List of Figures

1.1	Classification of composites based on the reinforcement phase [4]	3
1.2	Classification of composites based on matrix phase [5]	4
1.3	Different synthesis routes for metal matrix composites [15]	9
1.4	Fe-Ni phase diagram [41]	19
1.5	Fe-Ni phase diagram [41]	20
1.6	Different ZrO ₂ Polymorphs [83]	28
1.7	Ultra-hard and wear-resistant components manufactured from Fe/TiC	
	MMCs [91]	31
3.1	Flow diagram for synthesis and Characterization of Fe-Ni alloys and (Fe-	
	Ni)-ZrO ₂ composite specimens.	37
3.2	Sintering schedule for alloy specimens.	41
3.3	Sintering schedule for composite specimen.	41
3.4	Digital pictographs of cylindrical compacts.	42
3.5	Flow diagram of alloy powder synthesis via wet chemical route	44
3.6	Digital pictographs of compact pellets	45
3.7	Sintering schedule for composite specimen	45
3.8	Digital pictographs of sintered pellets after polishing	45
3.9	Different characterizations techniques used.	46
3.10	Vicker's hardness technique used for hardness measurement [100]	49
3.11	Schematic Layout of Pin on Disc Wear and Friction Testing Machine [106].	54
3.12	Schematic Layout of experiment setup used for corrosion test	57

3.13	Schematic of the three neck cell used for electrodes mounting	57
3.14	Tafel extrapolation technique for finding corrosion parameters [107]	58
3.15	Nyquist plot [108]	59
4.1	Synthesis flow diagram of $Fe_{(100-x)}Ni_{(x)}$ alloy specimens via powder met-	
	allurgy.	61
4.2	XRD patterns of (a) Fe, (b) Ni and (c) ball milled (Fe $_{70}$ Ni $_{30}$) powder	63
4.3	X-ray diffraction patterns of specimens sintered at 1000°C	64
4.4	X-ray diffraction patterns of specimens sintered at 1200°C	65
4.5	X-ray diffraction patterns of specimens sintered at 1250°C	66
4.6	Powder morphology of raw Fe powder at (a) 250X, (b) 500X, (c) 2500X	
	and (d) 5000X	68
4.7	Powder morphology of raw Ni powder at (a) 250X, (b) 500X, (c) 2500X	
	and (d) 5000X	68
4.8	Powder morphology of ball milled $Fe_{70}Ni_{30}$ powder at (a) 500X, (b)	
	2500X and (c) 5000X	69
4.9	Elemental mapping of $Fe_{70}Ni_{30}$ ball milled powder	70
4.10	Back scattered SEM micrographs of 1000°C sintered specimens (a-b)	
	$Fe_{90}Ni_{10}$, (c-d) $Fe_{80}Ni_{20}$, (e-f) $Fe_{70}Ni_{30}$, (g-h) $Fe_{60}Ni_{40}$, and (i-j) $Fe_{50}Ni_{50}$	
	at 100X and 500X magnifications.	72
4.11	Back scattered SEM micrographs of 1200°C sintered specimens (a-b)	
	$Fe_{90}Ni_{10}, (\text{c-d}) Fe_{80}Ni_{20}, (\text{e-f}) Fe_{70}Ni_{30}, (\text{g-h}) Fe_{60}Ni_{40}, \text{and} (\text{i-j}) Fe_{50}Ni_{50}$	
	at 100X and 500X magnifications.	73
4.12	Back scattered SEM micrographs of 1250°C sintered specimens (a-b)	
	$Fe_{90}Ni_{10}, (\text{c-d}) Fe_{80}Ni_{20}, (\text{e-f}) Fe_{70}Ni_{30}, (\text{g-h}) Fe_{60}Ni_{40}, \text{and} (\text{i-j}) Fe_{50}Ni_{50}$	
	at 100X and 500X magnifications.	74
4.13	Comparative back scattered SEM micrographs of specimens sintered at	
	different temperatures.	75

4.14	Comparative back scattered SEM micrographs of 1250°sintered and	
	chemically etched (a) $Fe_{90}Ni_{10}$, (b) $Fe_{70}Ni_{30}$ and (c) $Fe_{50}Ni_{50}$ specimens	
	at 1000X magnification	76
4.15	Comparative back scattered SEM micrographs of $Fe_{50}Ni_{50}$ specimens sin-	
	tered at (a)1000°C, (b)1200°C and (c)1250°C at 1000X magnification af-	
	ter chemical etching.	77
4.16	EDX of $Fe_{50}Ni_{50}$ sintered at (a-b) 1200°C and (c) 1250°C	78
4.17	Elemental mapping of $Fe_{50}Ni_{50}$ sintered at (a)1000°C (b)1200°C and	
	(c)1250°C	79
4.18	Temperature vs. Density plot of $Fe_{(100-x)}Ni_{(x)}$ alloy specimens sintered	
	at different sintering temperatures.	81
4.19	Temperature vs. Hardness plot of $Fe_{(100-x)}Ni_{(x)}$ alloy specimens sintered	
	at different sintering temperatures.	82
4.20	COF vs. Time plot for specimens at 20N applied load.	84
4.21	Wear rate of specimens sintered at (a) 1000, (b) 1200 and (c) 1250°C.	85
4.22	Worn surface SEM of $Fe_{90}Ni_{10}$ sintered at (a) 1000, (b) 1200 and (c) 1250°C.	86
4.23	Worn surface SEM of $Fe_{50}Ni_{50}$ sintered at (a) 1000, (b) 1200 and (c) 1250°C.	87
4.24	Surface potential of specimens (a-b) $Fe_{90}Ni_{10}$, (c-d) $Fe_{70}Ni_{30}$ and (e-f)	
	$Fe_{50}Ni_{50}$.	89
4.25	Tafel plots of $Fe_{(100-x)}Ni_{(x)}$ alloy specimens.	91
4.26	Nyquist plots for $Fe_{(100-x)}Ni_{(x)}$ alloy specimens.	94
4.27	SEM micrographs of (a) Pure Fe, (b) $Fe_{90}Ni_{10}$, (c) $Fe_{80}Ni_{20}$, (d) $Fe_{70}Ni_{30}$,	
	(e) $Fe_{60}Ni_{40}$, and (f) $Fe_{50}Ni_{50}$ specimen surfaces after corrosion test	96
4.28	EDX of the corroded surface at different regions.	96
5.1	Synthesis flow diagram of (Fe-Ni)- ZrO_2 metal matrix composites 1	.00
5.2	X-ray diffraction pattern of ball milled powders (a)(Fe $_{70}$ Ni $_{30}$) and (b)2.5	
	wt.% (c)5 wt.%, (d)10 wt.% (e)15 wt.% ZrO_2 reinforced (Fe $_{70}Ni_{30})$ (F-	
	Fe; N- Ni and Z- ZrO_2)	.02

5.3	X-ray diffraction patterns of (a)($Fe_{70}Ni_{30}$) (b)($Fe_{70}Ni_{30}$)-2.5ZrO ₂
	$(c)(Fe_{70}Ni_{30})-5ZrO_2 (d)(Fe_{70}Ni_{30})-10ZrO_2 (e)(Fe_{70}Ni_{30})-15ZrO_2 sin-2CrO_2 (d)(Fe_{70}Ni_{30})-15ZrO_2 (d)(Fe_{70}Ni_{30})-15ZrO_2 (d)(Fe_{70}Ni_{30})-10ZrO_2 (d)(Fe_{70}Ni_{30})-10$
	tered composites. (F- Fe; α - α -(Fe,Ni); γ - γ -(Fe,Ni) and z- ZrO ₂) 104
5.4	Scanning electron micrographs of ZrO_2 powder at (a) 1000x and (b)
	2500x magnifications
5.5	Scanning electron micrographs of (a)(Fe ₇₀ Ni ₃₀) (b)(Fe ₇₀ Ni ₃₀)-2.5ZrO ₂
	$(c)(Fe_{70}Ni_{30})-5ZrO_2 (d)(Fe_{70}Ni_{30})-10ZrO_2 (e)(Fe_{70}Ni_{30})-15ZrO_2 ball$
	milled powders at 1000X magnification
5.6	Scanning electron micrographs of (a)(Fe ₇₀ Ni ₃₀) (b)(Fe ₇₀ Ni ₃₀)-2.5ZrO ₂
	$(c)(Fe_{70}Ni_{30})-5ZrO_2 (d)(Fe_{70}Ni_{30})-10ZrO_2 (e)(Fe_{70}Ni_{30})-15ZrO_2 ball$
	milled powders at 10000X magnification
5.7	Backscatterd SEM images of (a)(Fe $_{70}Ni_{30}$) (b)(Fe $_{70}Ni_{30}$)-2.5ZrO ₂ (c)
	$(Fe_{70}Ni_{30})\text{-}5ZrO_2 \ (d) \ (Fe_{70}Ni_{30})\text{-}10ZrO_2 \ (e)(Fe_{70}Ni_{30})\text{-}15ZrO_2 \ sintered$
	composites at 500X magnification
5.8	Backscatterd SEM images of (a)(Fe $_{70}Ni_{30}$) (b)(Fe $_{70}Ni_{30}$)-2.5ZrO ₂ (c)
	$(Fe_{70}Ni_{30})\text{-}5ZrO_2 \ (d) \ (Fe_{70}Ni_{30})\text{-}10ZrO_2 \ (e)(Fe_{70}Ni_{30})\text{-}15ZrO_2 \ sintered$
	composites at 1000X magnification
5.9	Backscatterd SEM images of (a-b) (Fe $_{70}Ni_{30}$)-5ZrO ₂ (c-d) (Fe $_{70}Ni_{30}$)-
	$10ZrO_2$ (e-f)(Fe ₇₀ Ni ₃₀)-15ZrO ₂ sintered composites at 10000X and
	20000Xmagnification
5.10	Elemetal mapping of $(Fe_{70}Ni_{30})$ -10ZrO ₂ composites
5.11	Elemetal mapping of $(Fe_{70}Ni_{30})$ -15ZrO ₂ composites
5.12	Density plot of sintered composites with varying ZrO_2 content 114
5.13	Hardness plot of sintered composites with varying ZrO_2 content 115
5.14	Wear rate in different specimens at different loads
5.15	COF vs. Time plot for the composite $(Fe_{70}Ni_{30})-10ZrO_2$ at different loads. 118
5.16	COF vs. Time plot for different composites at 30N applied load 119

5.17	Worn surface SEM micrographs of (a)(Fe $_{70}Ni_{30}$) (b)(Fe $_{70}Ni_{30}$)-2.5ZrO ₂	
	(c) $(Fe_{70}Ni_{30})$ -5ZrO ₂ (d) $(Fe_{70}Ni_{30})$ -10ZrO ₂ (e) $(Fe_{70}Ni_{30})$ -15ZrO ₂ com-	
	posites	21
5.18	Tafel plots of composites examined in 3.5%NaCl solution	22
5.19	Nyquist plots obtained for (a) pure Fe and (Fe ₇₀ Ni ₃₀), and (b) (Fe,Ni)-	
	ZrO ₂ reinforced composites in 3.5 % NaCl. (The equivalent circuit is	
	shown in the inset)	27
5.20	SEM micrographs of (a) Pure Fe (b)($Fe_{70}Ni_{30}$) (c)($Fe_{70}Ni_{30}$)-2.5ZrO ₂ (d)	
	(Fe ₇₀ Ni ₃₀)-5ZrO ₂ (e) (Fe ₇₀ Ni ₃₀)-10ZrO ₂ (f)(Fe ₇₀ Ni ₃₀)-15ZrO ₂ composites. 12	29
6.1	X-ray diffraction patterns of oxide powders after auto-combustion for the	
0.1	compositions with (a) $x = 10$ mole% (b) $x = 30$ mole% and (c) $x = 50$ mole% 13	35
62	Rietveld refinement of (a) $A_{-}(\text{Fe}_{-N}, \text{Ni}_{-n})$ (b) $A_{-}(\text{Fe}_{-N}, \text{Ni}_{-n})$ and (c) A_{-}	,5
0.2	(Fere Nize) (Fere Nize) (a) A-(1 C ₉₀) (1)(0) (b) A-(1 C ₇₀) (1)(3) (c) A-(1 C ₇₀) (1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(86
()	$(\Gamma e_{50}(N_{150}), \ldots, \ldots,$)0 \
6.3	Fe-N1 phase diagram [109]	57
6.4	Scanning electron micrographs of oxide powders after auto-combustion	
	for the compositions with (a) $x = 10$ mole%, (b) $x = 30$ mole% and (c) $x = 50$	
	mole%	38
6.5	Scanning electron micrographs of (a) A-(Fe $_{90}Ni_{10}$), (b) A-(Fe $_{70}Ni_{30}$) and	
	(c) A-(Fe ₅₀ Ni ₅₀) powders	39
6.6	Transmission electron micrographs of (a) A-(Fe ₉₀ Ni ₁₀), (b) A-(Fe ₇₀ Ni ₃₀)	
	and (c) A-(Fe ₅₀ Ni ₅₀) powders. \ldots 14	10
6.7	Magnetic hysteresis loops of (a) A-(Fe $_{90}Ni_{10}$), (b) A-(Fe $_{70}Ni_{30}$) and (c)	
	A-(Fe ₅₀ Ni ₅₀) powders	12
7.1	Flow chart for synthesis of A-(Fe ₇₀ Ni ₃₀)-ZrO ₂ metal matrix composites 14	16
7.2	X-ray diffraction pattern of (a)A-($Fe_{70}Ni_{30}$) (b)A-($Fe_{70}Ni_{30}$)-2.5ZrO ₂	
	$(c)A-(Fe_{70}Ni_{30})-5ZrO_2 (d)A-(Fe_{70}Ni_{30})-10ZrO_2 (e)A-(Fe_{70}Ni_{30})-15ZrO_2$	
	composites. (γ - γ -(Fe,Ni); α - α -(Fe,Ni) and z-ZrO ₂)	ł7

7.3	Back scattered SEM micrographs of (a) A-(Fe $_{70}Ni_{30}$)-2.5ZrO ₂ (b)
	$A-(Fe_{70}Ni_{30})-5ZrO_2 \ (c) \ A-(Fe_{70}Ni_{30})-10ZrO_2 \ (d) \ A-(Fe_{70}Ni_{30})-15ZrO_2$
	specimen surfaces at 2500X magnification
7.4	Elemental mapping of A-(Fe ₇₀ Ni ₃₀)
7.5	Elemental mapping of A-(Fe ₇₀ Ni ₃₀)-10ZrO ₂
7.6	Density plot of sintered composites with varying ZrO_2 content 151
7.7	Hardness plot of sintered composites with varying ZrO_2 content 153
7.8	Surface potential of specmens (a-b) A-(Fe ₇₀ Ni ₃₀) and (c-d) A-(Fe ₇₀ Ni ₃₀)-
	10ZrO ₂
7.9	Tafel polarization plots of specimens in 3.5% NaCl solution 156
7.10	Nyquist plots (a) obtained for prepared composites with equivalent circuit
	(b) plots after zooming at lower frequency
7.11	SEM micrographs of specimen surfaces (a) A-(Fe $_{70}Ni_{30}$) (b) A-
	$(Fe_{70}Ni_{30})-2.5ZrO_2$ (c) A- $(Fe_{70}Ni_{30})-5ZrO_2$ (d) A- $(Fe_{70}Ni_{30})-10ZrO_2$ (f)
	A-(Fe $_{70}Ni_{30}$)-15ZrO ₂ specimens after corrosion test at 250X magnification. 160