12)

Now, there is no “special” value of Q where εp = εQ−p

over all p. Nonetheless, the dominant contribution will pre-
sumably come from terms where both p and Q − p are
close to Fermi points, kR

F and −kL
F , so the corresponding Q

value is Q0 = kR
F − kL

F . We have adopted a sign convention

where kR
F , kL

F > 0 are the magnitudes of the Fermi momenta.
Parametrizing (i) p = kR

F + P, Q − p = −kL
F − P, and (ii)

p = −kL
F + P, Q − p = kR

F − P gives

ζ RA(Q0) = niu2
0e−l/lφ

π

∫ ∞

−∞
dP

1

vLP − i
2τ0

1

vRP + i
2τ0

, (B13)

where we have extended the limits of the P-integral cutoffs
to ±∞ to focus on the contribution from regions near the
Fermi points. In practice, the cutoffs will be determined by
the nonlinearity away from the Fermi points. This integral can
be easily done by contour methods and gives

ζ RA(Q0) = e−l/lφ

(
1 − δv2

4v2

)
. (B14)

Clearly, ζ RA
j ≈ 1 for δv � v and l � lφ . Importantly,

CRA(Q0) = niu2
0ζ

RA(Q0 )
1−ζ RA(Q0 ) no longer diverges for l/lφ → 0 unlike

the symmetric case.
Now, to calculate a more accurate result, we need to con-

sider nearby momenta as well. For small deviations from
Q0, i.e., for Q = Q0 + �Q, the process can be repeated with
(i) p = kR

F + P + �Q/2, Q − p = −kL
F − P + �Q/2, and (ii)

p = −kL
F + P + �Q/2, Q − p = kR

F − P + �Q/2,

ζ RA(Q0 + �Q) = ζ RA(Q0)

1 + [el/lφ τ0vζ RA(Q0)�Q]2
, (B15)

CRA(Q0 + �Q) =
v

2τ0
[ζ RA(Q0)]2

[1 − ζ RA(Q0)] + [el/lφ τ0vζ RA(Q0)�Q]2
,

(B16)

where we have used Eq. (B5) with ε = 0. Compared to a
symmetric dispersion, which has Q0 = 0, ζ RA(Q0) = 1 and
hence, a double pole in CRA at Q = 0, CRA(Q0 + �Q) has
poles away from the real axis at

�Q = ±i

√
1 − ζ RA(Q0)

el/lφ τ0vζ RA(Q0)
. (B17)

Similarly,

ζ RR(Q0 + �Q) = e−l/lφ
niu2

0

2π
2Re

∫ ∞

−∞
dP

(
1

vL(P − �Q/2) + i
2τ0

1

vR(P + �Q/2) + i
2τ0

)
. (B18)

Now, both poles are above the real axis, so completing the
contour in the lower half-plane causes the integral to vanish
exactly. Thus, ζ RR(Q0 + �Q) = CRR(Q0 + �Q) = 0.

4. Final result for σWL

With the expression obtained after frequency and momen-
tum integral, we can calculate the correction to conductivity
by doing another momentum integral. Explicitly,

σ WL = 2π

∫
k,k′

vkvk′
1

ε2
k + 1

4τ 2
0

1

ε2
k′ + 1

4τ 2
0

CRA(k + k′). (B19)

Again, we focus on pairs (k, k′) such that k + k′ = Q0 + �Q,
i.e., k and k′ are near the left and right Fermi points or vice
versa. Parameterizing (i) k = kR

F + K + �Q/2, k′ = −kL
F −

K + �Q/2, and (ii) k = −kL
F + K + �Q/2, k′ = kR

F − K +
�Q/2,

σ WL = −2π

∫
K,�Q

vLvR

[
1

v2
R(K + �Q/2)2 + 1

4τ 2
0

× 1

v2
L(K − �Q/2)2 + 1

4τ 2
0

× +(�Q → −�Q)

]
CRA(Q0 + �Q). (B20)
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For complex K , the above integral has simple poles at K =
±Q

2 ± i
2vL,Rτ0

. Completing the K contour in, say, the upper half
plane gives

σ WL = −2π

∫
�Q

4τ 3
0 vel/lφ ζ RA(Q0)

1 + [el/lφ τ0vζ RA(Q0)�Q]2
CRA(Q0 + �Q).

(B21)

Besides the two simple poles of CRA(Q0 + �Q) given by
Eq. (B17), we now have another pair of simple poles at
�Q = ±i[el/lφ τ0vζ RA(Q0)]−1. Integrating over a complex
half-plane gives

σ WL = − 2πτ0v[ζ RA(Q0)]2

[
√

1 − ζ RA(Q0) + 1 − ζ RA(Q0)]
. (B22)

For large inelastic mean free path (l � lφ) and small asymme-
try (|δv| � v), using Eq. (B14) and reinstating dimensionful
factors of e2 and h̄ gives Eq. (1) in the main paper to leading
orders in l/lφ and δv/v.

APPENDIX C: RECURSIVE GREEN’S
FUNCTION METHOD

Recursive Green’s function method is an iterative algo-
rithm for calculating properties of the system such as the
localization length in the thermodynamic limit [57–59]. As
the name suggests, this method calculates the Green’s func-
tion recursively by using that of a smaller system size and
growing the system layer by layer.

For a given Hamiltonian H (N ) for a system size of N , the
Green’s function at complex energy z, G(z, N ) is defined as
its resolvent and for a real energy E , it is obtained by taking
the imaginary part of z to zero. The localization length (ξ ) in

terms of the matrix elements of the Green’s function is
4

ξ
= − lim

n→∞
1

n
ln(Tr|G1,n|2), (C1)

where Gn,m ≡ 〈n|G(z, m)|m〉.
The quantity An = G−1

1,n−2, obeys the recursive relation
[58],

An+2 = (E − Hn+1)V −1
n An+1 − V †

n Vn−1An, (C2)

where Hn is the matrix representing the tight-binding Hamil-
tonian for the nth slice, and Vn is the matrix that describes the
particles hopping onto the (n + 1)th slice from the nth slice.
For our model [Fig. 2], we have,

Hn =
[
εi t
t εi+1

]
, Vn,n+1 =

[
t ′e−iθ t

0 t ′e−iθ

]
. (C3)

ξ can be calculated by iterating Eq. (C2) with some initial
values for A0 and A1, which we choose as A0 = 0, A1 = V0.

However, Eq. (C2) suffers from a numerical instability in that
the elements of An grow exponentially for large n and hence
require some regularization. Therefore, in every iteration we
multiply both sides of Eq. (C2) with [An+1]−1. Simplifying
this procedure, we get the regularized recursion relation [58],

Ãn = (E − Hn+1)V −1
n − V †

n V −1
n−1Ã−1

n−1 (C4)

that helps us resolve this issue and calculate ξ . We choose
Ã0 = 1 and to calculate ξ , define a new matrix,

Bn = Bn−1Ã−1
n

bn
, (C5)

where bn = ||Bn|| is the Frobenius norm of Bn, and B0 = 1.

We calculate Bn and store bn in every iteration of Eq. (C4).
The matrix Bn is very useful because

ln(Tr|G1,n|2) = 2[ln(bn+1) + · · · + ln(b1)], (C6)

which can then be substituted in Eq. (C1) to determine ξ .
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